made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m256i          ewitab;
80     __m128i          ewitab_lo,ewitab_hi;
81     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
82     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
83     real             *ewtab;
84     __m256           dummy_mask,cutoff_mask;
85     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
86     __m256           one     = _mm256_set1_ps(1.0);
87     __m256           two     = _mm256_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_ps(fr->epsfac);
100     charge           = mdatoms->chargeA;
101
102     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
103     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
104     beta2            = _mm256_mul_ps(beta,beta);
105     beta3            = _mm256_mul_ps(beta,beta2);
106
107     ewtab            = fr->ic->tabq_coul_FDV0;
108     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
109     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
110
111     /* Avoid stupid compiler warnings */
112     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
113     j_coord_offsetA = 0;
114     j_coord_offsetB = 0;
115     j_coord_offsetC = 0;
116     j_coord_offsetD = 0;
117     j_coord_offsetE = 0;
118     j_coord_offsetF = 0;
119     j_coord_offsetG = 0;
120     j_coord_offsetH = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm256_setzero_ps();
148         fiy0             = _mm256_setzero_ps();
149         fiz0             = _mm256_setzero_ps();
150
151         /* Load parameters for i particles */
152         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
153
154         /* Reset potential sums */
155         velecsum         = _mm256_setzero_ps();
156
157         /* Start inner kernel loop */
158         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
159         {
160
161             /* Get j neighbor index, and coordinate index */
162             jnrA             = jjnr[jidx];
163             jnrB             = jjnr[jidx+1];
164             jnrC             = jjnr[jidx+2];
165             jnrD             = jjnr[jidx+3];
166             jnrE             = jjnr[jidx+4];
167             jnrF             = jjnr[jidx+5];
168             jnrG             = jjnr[jidx+6];
169             jnrH             = jjnr[jidx+7];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174             j_coord_offsetE  = DIM*jnrE;
175             j_coord_offsetF  = DIM*jnrF;
176             j_coord_offsetG  = DIM*jnrG;
177             j_coord_offsetH  = DIM*jnrH;
178
179             /* load j atom coordinates */
180             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181                                                  x+j_coord_offsetC,x+j_coord_offsetD,
182                                                  x+j_coord_offsetE,x+j_coord_offsetF,
183                                                  x+j_coord_offsetG,x+j_coord_offsetH,
184                                                  &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm256_sub_ps(ix0,jx0);
188             dy00             = _mm256_sub_ps(iy0,jy0);
189             dz00             = _mm256_sub_ps(iz0,jz0);
190
191             /* Calculate squared distance and things based on it */
192             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
193
194             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
195
196             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
200                                                                  charge+jnrC+0,charge+jnrD+0,
201                                                                  charge+jnrE+0,charge+jnrF+0,
202                                                                  charge+jnrG+0,charge+jnrH+0);
203
204             /**************************
205              * CALCULATE INTERACTIONS *
206              **************************/
207
208             r00              = _mm256_mul_ps(rsq00,rinv00);
209
210             /* Compute parameters for interactions between i and j atoms */
211             qq00             = _mm256_mul_ps(iq0,jq0);
212
213             /* EWALD ELECTROSTATICS */
214             
215             /* Analytical PME correction */
216             zeta2            = _mm256_mul_ps(beta2,rsq00);
217             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
218             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
219             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
220             felec            = _mm256_mul_ps(qq00,felec);
221             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
222             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
223             velec            = _mm256_sub_ps(rinv00,pmecorrV);
224             velec            = _mm256_mul_ps(qq00,velec);
225             
226             /* Update potential sum for this i atom from the interaction with this j atom. */
227             velecsum         = _mm256_add_ps(velecsum,velec);
228
229             fscal            = felec;
230
231             /* Calculate temporary vectorial force */
232             tx               = _mm256_mul_ps(fscal,dx00);
233             ty               = _mm256_mul_ps(fscal,dy00);
234             tz               = _mm256_mul_ps(fscal,dz00);
235
236             /* Update vectorial force */
237             fix0             = _mm256_add_ps(fix0,tx);
238             fiy0             = _mm256_add_ps(fiy0,ty);
239             fiz0             = _mm256_add_ps(fiz0,tz);
240
241             fjptrA             = f+j_coord_offsetA;
242             fjptrB             = f+j_coord_offsetB;
243             fjptrC             = f+j_coord_offsetC;
244             fjptrD             = f+j_coord_offsetD;
245             fjptrE             = f+j_coord_offsetE;
246             fjptrF             = f+j_coord_offsetF;
247             fjptrG             = f+j_coord_offsetG;
248             fjptrH             = f+j_coord_offsetH;
249             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
250
251             /* Inner loop uses 84 flops */
252         }
253
254         if(jidx<j_index_end)
255         {
256
257             /* Get j neighbor index, and coordinate index */
258             jnrlistA         = jjnr[jidx];
259             jnrlistB         = jjnr[jidx+1];
260             jnrlistC         = jjnr[jidx+2];
261             jnrlistD         = jjnr[jidx+3];
262             jnrlistE         = jjnr[jidx+4];
263             jnrlistF         = jjnr[jidx+5];
264             jnrlistG         = jjnr[jidx+6];
265             jnrlistH         = jjnr[jidx+7];
266             /* Sign of each element will be negative for non-real atoms.
267              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
268              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
269              */
270             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
271                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
272                                             
273             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
274             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
275             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
276             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
277             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
278             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
279             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
280             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
281             j_coord_offsetA  = DIM*jnrA;
282             j_coord_offsetB  = DIM*jnrB;
283             j_coord_offsetC  = DIM*jnrC;
284             j_coord_offsetD  = DIM*jnrD;
285             j_coord_offsetE  = DIM*jnrE;
286             j_coord_offsetF  = DIM*jnrF;
287             j_coord_offsetG  = DIM*jnrG;
288             j_coord_offsetH  = DIM*jnrH;
289
290             /* load j atom coordinates */
291             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
292                                                  x+j_coord_offsetC,x+j_coord_offsetD,
293                                                  x+j_coord_offsetE,x+j_coord_offsetF,
294                                                  x+j_coord_offsetG,x+j_coord_offsetH,
295                                                  &jx0,&jy0,&jz0);
296
297             /* Calculate displacement vector */
298             dx00             = _mm256_sub_ps(ix0,jx0);
299             dy00             = _mm256_sub_ps(iy0,jy0);
300             dz00             = _mm256_sub_ps(iz0,jz0);
301
302             /* Calculate squared distance and things based on it */
303             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
304
305             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
306
307             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
308
309             /* Load parameters for j particles */
310             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
311                                                                  charge+jnrC+0,charge+jnrD+0,
312                                                                  charge+jnrE+0,charge+jnrF+0,
313                                                                  charge+jnrG+0,charge+jnrH+0);
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             r00              = _mm256_mul_ps(rsq00,rinv00);
320             r00              = _mm256_andnot_ps(dummy_mask,r00);
321
322             /* Compute parameters for interactions between i and j atoms */
323             qq00             = _mm256_mul_ps(iq0,jq0);
324
325             /* EWALD ELECTROSTATICS */
326             
327             /* Analytical PME correction */
328             zeta2            = _mm256_mul_ps(beta2,rsq00);
329             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
330             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
331             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
332             felec            = _mm256_mul_ps(qq00,felec);
333             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
334             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
335             velec            = _mm256_sub_ps(rinv00,pmecorrV);
336             velec            = _mm256_mul_ps(qq00,velec);
337             
338             /* Update potential sum for this i atom from the interaction with this j atom. */
339             velec            = _mm256_andnot_ps(dummy_mask,velec);
340             velecsum         = _mm256_add_ps(velecsum,velec);
341
342             fscal            = felec;
343
344             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm256_mul_ps(fscal,dx00);
348             ty               = _mm256_mul_ps(fscal,dy00);
349             tz               = _mm256_mul_ps(fscal,dz00);
350
351             /* Update vectorial force */
352             fix0             = _mm256_add_ps(fix0,tx);
353             fiy0             = _mm256_add_ps(fiy0,ty);
354             fiz0             = _mm256_add_ps(fiz0,tz);
355
356             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
357             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
358             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
359             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
360             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
361             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
362             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
363             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
364             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
365
366             /* Inner loop uses 85 flops */
367         }
368
369         /* End of innermost loop */
370
371         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
372                                                  f+i_coord_offset,fshift+i_shift_offset);
373
374         ggid                        = gid[iidx];
375         /* Update potential energies */
376         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
377
378         /* Increment number of inner iterations */
379         inneriter                  += j_index_end - j_index_start;
380
381         /* Outer loop uses 8 flops */
382     }
383
384     /* Increment number of outer iterations */
385     outeriter        += nri;
386
387     /* Update outer/inner flops */
388
389     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*85);
390 }
391 /*
392  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_single
393  * Electrostatics interaction: Ewald
394  * VdW interaction:            None
395  * Geometry:                   Particle-Particle
396  * Calculate force/pot:        Force
397  */
398 void
399 nb_kernel_ElecEw_VdwNone_GeomP1P1_F_avx_256_single
400                     (t_nblist * gmx_restrict                nlist,
401                      rvec * gmx_restrict                    xx,
402                      rvec * gmx_restrict                    ff,
403                      t_forcerec * gmx_restrict              fr,
404                      t_mdatoms * gmx_restrict               mdatoms,
405                      nb_kernel_data_t * gmx_restrict        kernel_data,
406                      t_nrnb * gmx_restrict                  nrnb)
407 {
408     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
409      * just 0 for non-waters.
410      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
411      * jnr indices corresponding to data put in the four positions in the SIMD register.
412      */
413     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
414     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
415     int              jnrA,jnrB,jnrC,jnrD;
416     int              jnrE,jnrF,jnrG,jnrH;
417     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
418     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
419     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
420     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
421     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
422     real             rcutoff_scalar;
423     real             *shiftvec,*fshift,*x,*f;
424     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
425     real             scratch[4*DIM];
426     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
427     real *           vdwioffsetptr0;
428     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
429     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
430     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
431     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
432     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
433     real             *charge;
434     __m256i          ewitab;
435     __m128i          ewitab_lo,ewitab_hi;
436     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
437     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
438     real             *ewtab;
439     __m256           dummy_mask,cutoff_mask;
440     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
441     __m256           one     = _mm256_set1_ps(1.0);
442     __m256           two     = _mm256_set1_ps(2.0);
443     x                = xx[0];
444     f                = ff[0];
445
446     nri              = nlist->nri;
447     iinr             = nlist->iinr;
448     jindex           = nlist->jindex;
449     jjnr             = nlist->jjnr;
450     shiftidx         = nlist->shift;
451     gid              = nlist->gid;
452     shiftvec         = fr->shift_vec[0];
453     fshift           = fr->fshift[0];
454     facel            = _mm256_set1_ps(fr->epsfac);
455     charge           = mdatoms->chargeA;
456
457     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
458     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
459     beta2            = _mm256_mul_ps(beta,beta);
460     beta3            = _mm256_mul_ps(beta,beta2);
461
462     ewtab            = fr->ic->tabq_coul_F;
463     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
464     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
465
466     /* Avoid stupid compiler warnings */
467     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
468     j_coord_offsetA = 0;
469     j_coord_offsetB = 0;
470     j_coord_offsetC = 0;
471     j_coord_offsetD = 0;
472     j_coord_offsetE = 0;
473     j_coord_offsetF = 0;
474     j_coord_offsetG = 0;
475     j_coord_offsetH = 0;
476
477     outeriter        = 0;
478     inneriter        = 0;
479
480     for(iidx=0;iidx<4*DIM;iidx++)
481     {
482         scratch[iidx] = 0.0;
483     }
484
485     /* Start outer loop over neighborlists */
486     for(iidx=0; iidx<nri; iidx++)
487     {
488         /* Load shift vector for this list */
489         i_shift_offset   = DIM*shiftidx[iidx];
490
491         /* Load limits for loop over neighbors */
492         j_index_start    = jindex[iidx];
493         j_index_end      = jindex[iidx+1];
494
495         /* Get outer coordinate index */
496         inr              = iinr[iidx];
497         i_coord_offset   = DIM*inr;
498
499         /* Load i particle coords and add shift vector */
500         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
501
502         fix0             = _mm256_setzero_ps();
503         fiy0             = _mm256_setzero_ps();
504         fiz0             = _mm256_setzero_ps();
505
506         /* Load parameters for i particles */
507         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
508
509         /* Start inner kernel loop */
510         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
511         {
512
513             /* Get j neighbor index, and coordinate index */
514             jnrA             = jjnr[jidx];
515             jnrB             = jjnr[jidx+1];
516             jnrC             = jjnr[jidx+2];
517             jnrD             = jjnr[jidx+3];
518             jnrE             = jjnr[jidx+4];
519             jnrF             = jjnr[jidx+5];
520             jnrG             = jjnr[jidx+6];
521             jnrH             = jjnr[jidx+7];
522             j_coord_offsetA  = DIM*jnrA;
523             j_coord_offsetB  = DIM*jnrB;
524             j_coord_offsetC  = DIM*jnrC;
525             j_coord_offsetD  = DIM*jnrD;
526             j_coord_offsetE  = DIM*jnrE;
527             j_coord_offsetF  = DIM*jnrF;
528             j_coord_offsetG  = DIM*jnrG;
529             j_coord_offsetH  = DIM*jnrH;
530
531             /* load j atom coordinates */
532             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
533                                                  x+j_coord_offsetC,x+j_coord_offsetD,
534                                                  x+j_coord_offsetE,x+j_coord_offsetF,
535                                                  x+j_coord_offsetG,x+j_coord_offsetH,
536                                                  &jx0,&jy0,&jz0);
537
538             /* Calculate displacement vector */
539             dx00             = _mm256_sub_ps(ix0,jx0);
540             dy00             = _mm256_sub_ps(iy0,jy0);
541             dz00             = _mm256_sub_ps(iz0,jz0);
542
543             /* Calculate squared distance and things based on it */
544             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
545
546             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
547
548             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
549
550             /* Load parameters for j particles */
551             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
552                                                                  charge+jnrC+0,charge+jnrD+0,
553                                                                  charge+jnrE+0,charge+jnrF+0,
554                                                                  charge+jnrG+0,charge+jnrH+0);
555
556             /**************************
557              * CALCULATE INTERACTIONS *
558              **************************/
559
560             r00              = _mm256_mul_ps(rsq00,rinv00);
561
562             /* Compute parameters for interactions between i and j atoms */
563             qq00             = _mm256_mul_ps(iq0,jq0);
564
565             /* EWALD ELECTROSTATICS */
566             
567             /* Analytical PME correction */
568             zeta2            = _mm256_mul_ps(beta2,rsq00);
569             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
570             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
571             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
572             felec            = _mm256_mul_ps(qq00,felec);
573             
574             fscal            = felec;
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm256_mul_ps(fscal,dx00);
578             ty               = _mm256_mul_ps(fscal,dy00);
579             tz               = _mm256_mul_ps(fscal,dz00);
580
581             /* Update vectorial force */
582             fix0             = _mm256_add_ps(fix0,tx);
583             fiy0             = _mm256_add_ps(fiy0,ty);
584             fiz0             = _mm256_add_ps(fiz0,tz);
585
586             fjptrA             = f+j_coord_offsetA;
587             fjptrB             = f+j_coord_offsetB;
588             fjptrC             = f+j_coord_offsetC;
589             fjptrD             = f+j_coord_offsetD;
590             fjptrE             = f+j_coord_offsetE;
591             fjptrF             = f+j_coord_offsetF;
592             fjptrG             = f+j_coord_offsetG;
593             fjptrH             = f+j_coord_offsetH;
594             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
595
596             /* Inner loop uses 56 flops */
597         }
598
599         if(jidx<j_index_end)
600         {
601
602             /* Get j neighbor index, and coordinate index */
603             jnrlistA         = jjnr[jidx];
604             jnrlistB         = jjnr[jidx+1];
605             jnrlistC         = jjnr[jidx+2];
606             jnrlistD         = jjnr[jidx+3];
607             jnrlistE         = jjnr[jidx+4];
608             jnrlistF         = jjnr[jidx+5];
609             jnrlistG         = jjnr[jidx+6];
610             jnrlistH         = jjnr[jidx+7];
611             /* Sign of each element will be negative for non-real atoms.
612              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
613              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
614              */
615             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
616                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
617                                             
618             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
619             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
620             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
621             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
622             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
623             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
624             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
625             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
626             j_coord_offsetA  = DIM*jnrA;
627             j_coord_offsetB  = DIM*jnrB;
628             j_coord_offsetC  = DIM*jnrC;
629             j_coord_offsetD  = DIM*jnrD;
630             j_coord_offsetE  = DIM*jnrE;
631             j_coord_offsetF  = DIM*jnrF;
632             j_coord_offsetG  = DIM*jnrG;
633             j_coord_offsetH  = DIM*jnrH;
634
635             /* load j atom coordinates */
636             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
637                                                  x+j_coord_offsetC,x+j_coord_offsetD,
638                                                  x+j_coord_offsetE,x+j_coord_offsetF,
639                                                  x+j_coord_offsetG,x+j_coord_offsetH,
640                                                  &jx0,&jy0,&jz0);
641
642             /* Calculate displacement vector */
643             dx00             = _mm256_sub_ps(ix0,jx0);
644             dy00             = _mm256_sub_ps(iy0,jy0);
645             dz00             = _mm256_sub_ps(iz0,jz0);
646
647             /* Calculate squared distance and things based on it */
648             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
649
650             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
651
652             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
653
654             /* Load parameters for j particles */
655             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
656                                                                  charge+jnrC+0,charge+jnrD+0,
657                                                                  charge+jnrE+0,charge+jnrF+0,
658                                                                  charge+jnrG+0,charge+jnrH+0);
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             r00              = _mm256_mul_ps(rsq00,rinv00);
665             r00              = _mm256_andnot_ps(dummy_mask,r00);
666
667             /* Compute parameters for interactions between i and j atoms */
668             qq00             = _mm256_mul_ps(iq0,jq0);
669
670             /* EWALD ELECTROSTATICS */
671             
672             /* Analytical PME correction */
673             zeta2            = _mm256_mul_ps(beta2,rsq00);
674             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
675             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
676             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
677             felec            = _mm256_mul_ps(qq00,felec);
678             
679             fscal            = felec;
680
681             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm256_mul_ps(fscal,dx00);
685             ty               = _mm256_mul_ps(fscal,dy00);
686             tz               = _mm256_mul_ps(fscal,dz00);
687
688             /* Update vectorial force */
689             fix0             = _mm256_add_ps(fix0,tx);
690             fiy0             = _mm256_add_ps(fiy0,ty);
691             fiz0             = _mm256_add_ps(fiz0,tz);
692
693             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
694             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
695             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
696             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
697             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
698             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
699             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
700             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
701             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
702
703             /* Inner loop uses 57 flops */
704         }
705
706         /* End of innermost loop */
707
708         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
709                                                  f+i_coord_offset,fshift+i_shift_offset);
710
711         /* Increment number of inner iterations */
712         inneriter                  += j_index_end - j_index_start;
713
714         /* Outer loop uses 7 flops */
715     }
716
717     /* Increment number of outer iterations */
718     outeriter        += nri;
719
720     /* Update outer/inner flops */
721
722     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*57);
723 }