09e77af818a62250d00767d720ac7475430741a4
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     __m256i          ewitab;
86     __m128i          ewitab_lo,ewitab_hi;
87     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
89     real             *ewtab;
90     __m256           dummy_mask,cutoff_mask;
91     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
92     __m256           one     = _mm256_set1_ps(1.0);
93     __m256           two     = _mm256_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
109     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
110     beta2            = _mm256_mul_ps(beta,beta);
111     beta3            = _mm256_mul_ps(beta,beta2);
112
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
120     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
121     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
122
123     /* Avoid stupid compiler warnings */
124     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
125     j_coord_offsetA = 0;
126     j_coord_offsetB = 0;
127     j_coord_offsetC = 0;
128     j_coord_offsetD = 0;
129     j_coord_offsetE = 0;
130     j_coord_offsetF = 0;
131     j_coord_offsetG = 0;
132     j_coord_offsetH = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
158                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
159
160         fix0             = _mm256_setzero_ps();
161         fiy0             = _mm256_setzero_ps();
162         fiz0             = _mm256_setzero_ps();
163         fix1             = _mm256_setzero_ps();
164         fiy1             = _mm256_setzero_ps();
165         fiz1             = _mm256_setzero_ps();
166         fix2             = _mm256_setzero_ps();
167         fiy2             = _mm256_setzero_ps();
168         fiz2             = _mm256_setzero_ps();
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_ps();
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
175         {
176
177             /* Get j neighbor index, and coordinate index */
178             jnrA             = jjnr[jidx];
179             jnrB             = jjnr[jidx+1];
180             jnrC             = jjnr[jidx+2];
181             jnrD             = jjnr[jidx+3];
182             jnrE             = jjnr[jidx+4];
183             jnrF             = jjnr[jidx+5];
184             jnrG             = jjnr[jidx+6];
185             jnrH             = jjnr[jidx+7];
186             j_coord_offsetA  = DIM*jnrA;
187             j_coord_offsetB  = DIM*jnrB;
188             j_coord_offsetC  = DIM*jnrC;
189             j_coord_offsetD  = DIM*jnrD;
190             j_coord_offsetE  = DIM*jnrE;
191             j_coord_offsetF  = DIM*jnrF;
192             j_coord_offsetG  = DIM*jnrG;
193             j_coord_offsetH  = DIM*jnrH;
194
195             /* load j atom coordinates */
196             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197                                                  x+j_coord_offsetC,x+j_coord_offsetD,
198                                                  x+j_coord_offsetE,x+j_coord_offsetF,
199                                                  x+j_coord_offsetG,x+j_coord_offsetH,
200                                                  &jx0,&jy0,&jz0);
201
202             /* Calculate displacement vector */
203             dx00             = _mm256_sub_ps(ix0,jx0);
204             dy00             = _mm256_sub_ps(iy0,jy0);
205             dz00             = _mm256_sub_ps(iz0,jz0);
206             dx10             = _mm256_sub_ps(ix1,jx0);
207             dy10             = _mm256_sub_ps(iy1,jy0);
208             dz10             = _mm256_sub_ps(iz1,jz0);
209             dx20             = _mm256_sub_ps(ix2,jx0);
210             dy20             = _mm256_sub_ps(iy2,jy0);
211             dz20             = _mm256_sub_ps(iz2,jz0);
212
213             /* Calculate squared distance and things based on it */
214             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
215             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
216             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
217
218             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
219             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
220             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
221
222             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
223             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
224             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
225
226             /* Load parameters for j particles */
227             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
228                                                                  charge+jnrC+0,charge+jnrD+0,
229                                                                  charge+jnrE+0,charge+jnrF+0,
230                                                                  charge+jnrG+0,charge+jnrH+0);
231
232             fjx0             = _mm256_setzero_ps();
233             fjy0             = _mm256_setzero_ps();
234             fjz0             = _mm256_setzero_ps();
235
236             /**************************
237              * CALCULATE INTERACTIONS *
238              **************************/
239
240             r00              = _mm256_mul_ps(rsq00,rinv00);
241
242             /* Compute parameters for interactions between i and j atoms */
243             qq00             = _mm256_mul_ps(iq0,jq0);
244
245             /* EWALD ELECTROSTATICS */
246             
247             /* Analytical PME correction */
248             zeta2            = _mm256_mul_ps(beta2,rsq00);
249             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
250             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
251             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
252             felec            = _mm256_mul_ps(qq00,felec);
253             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
254             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
255             velec            = _mm256_sub_ps(rinv00,pmecorrV);
256             velec            = _mm256_mul_ps(qq00,velec);
257             
258             /* Update potential sum for this i atom from the interaction with this j atom. */
259             velecsum         = _mm256_add_ps(velecsum,velec);
260
261             fscal            = felec;
262
263             /* Calculate temporary vectorial force */
264             tx               = _mm256_mul_ps(fscal,dx00);
265             ty               = _mm256_mul_ps(fscal,dy00);
266             tz               = _mm256_mul_ps(fscal,dz00);
267
268             /* Update vectorial force */
269             fix0             = _mm256_add_ps(fix0,tx);
270             fiy0             = _mm256_add_ps(fiy0,ty);
271             fiz0             = _mm256_add_ps(fiz0,tz);
272
273             fjx0             = _mm256_add_ps(fjx0,tx);
274             fjy0             = _mm256_add_ps(fjy0,ty);
275             fjz0             = _mm256_add_ps(fjz0,tz);
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             r10              = _mm256_mul_ps(rsq10,rinv10);
282
283             /* Compute parameters for interactions between i and j atoms */
284             qq10             = _mm256_mul_ps(iq1,jq0);
285
286             /* EWALD ELECTROSTATICS */
287             
288             /* Analytical PME correction */
289             zeta2            = _mm256_mul_ps(beta2,rsq10);
290             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
291             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
292             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
293             felec            = _mm256_mul_ps(qq10,felec);
294             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
295             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
296             velec            = _mm256_sub_ps(rinv10,pmecorrV);
297             velec            = _mm256_mul_ps(qq10,velec);
298             
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velecsum         = _mm256_add_ps(velecsum,velec);
301
302             fscal            = felec;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm256_mul_ps(fscal,dx10);
306             ty               = _mm256_mul_ps(fscal,dy10);
307             tz               = _mm256_mul_ps(fscal,dz10);
308
309             /* Update vectorial force */
310             fix1             = _mm256_add_ps(fix1,tx);
311             fiy1             = _mm256_add_ps(fiy1,ty);
312             fiz1             = _mm256_add_ps(fiz1,tz);
313
314             fjx0             = _mm256_add_ps(fjx0,tx);
315             fjy0             = _mm256_add_ps(fjy0,ty);
316             fjz0             = _mm256_add_ps(fjz0,tz);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r20              = _mm256_mul_ps(rsq20,rinv20);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq20             = _mm256_mul_ps(iq2,jq0);
326
327             /* EWALD ELECTROSTATICS */
328             
329             /* Analytical PME correction */
330             zeta2            = _mm256_mul_ps(beta2,rsq20);
331             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
332             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
333             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
334             felec            = _mm256_mul_ps(qq20,felec);
335             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
336             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
337             velec            = _mm256_sub_ps(rinv20,pmecorrV);
338             velec            = _mm256_mul_ps(qq20,velec);
339             
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velecsum         = _mm256_add_ps(velecsum,velec);
342
343             fscal            = felec;
344
345             /* Calculate temporary vectorial force */
346             tx               = _mm256_mul_ps(fscal,dx20);
347             ty               = _mm256_mul_ps(fscal,dy20);
348             tz               = _mm256_mul_ps(fscal,dz20);
349
350             /* Update vectorial force */
351             fix2             = _mm256_add_ps(fix2,tx);
352             fiy2             = _mm256_add_ps(fiy2,ty);
353             fiz2             = _mm256_add_ps(fiz2,tz);
354
355             fjx0             = _mm256_add_ps(fjx0,tx);
356             fjy0             = _mm256_add_ps(fjy0,ty);
357             fjz0             = _mm256_add_ps(fjz0,tz);
358
359             fjptrA             = f+j_coord_offsetA;
360             fjptrB             = f+j_coord_offsetB;
361             fjptrC             = f+j_coord_offsetC;
362             fjptrD             = f+j_coord_offsetD;
363             fjptrE             = f+j_coord_offsetE;
364             fjptrF             = f+j_coord_offsetF;
365             fjptrG             = f+j_coord_offsetG;
366             fjptrH             = f+j_coord_offsetH;
367
368             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
369
370             /* Inner loop uses 255 flops */
371         }
372
373         if(jidx<j_index_end)
374         {
375
376             /* Get j neighbor index, and coordinate index */
377             jnrlistA         = jjnr[jidx];
378             jnrlistB         = jjnr[jidx+1];
379             jnrlistC         = jjnr[jidx+2];
380             jnrlistD         = jjnr[jidx+3];
381             jnrlistE         = jjnr[jidx+4];
382             jnrlistF         = jjnr[jidx+5];
383             jnrlistG         = jjnr[jidx+6];
384             jnrlistH         = jjnr[jidx+7];
385             /* Sign of each element will be negative for non-real atoms.
386              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
387              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
388              */
389             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
390                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
391                                             
392             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
393             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
394             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
395             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
396             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
397             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
398             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
399             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
400             j_coord_offsetA  = DIM*jnrA;
401             j_coord_offsetB  = DIM*jnrB;
402             j_coord_offsetC  = DIM*jnrC;
403             j_coord_offsetD  = DIM*jnrD;
404             j_coord_offsetE  = DIM*jnrE;
405             j_coord_offsetF  = DIM*jnrF;
406             j_coord_offsetG  = DIM*jnrG;
407             j_coord_offsetH  = DIM*jnrH;
408
409             /* load j atom coordinates */
410             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
411                                                  x+j_coord_offsetC,x+j_coord_offsetD,
412                                                  x+j_coord_offsetE,x+j_coord_offsetF,
413                                                  x+j_coord_offsetG,x+j_coord_offsetH,
414                                                  &jx0,&jy0,&jz0);
415
416             /* Calculate displacement vector */
417             dx00             = _mm256_sub_ps(ix0,jx0);
418             dy00             = _mm256_sub_ps(iy0,jy0);
419             dz00             = _mm256_sub_ps(iz0,jz0);
420             dx10             = _mm256_sub_ps(ix1,jx0);
421             dy10             = _mm256_sub_ps(iy1,jy0);
422             dz10             = _mm256_sub_ps(iz1,jz0);
423             dx20             = _mm256_sub_ps(ix2,jx0);
424             dy20             = _mm256_sub_ps(iy2,jy0);
425             dz20             = _mm256_sub_ps(iz2,jz0);
426
427             /* Calculate squared distance and things based on it */
428             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
429             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
430             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
431
432             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
433             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
434             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
435
436             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
437             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
438             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
439
440             /* Load parameters for j particles */
441             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
442                                                                  charge+jnrC+0,charge+jnrD+0,
443                                                                  charge+jnrE+0,charge+jnrF+0,
444                                                                  charge+jnrG+0,charge+jnrH+0);
445
446             fjx0             = _mm256_setzero_ps();
447             fjy0             = _mm256_setzero_ps();
448             fjz0             = _mm256_setzero_ps();
449
450             /**************************
451              * CALCULATE INTERACTIONS *
452              **************************/
453
454             r00              = _mm256_mul_ps(rsq00,rinv00);
455             r00              = _mm256_andnot_ps(dummy_mask,r00);
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq00             = _mm256_mul_ps(iq0,jq0);
459
460             /* EWALD ELECTROSTATICS */
461             
462             /* Analytical PME correction */
463             zeta2            = _mm256_mul_ps(beta2,rsq00);
464             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
465             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
466             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
467             felec            = _mm256_mul_ps(qq00,felec);
468             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
469             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
470             velec            = _mm256_sub_ps(rinv00,pmecorrV);
471             velec            = _mm256_mul_ps(qq00,velec);
472             
473             /* Update potential sum for this i atom from the interaction with this j atom. */
474             velec            = _mm256_andnot_ps(dummy_mask,velec);
475             velecsum         = _mm256_add_ps(velecsum,velec);
476
477             fscal            = felec;
478
479             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
480
481             /* Calculate temporary vectorial force */
482             tx               = _mm256_mul_ps(fscal,dx00);
483             ty               = _mm256_mul_ps(fscal,dy00);
484             tz               = _mm256_mul_ps(fscal,dz00);
485
486             /* Update vectorial force */
487             fix0             = _mm256_add_ps(fix0,tx);
488             fiy0             = _mm256_add_ps(fiy0,ty);
489             fiz0             = _mm256_add_ps(fiz0,tz);
490
491             fjx0             = _mm256_add_ps(fjx0,tx);
492             fjy0             = _mm256_add_ps(fjy0,ty);
493             fjz0             = _mm256_add_ps(fjz0,tz);
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r10              = _mm256_mul_ps(rsq10,rinv10);
500             r10              = _mm256_andnot_ps(dummy_mask,r10);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq10             = _mm256_mul_ps(iq1,jq0);
504
505             /* EWALD ELECTROSTATICS */
506             
507             /* Analytical PME correction */
508             zeta2            = _mm256_mul_ps(beta2,rsq10);
509             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
510             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
511             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
512             felec            = _mm256_mul_ps(qq10,felec);
513             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
514             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
515             velec            = _mm256_sub_ps(rinv10,pmecorrV);
516             velec            = _mm256_mul_ps(qq10,velec);
517             
518             /* Update potential sum for this i atom from the interaction with this j atom. */
519             velec            = _mm256_andnot_ps(dummy_mask,velec);
520             velecsum         = _mm256_add_ps(velecsum,velec);
521
522             fscal            = felec;
523
524             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
525
526             /* Calculate temporary vectorial force */
527             tx               = _mm256_mul_ps(fscal,dx10);
528             ty               = _mm256_mul_ps(fscal,dy10);
529             tz               = _mm256_mul_ps(fscal,dz10);
530
531             /* Update vectorial force */
532             fix1             = _mm256_add_ps(fix1,tx);
533             fiy1             = _mm256_add_ps(fiy1,ty);
534             fiz1             = _mm256_add_ps(fiz1,tz);
535
536             fjx0             = _mm256_add_ps(fjx0,tx);
537             fjy0             = _mm256_add_ps(fjy0,ty);
538             fjz0             = _mm256_add_ps(fjz0,tz);
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             r20              = _mm256_mul_ps(rsq20,rinv20);
545             r20              = _mm256_andnot_ps(dummy_mask,r20);
546
547             /* Compute parameters for interactions between i and j atoms */
548             qq20             = _mm256_mul_ps(iq2,jq0);
549
550             /* EWALD ELECTROSTATICS */
551             
552             /* Analytical PME correction */
553             zeta2            = _mm256_mul_ps(beta2,rsq20);
554             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
555             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
556             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
557             felec            = _mm256_mul_ps(qq20,felec);
558             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
559             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
560             velec            = _mm256_sub_ps(rinv20,pmecorrV);
561             velec            = _mm256_mul_ps(qq20,velec);
562             
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _mm256_andnot_ps(dummy_mask,velec);
565             velecsum         = _mm256_add_ps(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm256_mul_ps(fscal,dx20);
573             ty               = _mm256_mul_ps(fscal,dy20);
574             tz               = _mm256_mul_ps(fscal,dz20);
575
576             /* Update vectorial force */
577             fix2             = _mm256_add_ps(fix2,tx);
578             fiy2             = _mm256_add_ps(fiy2,ty);
579             fiz2             = _mm256_add_ps(fiz2,tz);
580
581             fjx0             = _mm256_add_ps(fjx0,tx);
582             fjy0             = _mm256_add_ps(fjy0,ty);
583             fjz0             = _mm256_add_ps(fjz0,tz);
584
585             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
586             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
587             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
588             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
589             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
590             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
591             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
592             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
593
594             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
595
596             /* Inner loop uses 258 flops */
597         }
598
599         /* End of innermost loop */
600
601         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
602                                                  f+i_coord_offset,fshift+i_shift_offset);
603
604         ggid                        = gid[iidx];
605         /* Update potential energies */
606         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
607
608         /* Increment number of inner iterations */
609         inneriter                  += j_index_end - j_index_start;
610
611         /* Outer loop uses 19 flops */
612     }
613
614     /* Increment number of outer iterations */
615     outeriter        += nri;
616
617     /* Update outer/inner flops */
618
619     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*258);
620 }
621 /*
622  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_single
623  * Electrostatics interaction: Ewald
624  * VdW interaction:            None
625  * Geometry:                   Water3-Particle
626  * Calculate force/pot:        Force
627  */
628 void
629 nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_single
630                     (t_nblist * gmx_restrict                nlist,
631                      rvec * gmx_restrict                    xx,
632                      rvec * gmx_restrict                    ff,
633                      t_forcerec * gmx_restrict              fr,
634                      t_mdatoms * gmx_restrict               mdatoms,
635                      nb_kernel_data_t * gmx_restrict        kernel_data,
636                      t_nrnb * gmx_restrict                  nrnb)
637 {
638     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
639      * just 0 for non-waters.
640      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
641      * jnr indices corresponding to data put in the four positions in the SIMD register.
642      */
643     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
644     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
645     int              jnrA,jnrB,jnrC,jnrD;
646     int              jnrE,jnrF,jnrG,jnrH;
647     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
648     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
649     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
650     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
651     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
652     real             rcutoff_scalar;
653     real             *shiftvec,*fshift,*x,*f;
654     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
655     real             scratch[4*DIM];
656     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
657     real *           vdwioffsetptr0;
658     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
659     real *           vdwioffsetptr1;
660     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
661     real *           vdwioffsetptr2;
662     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
663     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
664     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
665     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
666     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
667     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
668     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
669     real             *charge;
670     __m256i          ewitab;
671     __m128i          ewitab_lo,ewitab_hi;
672     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
673     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
674     real             *ewtab;
675     __m256           dummy_mask,cutoff_mask;
676     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
677     __m256           one     = _mm256_set1_ps(1.0);
678     __m256           two     = _mm256_set1_ps(2.0);
679     x                = xx[0];
680     f                = ff[0];
681
682     nri              = nlist->nri;
683     iinr             = nlist->iinr;
684     jindex           = nlist->jindex;
685     jjnr             = nlist->jjnr;
686     shiftidx         = nlist->shift;
687     gid              = nlist->gid;
688     shiftvec         = fr->shift_vec[0];
689     fshift           = fr->fshift[0];
690     facel            = _mm256_set1_ps(fr->epsfac);
691     charge           = mdatoms->chargeA;
692
693     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
694     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
695     beta2            = _mm256_mul_ps(beta,beta);
696     beta3            = _mm256_mul_ps(beta,beta2);
697
698     ewtab            = fr->ic->tabq_coul_F;
699     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
700     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
701
702     /* Setup water-specific parameters */
703     inr              = nlist->iinr[0];
704     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
705     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
706     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
707
708     /* Avoid stupid compiler warnings */
709     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
710     j_coord_offsetA = 0;
711     j_coord_offsetB = 0;
712     j_coord_offsetC = 0;
713     j_coord_offsetD = 0;
714     j_coord_offsetE = 0;
715     j_coord_offsetF = 0;
716     j_coord_offsetG = 0;
717     j_coord_offsetH = 0;
718
719     outeriter        = 0;
720     inneriter        = 0;
721
722     for(iidx=0;iidx<4*DIM;iidx++)
723     {
724         scratch[iidx] = 0.0;
725     }
726
727     /* Start outer loop over neighborlists */
728     for(iidx=0; iidx<nri; iidx++)
729     {
730         /* Load shift vector for this list */
731         i_shift_offset   = DIM*shiftidx[iidx];
732
733         /* Load limits for loop over neighbors */
734         j_index_start    = jindex[iidx];
735         j_index_end      = jindex[iidx+1];
736
737         /* Get outer coordinate index */
738         inr              = iinr[iidx];
739         i_coord_offset   = DIM*inr;
740
741         /* Load i particle coords and add shift vector */
742         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
743                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
744
745         fix0             = _mm256_setzero_ps();
746         fiy0             = _mm256_setzero_ps();
747         fiz0             = _mm256_setzero_ps();
748         fix1             = _mm256_setzero_ps();
749         fiy1             = _mm256_setzero_ps();
750         fiz1             = _mm256_setzero_ps();
751         fix2             = _mm256_setzero_ps();
752         fiy2             = _mm256_setzero_ps();
753         fiz2             = _mm256_setzero_ps();
754
755         /* Start inner kernel loop */
756         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
757         {
758
759             /* Get j neighbor index, and coordinate index */
760             jnrA             = jjnr[jidx];
761             jnrB             = jjnr[jidx+1];
762             jnrC             = jjnr[jidx+2];
763             jnrD             = jjnr[jidx+3];
764             jnrE             = jjnr[jidx+4];
765             jnrF             = jjnr[jidx+5];
766             jnrG             = jjnr[jidx+6];
767             jnrH             = jjnr[jidx+7];
768             j_coord_offsetA  = DIM*jnrA;
769             j_coord_offsetB  = DIM*jnrB;
770             j_coord_offsetC  = DIM*jnrC;
771             j_coord_offsetD  = DIM*jnrD;
772             j_coord_offsetE  = DIM*jnrE;
773             j_coord_offsetF  = DIM*jnrF;
774             j_coord_offsetG  = DIM*jnrG;
775             j_coord_offsetH  = DIM*jnrH;
776
777             /* load j atom coordinates */
778             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
779                                                  x+j_coord_offsetC,x+j_coord_offsetD,
780                                                  x+j_coord_offsetE,x+j_coord_offsetF,
781                                                  x+j_coord_offsetG,x+j_coord_offsetH,
782                                                  &jx0,&jy0,&jz0);
783
784             /* Calculate displacement vector */
785             dx00             = _mm256_sub_ps(ix0,jx0);
786             dy00             = _mm256_sub_ps(iy0,jy0);
787             dz00             = _mm256_sub_ps(iz0,jz0);
788             dx10             = _mm256_sub_ps(ix1,jx0);
789             dy10             = _mm256_sub_ps(iy1,jy0);
790             dz10             = _mm256_sub_ps(iz1,jz0);
791             dx20             = _mm256_sub_ps(ix2,jx0);
792             dy20             = _mm256_sub_ps(iy2,jy0);
793             dz20             = _mm256_sub_ps(iz2,jz0);
794
795             /* Calculate squared distance and things based on it */
796             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
797             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
798             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
799
800             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
801             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
802             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
803
804             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
805             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
806             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
807
808             /* Load parameters for j particles */
809             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
810                                                                  charge+jnrC+0,charge+jnrD+0,
811                                                                  charge+jnrE+0,charge+jnrF+0,
812                                                                  charge+jnrG+0,charge+jnrH+0);
813
814             fjx0             = _mm256_setzero_ps();
815             fjy0             = _mm256_setzero_ps();
816             fjz0             = _mm256_setzero_ps();
817
818             /**************************
819              * CALCULATE INTERACTIONS *
820              **************************/
821
822             r00              = _mm256_mul_ps(rsq00,rinv00);
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq00             = _mm256_mul_ps(iq0,jq0);
826
827             /* EWALD ELECTROSTATICS */
828             
829             /* Analytical PME correction */
830             zeta2            = _mm256_mul_ps(beta2,rsq00);
831             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
832             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
833             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
834             felec            = _mm256_mul_ps(qq00,felec);
835             
836             fscal            = felec;
837
838             /* Calculate temporary vectorial force */
839             tx               = _mm256_mul_ps(fscal,dx00);
840             ty               = _mm256_mul_ps(fscal,dy00);
841             tz               = _mm256_mul_ps(fscal,dz00);
842
843             /* Update vectorial force */
844             fix0             = _mm256_add_ps(fix0,tx);
845             fiy0             = _mm256_add_ps(fiy0,ty);
846             fiz0             = _mm256_add_ps(fiz0,tz);
847
848             fjx0             = _mm256_add_ps(fjx0,tx);
849             fjy0             = _mm256_add_ps(fjy0,ty);
850             fjz0             = _mm256_add_ps(fjz0,tz);
851
852             /**************************
853              * CALCULATE INTERACTIONS *
854              **************************/
855
856             r10              = _mm256_mul_ps(rsq10,rinv10);
857
858             /* Compute parameters for interactions between i and j atoms */
859             qq10             = _mm256_mul_ps(iq1,jq0);
860
861             /* EWALD ELECTROSTATICS */
862             
863             /* Analytical PME correction */
864             zeta2            = _mm256_mul_ps(beta2,rsq10);
865             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
866             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
867             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
868             felec            = _mm256_mul_ps(qq10,felec);
869             
870             fscal            = felec;
871
872             /* Calculate temporary vectorial force */
873             tx               = _mm256_mul_ps(fscal,dx10);
874             ty               = _mm256_mul_ps(fscal,dy10);
875             tz               = _mm256_mul_ps(fscal,dz10);
876
877             /* Update vectorial force */
878             fix1             = _mm256_add_ps(fix1,tx);
879             fiy1             = _mm256_add_ps(fiy1,ty);
880             fiz1             = _mm256_add_ps(fiz1,tz);
881
882             fjx0             = _mm256_add_ps(fjx0,tx);
883             fjy0             = _mm256_add_ps(fjy0,ty);
884             fjz0             = _mm256_add_ps(fjz0,tz);
885
886             /**************************
887              * CALCULATE INTERACTIONS *
888              **************************/
889
890             r20              = _mm256_mul_ps(rsq20,rinv20);
891
892             /* Compute parameters for interactions between i and j atoms */
893             qq20             = _mm256_mul_ps(iq2,jq0);
894
895             /* EWALD ELECTROSTATICS */
896             
897             /* Analytical PME correction */
898             zeta2            = _mm256_mul_ps(beta2,rsq20);
899             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
900             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
901             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
902             felec            = _mm256_mul_ps(qq20,felec);
903             
904             fscal            = felec;
905
906             /* Calculate temporary vectorial force */
907             tx               = _mm256_mul_ps(fscal,dx20);
908             ty               = _mm256_mul_ps(fscal,dy20);
909             tz               = _mm256_mul_ps(fscal,dz20);
910
911             /* Update vectorial force */
912             fix2             = _mm256_add_ps(fix2,tx);
913             fiy2             = _mm256_add_ps(fiy2,ty);
914             fiz2             = _mm256_add_ps(fiz2,tz);
915
916             fjx0             = _mm256_add_ps(fjx0,tx);
917             fjy0             = _mm256_add_ps(fjy0,ty);
918             fjz0             = _mm256_add_ps(fjz0,tz);
919
920             fjptrA             = f+j_coord_offsetA;
921             fjptrB             = f+j_coord_offsetB;
922             fjptrC             = f+j_coord_offsetC;
923             fjptrD             = f+j_coord_offsetD;
924             fjptrE             = f+j_coord_offsetE;
925             fjptrF             = f+j_coord_offsetF;
926             fjptrG             = f+j_coord_offsetG;
927             fjptrH             = f+j_coord_offsetH;
928
929             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
930
931             /* Inner loop uses 171 flops */
932         }
933
934         if(jidx<j_index_end)
935         {
936
937             /* Get j neighbor index, and coordinate index */
938             jnrlistA         = jjnr[jidx];
939             jnrlistB         = jjnr[jidx+1];
940             jnrlistC         = jjnr[jidx+2];
941             jnrlistD         = jjnr[jidx+3];
942             jnrlistE         = jjnr[jidx+4];
943             jnrlistF         = jjnr[jidx+5];
944             jnrlistG         = jjnr[jidx+6];
945             jnrlistH         = jjnr[jidx+7];
946             /* Sign of each element will be negative for non-real atoms.
947              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
948              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
949              */
950             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
951                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
952                                             
953             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
954             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
955             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
956             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
957             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
958             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
959             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
960             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
961             j_coord_offsetA  = DIM*jnrA;
962             j_coord_offsetB  = DIM*jnrB;
963             j_coord_offsetC  = DIM*jnrC;
964             j_coord_offsetD  = DIM*jnrD;
965             j_coord_offsetE  = DIM*jnrE;
966             j_coord_offsetF  = DIM*jnrF;
967             j_coord_offsetG  = DIM*jnrG;
968             j_coord_offsetH  = DIM*jnrH;
969
970             /* load j atom coordinates */
971             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
972                                                  x+j_coord_offsetC,x+j_coord_offsetD,
973                                                  x+j_coord_offsetE,x+j_coord_offsetF,
974                                                  x+j_coord_offsetG,x+j_coord_offsetH,
975                                                  &jx0,&jy0,&jz0);
976
977             /* Calculate displacement vector */
978             dx00             = _mm256_sub_ps(ix0,jx0);
979             dy00             = _mm256_sub_ps(iy0,jy0);
980             dz00             = _mm256_sub_ps(iz0,jz0);
981             dx10             = _mm256_sub_ps(ix1,jx0);
982             dy10             = _mm256_sub_ps(iy1,jy0);
983             dz10             = _mm256_sub_ps(iz1,jz0);
984             dx20             = _mm256_sub_ps(ix2,jx0);
985             dy20             = _mm256_sub_ps(iy2,jy0);
986             dz20             = _mm256_sub_ps(iz2,jz0);
987
988             /* Calculate squared distance and things based on it */
989             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
990             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
991             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
992
993             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
994             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
995             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
996
997             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
998             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
999             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1000
1001             /* Load parameters for j particles */
1002             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1003                                                                  charge+jnrC+0,charge+jnrD+0,
1004                                                                  charge+jnrE+0,charge+jnrF+0,
1005                                                                  charge+jnrG+0,charge+jnrH+0);
1006
1007             fjx0             = _mm256_setzero_ps();
1008             fjy0             = _mm256_setzero_ps();
1009             fjz0             = _mm256_setzero_ps();
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             r00              = _mm256_mul_ps(rsq00,rinv00);
1016             r00              = _mm256_andnot_ps(dummy_mask,r00);
1017
1018             /* Compute parameters for interactions between i and j atoms */
1019             qq00             = _mm256_mul_ps(iq0,jq0);
1020
1021             /* EWALD ELECTROSTATICS */
1022             
1023             /* Analytical PME correction */
1024             zeta2            = _mm256_mul_ps(beta2,rsq00);
1025             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1026             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1027             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1028             felec            = _mm256_mul_ps(qq00,felec);
1029             
1030             fscal            = felec;
1031
1032             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm256_mul_ps(fscal,dx00);
1036             ty               = _mm256_mul_ps(fscal,dy00);
1037             tz               = _mm256_mul_ps(fscal,dz00);
1038
1039             /* Update vectorial force */
1040             fix0             = _mm256_add_ps(fix0,tx);
1041             fiy0             = _mm256_add_ps(fiy0,ty);
1042             fiz0             = _mm256_add_ps(fiz0,tz);
1043
1044             fjx0             = _mm256_add_ps(fjx0,tx);
1045             fjy0             = _mm256_add_ps(fjy0,ty);
1046             fjz0             = _mm256_add_ps(fjz0,tz);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r10              = _mm256_mul_ps(rsq10,rinv10);
1053             r10              = _mm256_andnot_ps(dummy_mask,r10);
1054
1055             /* Compute parameters for interactions between i and j atoms */
1056             qq10             = _mm256_mul_ps(iq1,jq0);
1057
1058             /* EWALD ELECTROSTATICS */
1059             
1060             /* Analytical PME correction */
1061             zeta2            = _mm256_mul_ps(beta2,rsq10);
1062             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1063             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1064             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1065             felec            = _mm256_mul_ps(qq10,felec);
1066             
1067             fscal            = felec;
1068
1069             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1070
1071             /* Calculate temporary vectorial force */
1072             tx               = _mm256_mul_ps(fscal,dx10);
1073             ty               = _mm256_mul_ps(fscal,dy10);
1074             tz               = _mm256_mul_ps(fscal,dz10);
1075
1076             /* Update vectorial force */
1077             fix1             = _mm256_add_ps(fix1,tx);
1078             fiy1             = _mm256_add_ps(fiy1,ty);
1079             fiz1             = _mm256_add_ps(fiz1,tz);
1080
1081             fjx0             = _mm256_add_ps(fjx0,tx);
1082             fjy0             = _mm256_add_ps(fjy0,ty);
1083             fjz0             = _mm256_add_ps(fjz0,tz);
1084
1085             /**************************
1086              * CALCULATE INTERACTIONS *
1087              **************************/
1088
1089             r20              = _mm256_mul_ps(rsq20,rinv20);
1090             r20              = _mm256_andnot_ps(dummy_mask,r20);
1091
1092             /* Compute parameters for interactions between i and j atoms */
1093             qq20             = _mm256_mul_ps(iq2,jq0);
1094
1095             /* EWALD ELECTROSTATICS */
1096             
1097             /* Analytical PME correction */
1098             zeta2            = _mm256_mul_ps(beta2,rsq20);
1099             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1100             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1101             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1102             felec            = _mm256_mul_ps(qq20,felec);
1103             
1104             fscal            = felec;
1105
1106             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1107
1108             /* Calculate temporary vectorial force */
1109             tx               = _mm256_mul_ps(fscal,dx20);
1110             ty               = _mm256_mul_ps(fscal,dy20);
1111             tz               = _mm256_mul_ps(fscal,dz20);
1112
1113             /* Update vectorial force */
1114             fix2             = _mm256_add_ps(fix2,tx);
1115             fiy2             = _mm256_add_ps(fiy2,ty);
1116             fiz2             = _mm256_add_ps(fiz2,tz);
1117
1118             fjx0             = _mm256_add_ps(fjx0,tx);
1119             fjy0             = _mm256_add_ps(fjy0,ty);
1120             fjz0             = _mm256_add_ps(fjz0,tz);
1121
1122             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1123             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1124             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1125             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1126             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1127             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1128             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1129             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1130
1131             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1132
1133             /* Inner loop uses 174 flops */
1134         }
1135
1136         /* End of innermost loop */
1137
1138         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1139                                                  f+i_coord_offset,fshift+i_shift_offset);
1140
1141         /* Increment number of inner iterations */
1142         inneriter                  += j_index_end - j_index_start;
1143
1144         /* Outer loop uses 18 flops */
1145     }
1146
1147     /* Increment number of outer iterations */
1148     outeriter        += nri;
1149
1150     /* Update outer/inner flops */
1151
1152     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*174);
1153 }