a2fb1201d7b9507661fa991a93092f539eaa98cb
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     real *           vdwioffsetptr3;
79     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
81     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
84     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
86     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
93     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
94     __m256i          ewitab;
95     __m128i          ewitab_lo,ewitab_hi;
96     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
98     real             *ewtab;
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
121     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
122     beta2            = _mm256_mul_ps(beta,beta);
123     beta3            = _mm256_mul_ps(beta,beta2);
124
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
132     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
133     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
134     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
135
136     /* Avoid stupid compiler warnings */
137     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
138     j_coord_offsetA = 0;
139     j_coord_offsetB = 0;
140     j_coord_offsetC = 0;
141     j_coord_offsetD = 0;
142     j_coord_offsetE = 0;
143     j_coord_offsetF = 0;
144     j_coord_offsetG = 0;
145     j_coord_offsetH = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
172
173         fix0             = _mm256_setzero_ps();
174         fiy0             = _mm256_setzero_ps();
175         fiz0             = _mm256_setzero_ps();
176         fix1             = _mm256_setzero_ps();
177         fiy1             = _mm256_setzero_ps();
178         fiz1             = _mm256_setzero_ps();
179         fix2             = _mm256_setzero_ps();
180         fiy2             = _mm256_setzero_ps();
181         fiz2             = _mm256_setzero_ps();
182         fix3             = _mm256_setzero_ps();
183         fiy3             = _mm256_setzero_ps();
184         fiz3             = _mm256_setzero_ps();
185
186         /* Reset potential sums */
187         velecsum         = _mm256_setzero_ps();
188         vvdwsum          = _mm256_setzero_ps();
189
190         /* Start inner kernel loop */
191         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
192         {
193
194             /* Get j neighbor index, and coordinate index */
195             jnrA             = jjnr[jidx];
196             jnrB             = jjnr[jidx+1];
197             jnrC             = jjnr[jidx+2];
198             jnrD             = jjnr[jidx+3];
199             jnrE             = jjnr[jidx+4];
200             jnrF             = jjnr[jidx+5];
201             jnrG             = jjnr[jidx+6];
202             jnrH             = jjnr[jidx+7];
203             j_coord_offsetA  = DIM*jnrA;
204             j_coord_offsetB  = DIM*jnrB;
205             j_coord_offsetC  = DIM*jnrC;
206             j_coord_offsetD  = DIM*jnrD;
207             j_coord_offsetE  = DIM*jnrE;
208             j_coord_offsetF  = DIM*jnrF;
209             j_coord_offsetG  = DIM*jnrG;
210             j_coord_offsetH  = DIM*jnrH;
211
212             /* load j atom coordinates */
213             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
214                                                  x+j_coord_offsetC,x+j_coord_offsetD,
215                                                  x+j_coord_offsetE,x+j_coord_offsetF,
216                                                  x+j_coord_offsetG,x+j_coord_offsetH,
217                                                  &jx0,&jy0,&jz0);
218
219             /* Calculate displacement vector */
220             dx00             = _mm256_sub_ps(ix0,jx0);
221             dy00             = _mm256_sub_ps(iy0,jy0);
222             dz00             = _mm256_sub_ps(iz0,jz0);
223             dx10             = _mm256_sub_ps(ix1,jx0);
224             dy10             = _mm256_sub_ps(iy1,jy0);
225             dz10             = _mm256_sub_ps(iz1,jz0);
226             dx20             = _mm256_sub_ps(ix2,jx0);
227             dy20             = _mm256_sub_ps(iy2,jy0);
228             dz20             = _mm256_sub_ps(iz2,jz0);
229             dx30             = _mm256_sub_ps(ix3,jx0);
230             dy30             = _mm256_sub_ps(iy3,jy0);
231             dz30             = _mm256_sub_ps(iz3,jz0);
232
233             /* Calculate squared distance and things based on it */
234             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
235             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
236             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
237             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
238
239             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
240             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
241             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
242
243             rinvsq00         = gmx_mm256_inv_ps(rsq00);
244             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
245             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
246             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
247
248             /* Load parameters for j particles */
249             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
250                                                                  charge+jnrC+0,charge+jnrD+0,
251                                                                  charge+jnrE+0,charge+jnrF+0,
252                                                                  charge+jnrG+0,charge+jnrH+0);
253             vdwjidx0A        = 2*vdwtype[jnrA+0];
254             vdwjidx0B        = 2*vdwtype[jnrB+0];
255             vdwjidx0C        = 2*vdwtype[jnrC+0];
256             vdwjidx0D        = 2*vdwtype[jnrD+0];
257             vdwjidx0E        = 2*vdwtype[jnrE+0];
258             vdwjidx0F        = 2*vdwtype[jnrF+0];
259             vdwjidx0G        = 2*vdwtype[jnrG+0];
260             vdwjidx0H        = 2*vdwtype[jnrH+0];
261
262             fjx0             = _mm256_setzero_ps();
263             fjy0             = _mm256_setzero_ps();
264             fjz0             = _mm256_setzero_ps();
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             /* Compute parameters for interactions between i and j atoms */
271             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
272                                             vdwioffsetptr0+vdwjidx0B,
273                                             vdwioffsetptr0+vdwjidx0C,
274                                             vdwioffsetptr0+vdwjidx0D,
275                                             vdwioffsetptr0+vdwjidx0E,
276                                             vdwioffsetptr0+vdwjidx0F,
277                                             vdwioffsetptr0+vdwjidx0G,
278                                             vdwioffsetptr0+vdwjidx0H,
279                                             &c6_00,&c12_00);
280
281             /* LENNARD-JONES DISPERSION/REPULSION */
282
283             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
284             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
285             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
286             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
287             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
291
292             fscal            = fvdw;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_ps(fscal,dx00);
296             ty               = _mm256_mul_ps(fscal,dy00);
297             tz               = _mm256_mul_ps(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm256_add_ps(fix0,tx);
301             fiy0             = _mm256_add_ps(fiy0,ty);
302             fiz0             = _mm256_add_ps(fiz0,tz);
303
304             fjx0             = _mm256_add_ps(fjx0,tx);
305             fjy0             = _mm256_add_ps(fjy0,ty);
306             fjz0             = _mm256_add_ps(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             r10              = _mm256_mul_ps(rsq10,rinv10);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq10             = _mm256_mul_ps(iq1,jq0);
316
317             /* EWALD ELECTROSTATICS */
318             
319             /* Analytical PME correction */
320             zeta2            = _mm256_mul_ps(beta2,rsq10);
321             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
322             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
323             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
324             felec            = _mm256_mul_ps(qq10,felec);
325             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
326             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
327             velec            = _mm256_sub_ps(rinv10,pmecorrV);
328             velec            = _mm256_mul_ps(qq10,velec);
329             
330             /* Update potential sum for this i atom from the interaction with this j atom. */
331             velecsum         = _mm256_add_ps(velecsum,velec);
332
333             fscal            = felec;
334
335             /* Calculate temporary vectorial force */
336             tx               = _mm256_mul_ps(fscal,dx10);
337             ty               = _mm256_mul_ps(fscal,dy10);
338             tz               = _mm256_mul_ps(fscal,dz10);
339
340             /* Update vectorial force */
341             fix1             = _mm256_add_ps(fix1,tx);
342             fiy1             = _mm256_add_ps(fiy1,ty);
343             fiz1             = _mm256_add_ps(fiz1,tz);
344
345             fjx0             = _mm256_add_ps(fjx0,tx);
346             fjy0             = _mm256_add_ps(fjy0,ty);
347             fjz0             = _mm256_add_ps(fjz0,tz);
348
349             /**************************
350              * CALCULATE INTERACTIONS *
351              **************************/
352
353             r20              = _mm256_mul_ps(rsq20,rinv20);
354
355             /* Compute parameters for interactions between i and j atoms */
356             qq20             = _mm256_mul_ps(iq2,jq0);
357
358             /* EWALD ELECTROSTATICS */
359             
360             /* Analytical PME correction */
361             zeta2            = _mm256_mul_ps(beta2,rsq20);
362             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
363             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
364             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
365             felec            = _mm256_mul_ps(qq20,felec);
366             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
367             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
368             velec            = _mm256_sub_ps(rinv20,pmecorrV);
369             velec            = _mm256_mul_ps(qq20,velec);
370             
371             /* Update potential sum for this i atom from the interaction with this j atom. */
372             velecsum         = _mm256_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             /* Calculate temporary vectorial force */
377             tx               = _mm256_mul_ps(fscal,dx20);
378             ty               = _mm256_mul_ps(fscal,dy20);
379             tz               = _mm256_mul_ps(fscal,dz20);
380
381             /* Update vectorial force */
382             fix2             = _mm256_add_ps(fix2,tx);
383             fiy2             = _mm256_add_ps(fiy2,ty);
384             fiz2             = _mm256_add_ps(fiz2,tz);
385
386             fjx0             = _mm256_add_ps(fjx0,tx);
387             fjy0             = _mm256_add_ps(fjy0,ty);
388             fjz0             = _mm256_add_ps(fjz0,tz);
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             r30              = _mm256_mul_ps(rsq30,rinv30);
395
396             /* Compute parameters for interactions between i and j atoms */
397             qq30             = _mm256_mul_ps(iq3,jq0);
398
399             /* EWALD ELECTROSTATICS */
400             
401             /* Analytical PME correction */
402             zeta2            = _mm256_mul_ps(beta2,rsq30);
403             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
404             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
405             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
406             felec            = _mm256_mul_ps(qq30,felec);
407             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
408             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
409             velec            = _mm256_sub_ps(rinv30,pmecorrV);
410             velec            = _mm256_mul_ps(qq30,velec);
411             
412             /* Update potential sum for this i atom from the interaction with this j atom. */
413             velecsum         = _mm256_add_ps(velecsum,velec);
414
415             fscal            = felec;
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm256_mul_ps(fscal,dx30);
419             ty               = _mm256_mul_ps(fscal,dy30);
420             tz               = _mm256_mul_ps(fscal,dz30);
421
422             /* Update vectorial force */
423             fix3             = _mm256_add_ps(fix3,tx);
424             fiy3             = _mm256_add_ps(fiy3,ty);
425             fiz3             = _mm256_add_ps(fiz3,tz);
426
427             fjx0             = _mm256_add_ps(fjx0,tx);
428             fjy0             = _mm256_add_ps(fjy0,ty);
429             fjz0             = _mm256_add_ps(fjz0,tz);
430
431             fjptrA             = f+j_coord_offsetA;
432             fjptrB             = f+j_coord_offsetB;
433             fjptrC             = f+j_coord_offsetC;
434             fjptrD             = f+j_coord_offsetD;
435             fjptrE             = f+j_coord_offsetE;
436             fjptrF             = f+j_coord_offsetF;
437             fjptrG             = f+j_coord_offsetG;
438             fjptrH             = f+j_coord_offsetH;
439
440             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
441
442             /* Inner loop uses 287 flops */
443         }
444
445         if(jidx<j_index_end)
446         {
447
448             /* Get j neighbor index, and coordinate index */
449             jnrlistA         = jjnr[jidx];
450             jnrlistB         = jjnr[jidx+1];
451             jnrlistC         = jjnr[jidx+2];
452             jnrlistD         = jjnr[jidx+3];
453             jnrlistE         = jjnr[jidx+4];
454             jnrlistF         = jjnr[jidx+5];
455             jnrlistG         = jjnr[jidx+6];
456             jnrlistH         = jjnr[jidx+7];
457             /* Sign of each element will be negative for non-real atoms.
458              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
459              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
460              */
461             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
462                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
463                                             
464             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
465             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
466             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
467             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
468             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
469             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
470             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
471             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
472             j_coord_offsetA  = DIM*jnrA;
473             j_coord_offsetB  = DIM*jnrB;
474             j_coord_offsetC  = DIM*jnrC;
475             j_coord_offsetD  = DIM*jnrD;
476             j_coord_offsetE  = DIM*jnrE;
477             j_coord_offsetF  = DIM*jnrF;
478             j_coord_offsetG  = DIM*jnrG;
479             j_coord_offsetH  = DIM*jnrH;
480
481             /* load j atom coordinates */
482             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
483                                                  x+j_coord_offsetC,x+j_coord_offsetD,
484                                                  x+j_coord_offsetE,x+j_coord_offsetF,
485                                                  x+j_coord_offsetG,x+j_coord_offsetH,
486                                                  &jx0,&jy0,&jz0);
487
488             /* Calculate displacement vector */
489             dx00             = _mm256_sub_ps(ix0,jx0);
490             dy00             = _mm256_sub_ps(iy0,jy0);
491             dz00             = _mm256_sub_ps(iz0,jz0);
492             dx10             = _mm256_sub_ps(ix1,jx0);
493             dy10             = _mm256_sub_ps(iy1,jy0);
494             dz10             = _mm256_sub_ps(iz1,jz0);
495             dx20             = _mm256_sub_ps(ix2,jx0);
496             dy20             = _mm256_sub_ps(iy2,jy0);
497             dz20             = _mm256_sub_ps(iz2,jz0);
498             dx30             = _mm256_sub_ps(ix3,jx0);
499             dy30             = _mm256_sub_ps(iy3,jy0);
500             dz30             = _mm256_sub_ps(iz3,jz0);
501
502             /* Calculate squared distance and things based on it */
503             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
504             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
505             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
506             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
507
508             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
509             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
510             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
511
512             rinvsq00         = gmx_mm256_inv_ps(rsq00);
513             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
514             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
515             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
516
517             /* Load parameters for j particles */
518             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
519                                                                  charge+jnrC+0,charge+jnrD+0,
520                                                                  charge+jnrE+0,charge+jnrF+0,
521                                                                  charge+jnrG+0,charge+jnrH+0);
522             vdwjidx0A        = 2*vdwtype[jnrA+0];
523             vdwjidx0B        = 2*vdwtype[jnrB+0];
524             vdwjidx0C        = 2*vdwtype[jnrC+0];
525             vdwjidx0D        = 2*vdwtype[jnrD+0];
526             vdwjidx0E        = 2*vdwtype[jnrE+0];
527             vdwjidx0F        = 2*vdwtype[jnrF+0];
528             vdwjidx0G        = 2*vdwtype[jnrG+0];
529             vdwjidx0H        = 2*vdwtype[jnrH+0];
530
531             fjx0             = _mm256_setzero_ps();
532             fjy0             = _mm256_setzero_ps();
533             fjz0             = _mm256_setzero_ps();
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             /* Compute parameters for interactions between i and j atoms */
540             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
541                                             vdwioffsetptr0+vdwjidx0B,
542                                             vdwioffsetptr0+vdwjidx0C,
543                                             vdwioffsetptr0+vdwjidx0D,
544                                             vdwioffsetptr0+vdwjidx0E,
545                                             vdwioffsetptr0+vdwjidx0F,
546                                             vdwioffsetptr0+vdwjidx0G,
547                                             vdwioffsetptr0+vdwjidx0H,
548                                             &c6_00,&c12_00);
549
550             /* LENNARD-JONES DISPERSION/REPULSION */
551
552             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
553             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
554             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
555             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
556             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
557
558             /* Update potential sum for this i atom from the interaction with this j atom. */
559             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
560             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
561
562             fscal            = fvdw;
563
564             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
565
566             /* Calculate temporary vectorial force */
567             tx               = _mm256_mul_ps(fscal,dx00);
568             ty               = _mm256_mul_ps(fscal,dy00);
569             tz               = _mm256_mul_ps(fscal,dz00);
570
571             /* Update vectorial force */
572             fix0             = _mm256_add_ps(fix0,tx);
573             fiy0             = _mm256_add_ps(fiy0,ty);
574             fiz0             = _mm256_add_ps(fiz0,tz);
575
576             fjx0             = _mm256_add_ps(fjx0,tx);
577             fjy0             = _mm256_add_ps(fjy0,ty);
578             fjz0             = _mm256_add_ps(fjz0,tz);
579
580             /**************************
581              * CALCULATE INTERACTIONS *
582              **************************/
583
584             r10              = _mm256_mul_ps(rsq10,rinv10);
585             r10              = _mm256_andnot_ps(dummy_mask,r10);
586
587             /* Compute parameters for interactions between i and j atoms */
588             qq10             = _mm256_mul_ps(iq1,jq0);
589
590             /* EWALD ELECTROSTATICS */
591             
592             /* Analytical PME correction */
593             zeta2            = _mm256_mul_ps(beta2,rsq10);
594             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
595             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
596             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
597             felec            = _mm256_mul_ps(qq10,felec);
598             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
599             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
600             velec            = _mm256_sub_ps(rinv10,pmecorrV);
601             velec            = _mm256_mul_ps(qq10,velec);
602             
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _mm256_andnot_ps(dummy_mask,velec);
605             velecsum         = _mm256_add_ps(velecsum,velec);
606
607             fscal            = felec;
608
609             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm256_mul_ps(fscal,dx10);
613             ty               = _mm256_mul_ps(fscal,dy10);
614             tz               = _mm256_mul_ps(fscal,dz10);
615
616             /* Update vectorial force */
617             fix1             = _mm256_add_ps(fix1,tx);
618             fiy1             = _mm256_add_ps(fiy1,ty);
619             fiz1             = _mm256_add_ps(fiz1,tz);
620
621             fjx0             = _mm256_add_ps(fjx0,tx);
622             fjy0             = _mm256_add_ps(fjy0,ty);
623             fjz0             = _mm256_add_ps(fjz0,tz);
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             r20              = _mm256_mul_ps(rsq20,rinv20);
630             r20              = _mm256_andnot_ps(dummy_mask,r20);
631
632             /* Compute parameters for interactions between i and j atoms */
633             qq20             = _mm256_mul_ps(iq2,jq0);
634
635             /* EWALD ELECTROSTATICS */
636             
637             /* Analytical PME correction */
638             zeta2            = _mm256_mul_ps(beta2,rsq20);
639             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
640             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
641             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
642             felec            = _mm256_mul_ps(qq20,felec);
643             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
644             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
645             velec            = _mm256_sub_ps(rinv20,pmecorrV);
646             velec            = _mm256_mul_ps(qq20,velec);
647             
648             /* Update potential sum for this i atom from the interaction with this j atom. */
649             velec            = _mm256_andnot_ps(dummy_mask,velec);
650             velecsum         = _mm256_add_ps(velecsum,velec);
651
652             fscal            = felec;
653
654             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
655
656             /* Calculate temporary vectorial force */
657             tx               = _mm256_mul_ps(fscal,dx20);
658             ty               = _mm256_mul_ps(fscal,dy20);
659             tz               = _mm256_mul_ps(fscal,dz20);
660
661             /* Update vectorial force */
662             fix2             = _mm256_add_ps(fix2,tx);
663             fiy2             = _mm256_add_ps(fiy2,ty);
664             fiz2             = _mm256_add_ps(fiz2,tz);
665
666             fjx0             = _mm256_add_ps(fjx0,tx);
667             fjy0             = _mm256_add_ps(fjy0,ty);
668             fjz0             = _mm256_add_ps(fjz0,tz);
669
670             /**************************
671              * CALCULATE INTERACTIONS *
672              **************************/
673
674             r30              = _mm256_mul_ps(rsq30,rinv30);
675             r30              = _mm256_andnot_ps(dummy_mask,r30);
676
677             /* Compute parameters for interactions between i and j atoms */
678             qq30             = _mm256_mul_ps(iq3,jq0);
679
680             /* EWALD ELECTROSTATICS */
681             
682             /* Analytical PME correction */
683             zeta2            = _mm256_mul_ps(beta2,rsq30);
684             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
685             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
686             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
687             felec            = _mm256_mul_ps(qq30,felec);
688             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
689             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
690             velec            = _mm256_sub_ps(rinv30,pmecorrV);
691             velec            = _mm256_mul_ps(qq30,velec);
692             
693             /* Update potential sum for this i atom from the interaction with this j atom. */
694             velec            = _mm256_andnot_ps(dummy_mask,velec);
695             velecsum         = _mm256_add_ps(velecsum,velec);
696
697             fscal            = felec;
698
699             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
700
701             /* Calculate temporary vectorial force */
702             tx               = _mm256_mul_ps(fscal,dx30);
703             ty               = _mm256_mul_ps(fscal,dy30);
704             tz               = _mm256_mul_ps(fscal,dz30);
705
706             /* Update vectorial force */
707             fix3             = _mm256_add_ps(fix3,tx);
708             fiy3             = _mm256_add_ps(fiy3,ty);
709             fiz3             = _mm256_add_ps(fiz3,tz);
710
711             fjx0             = _mm256_add_ps(fjx0,tx);
712             fjy0             = _mm256_add_ps(fjy0,ty);
713             fjz0             = _mm256_add_ps(fjz0,tz);
714
715             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
716             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
717             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
718             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
719             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
720             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
721             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
722             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
723
724             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
725
726             /* Inner loop uses 290 flops */
727         }
728
729         /* End of innermost loop */
730
731         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
732                                                  f+i_coord_offset,fshift+i_shift_offset);
733
734         ggid                        = gid[iidx];
735         /* Update potential energies */
736         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
737         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
738
739         /* Increment number of inner iterations */
740         inneriter                  += j_index_end - j_index_start;
741
742         /* Outer loop uses 26 flops */
743     }
744
745     /* Increment number of outer iterations */
746     outeriter        += nri;
747
748     /* Update outer/inner flops */
749
750     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*290);
751 }
752 /*
753  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_single
754  * Electrostatics interaction: Ewald
755  * VdW interaction:            LennardJones
756  * Geometry:                   Water4-Particle
757  * Calculate force/pot:        Force
758  */
759 void
760 nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_avx_256_single
761                     (t_nblist * gmx_restrict                nlist,
762                      rvec * gmx_restrict                    xx,
763                      rvec * gmx_restrict                    ff,
764                      t_forcerec * gmx_restrict              fr,
765                      t_mdatoms * gmx_restrict               mdatoms,
766                      nb_kernel_data_t * gmx_restrict        kernel_data,
767                      t_nrnb * gmx_restrict                  nrnb)
768 {
769     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
770      * just 0 for non-waters.
771      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
772      * jnr indices corresponding to data put in the four positions in the SIMD register.
773      */
774     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
775     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
776     int              jnrA,jnrB,jnrC,jnrD;
777     int              jnrE,jnrF,jnrG,jnrH;
778     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
779     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
780     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
781     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
782     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
783     real             rcutoff_scalar;
784     real             *shiftvec,*fshift,*x,*f;
785     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
786     real             scratch[4*DIM];
787     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
788     real *           vdwioffsetptr0;
789     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
790     real *           vdwioffsetptr1;
791     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
792     real *           vdwioffsetptr2;
793     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
794     real *           vdwioffsetptr3;
795     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
796     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
797     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
798     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
799     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
800     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
801     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
802     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
803     real             *charge;
804     int              nvdwtype;
805     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
806     int              *vdwtype;
807     real             *vdwparam;
808     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
809     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
810     __m256i          ewitab;
811     __m128i          ewitab_lo,ewitab_hi;
812     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
813     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
814     real             *ewtab;
815     __m256           dummy_mask,cutoff_mask;
816     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
817     __m256           one     = _mm256_set1_ps(1.0);
818     __m256           two     = _mm256_set1_ps(2.0);
819     x                = xx[0];
820     f                = ff[0];
821
822     nri              = nlist->nri;
823     iinr             = nlist->iinr;
824     jindex           = nlist->jindex;
825     jjnr             = nlist->jjnr;
826     shiftidx         = nlist->shift;
827     gid              = nlist->gid;
828     shiftvec         = fr->shift_vec[0];
829     fshift           = fr->fshift[0];
830     facel            = _mm256_set1_ps(fr->epsfac);
831     charge           = mdatoms->chargeA;
832     nvdwtype         = fr->ntype;
833     vdwparam         = fr->nbfp;
834     vdwtype          = mdatoms->typeA;
835
836     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
837     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
838     beta2            = _mm256_mul_ps(beta,beta);
839     beta3            = _mm256_mul_ps(beta,beta2);
840
841     ewtab            = fr->ic->tabq_coul_F;
842     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
843     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
844
845     /* Setup water-specific parameters */
846     inr              = nlist->iinr[0];
847     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
848     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
849     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
850     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
851
852     /* Avoid stupid compiler warnings */
853     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
854     j_coord_offsetA = 0;
855     j_coord_offsetB = 0;
856     j_coord_offsetC = 0;
857     j_coord_offsetD = 0;
858     j_coord_offsetE = 0;
859     j_coord_offsetF = 0;
860     j_coord_offsetG = 0;
861     j_coord_offsetH = 0;
862
863     outeriter        = 0;
864     inneriter        = 0;
865
866     for(iidx=0;iidx<4*DIM;iidx++)
867     {
868         scratch[iidx] = 0.0;
869     }
870
871     /* Start outer loop over neighborlists */
872     for(iidx=0; iidx<nri; iidx++)
873     {
874         /* Load shift vector for this list */
875         i_shift_offset   = DIM*shiftidx[iidx];
876
877         /* Load limits for loop over neighbors */
878         j_index_start    = jindex[iidx];
879         j_index_end      = jindex[iidx+1];
880
881         /* Get outer coordinate index */
882         inr              = iinr[iidx];
883         i_coord_offset   = DIM*inr;
884
885         /* Load i particle coords and add shift vector */
886         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
887                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
888
889         fix0             = _mm256_setzero_ps();
890         fiy0             = _mm256_setzero_ps();
891         fiz0             = _mm256_setzero_ps();
892         fix1             = _mm256_setzero_ps();
893         fiy1             = _mm256_setzero_ps();
894         fiz1             = _mm256_setzero_ps();
895         fix2             = _mm256_setzero_ps();
896         fiy2             = _mm256_setzero_ps();
897         fiz2             = _mm256_setzero_ps();
898         fix3             = _mm256_setzero_ps();
899         fiy3             = _mm256_setzero_ps();
900         fiz3             = _mm256_setzero_ps();
901
902         /* Start inner kernel loop */
903         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
904         {
905
906             /* Get j neighbor index, and coordinate index */
907             jnrA             = jjnr[jidx];
908             jnrB             = jjnr[jidx+1];
909             jnrC             = jjnr[jidx+2];
910             jnrD             = jjnr[jidx+3];
911             jnrE             = jjnr[jidx+4];
912             jnrF             = jjnr[jidx+5];
913             jnrG             = jjnr[jidx+6];
914             jnrH             = jjnr[jidx+7];
915             j_coord_offsetA  = DIM*jnrA;
916             j_coord_offsetB  = DIM*jnrB;
917             j_coord_offsetC  = DIM*jnrC;
918             j_coord_offsetD  = DIM*jnrD;
919             j_coord_offsetE  = DIM*jnrE;
920             j_coord_offsetF  = DIM*jnrF;
921             j_coord_offsetG  = DIM*jnrG;
922             j_coord_offsetH  = DIM*jnrH;
923
924             /* load j atom coordinates */
925             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
926                                                  x+j_coord_offsetC,x+j_coord_offsetD,
927                                                  x+j_coord_offsetE,x+j_coord_offsetF,
928                                                  x+j_coord_offsetG,x+j_coord_offsetH,
929                                                  &jx0,&jy0,&jz0);
930
931             /* Calculate displacement vector */
932             dx00             = _mm256_sub_ps(ix0,jx0);
933             dy00             = _mm256_sub_ps(iy0,jy0);
934             dz00             = _mm256_sub_ps(iz0,jz0);
935             dx10             = _mm256_sub_ps(ix1,jx0);
936             dy10             = _mm256_sub_ps(iy1,jy0);
937             dz10             = _mm256_sub_ps(iz1,jz0);
938             dx20             = _mm256_sub_ps(ix2,jx0);
939             dy20             = _mm256_sub_ps(iy2,jy0);
940             dz20             = _mm256_sub_ps(iz2,jz0);
941             dx30             = _mm256_sub_ps(ix3,jx0);
942             dy30             = _mm256_sub_ps(iy3,jy0);
943             dz30             = _mm256_sub_ps(iz3,jz0);
944
945             /* Calculate squared distance and things based on it */
946             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
947             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
948             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
949             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
950
951             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
952             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
953             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
954
955             rinvsq00         = gmx_mm256_inv_ps(rsq00);
956             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
957             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
958             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
959
960             /* Load parameters for j particles */
961             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
962                                                                  charge+jnrC+0,charge+jnrD+0,
963                                                                  charge+jnrE+0,charge+jnrF+0,
964                                                                  charge+jnrG+0,charge+jnrH+0);
965             vdwjidx0A        = 2*vdwtype[jnrA+0];
966             vdwjidx0B        = 2*vdwtype[jnrB+0];
967             vdwjidx0C        = 2*vdwtype[jnrC+0];
968             vdwjidx0D        = 2*vdwtype[jnrD+0];
969             vdwjidx0E        = 2*vdwtype[jnrE+0];
970             vdwjidx0F        = 2*vdwtype[jnrF+0];
971             vdwjidx0G        = 2*vdwtype[jnrG+0];
972             vdwjidx0H        = 2*vdwtype[jnrH+0];
973
974             fjx0             = _mm256_setzero_ps();
975             fjy0             = _mm256_setzero_ps();
976             fjz0             = _mm256_setzero_ps();
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             /* Compute parameters for interactions between i and j atoms */
983             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
984                                             vdwioffsetptr0+vdwjidx0B,
985                                             vdwioffsetptr0+vdwjidx0C,
986                                             vdwioffsetptr0+vdwjidx0D,
987                                             vdwioffsetptr0+vdwjidx0E,
988                                             vdwioffsetptr0+vdwjidx0F,
989                                             vdwioffsetptr0+vdwjidx0G,
990                                             vdwioffsetptr0+vdwjidx0H,
991                                             &c6_00,&c12_00);
992
993             /* LENNARD-JONES DISPERSION/REPULSION */
994
995             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
996             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
997
998             fscal            = fvdw;
999
1000             /* Calculate temporary vectorial force */
1001             tx               = _mm256_mul_ps(fscal,dx00);
1002             ty               = _mm256_mul_ps(fscal,dy00);
1003             tz               = _mm256_mul_ps(fscal,dz00);
1004
1005             /* Update vectorial force */
1006             fix0             = _mm256_add_ps(fix0,tx);
1007             fiy0             = _mm256_add_ps(fiy0,ty);
1008             fiz0             = _mm256_add_ps(fiz0,tz);
1009
1010             fjx0             = _mm256_add_ps(fjx0,tx);
1011             fjy0             = _mm256_add_ps(fjy0,ty);
1012             fjz0             = _mm256_add_ps(fjz0,tz);
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             r10              = _mm256_mul_ps(rsq10,rinv10);
1019
1020             /* Compute parameters for interactions between i and j atoms */
1021             qq10             = _mm256_mul_ps(iq1,jq0);
1022
1023             /* EWALD ELECTROSTATICS */
1024             
1025             /* Analytical PME correction */
1026             zeta2            = _mm256_mul_ps(beta2,rsq10);
1027             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1028             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1029             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1030             felec            = _mm256_mul_ps(qq10,felec);
1031             
1032             fscal            = felec;
1033
1034             /* Calculate temporary vectorial force */
1035             tx               = _mm256_mul_ps(fscal,dx10);
1036             ty               = _mm256_mul_ps(fscal,dy10);
1037             tz               = _mm256_mul_ps(fscal,dz10);
1038
1039             /* Update vectorial force */
1040             fix1             = _mm256_add_ps(fix1,tx);
1041             fiy1             = _mm256_add_ps(fiy1,ty);
1042             fiz1             = _mm256_add_ps(fiz1,tz);
1043
1044             fjx0             = _mm256_add_ps(fjx0,tx);
1045             fjy0             = _mm256_add_ps(fjy0,ty);
1046             fjz0             = _mm256_add_ps(fjz0,tz);
1047
1048             /**************************
1049              * CALCULATE INTERACTIONS *
1050              **************************/
1051
1052             r20              = _mm256_mul_ps(rsq20,rinv20);
1053
1054             /* Compute parameters for interactions between i and j atoms */
1055             qq20             = _mm256_mul_ps(iq2,jq0);
1056
1057             /* EWALD ELECTROSTATICS */
1058             
1059             /* Analytical PME correction */
1060             zeta2            = _mm256_mul_ps(beta2,rsq20);
1061             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1062             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1063             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1064             felec            = _mm256_mul_ps(qq20,felec);
1065             
1066             fscal            = felec;
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = _mm256_mul_ps(fscal,dx20);
1070             ty               = _mm256_mul_ps(fscal,dy20);
1071             tz               = _mm256_mul_ps(fscal,dz20);
1072
1073             /* Update vectorial force */
1074             fix2             = _mm256_add_ps(fix2,tx);
1075             fiy2             = _mm256_add_ps(fiy2,ty);
1076             fiz2             = _mm256_add_ps(fiz2,tz);
1077
1078             fjx0             = _mm256_add_ps(fjx0,tx);
1079             fjy0             = _mm256_add_ps(fjy0,ty);
1080             fjz0             = _mm256_add_ps(fjz0,tz);
1081
1082             /**************************
1083              * CALCULATE INTERACTIONS *
1084              **************************/
1085
1086             r30              = _mm256_mul_ps(rsq30,rinv30);
1087
1088             /* Compute parameters for interactions between i and j atoms */
1089             qq30             = _mm256_mul_ps(iq3,jq0);
1090
1091             /* EWALD ELECTROSTATICS */
1092             
1093             /* Analytical PME correction */
1094             zeta2            = _mm256_mul_ps(beta2,rsq30);
1095             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1096             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1097             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1098             felec            = _mm256_mul_ps(qq30,felec);
1099             
1100             fscal            = felec;
1101
1102             /* Calculate temporary vectorial force */
1103             tx               = _mm256_mul_ps(fscal,dx30);
1104             ty               = _mm256_mul_ps(fscal,dy30);
1105             tz               = _mm256_mul_ps(fscal,dz30);
1106
1107             /* Update vectorial force */
1108             fix3             = _mm256_add_ps(fix3,tx);
1109             fiy3             = _mm256_add_ps(fiy3,ty);
1110             fiz3             = _mm256_add_ps(fiz3,tz);
1111
1112             fjx0             = _mm256_add_ps(fjx0,tx);
1113             fjy0             = _mm256_add_ps(fjy0,ty);
1114             fjz0             = _mm256_add_ps(fjz0,tz);
1115
1116             fjptrA             = f+j_coord_offsetA;
1117             fjptrB             = f+j_coord_offsetB;
1118             fjptrC             = f+j_coord_offsetC;
1119             fjptrD             = f+j_coord_offsetD;
1120             fjptrE             = f+j_coord_offsetE;
1121             fjptrF             = f+j_coord_offsetF;
1122             fjptrG             = f+j_coord_offsetG;
1123             fjptrH             = f+j_coord_offsetH;
1124
1125             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1126
1127             /* Inner loop uses 198 flops */
1128         }
1129
1130         if(jidx<j_index_end)
1131         {
1132
1133             /* Get j neighbor index, and coordinate index */
1134             jnrlistA         = jjnr[jidx];
1135             jnrlistB         = jjnr[jidx+1];
1136             jnrlistC         = jjnr[jidx+2];
1137             jnrlistD         = jjnr[jidx+3];
1138             jnrlistE         = jjnr[jidx+4];
1139             jnrlistF         = jjnr[jidx+5];
1140             jnrlistG         = jjnr[jidx+6];
1141             jnrlistH         = jjnr[jidx+7];
1142             /* Sign of each element will be negative for non-real atoms.
1143              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1144              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1145              */
1146             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1147                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1148                                             
1149             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1150             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1151             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1152             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1153             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1154             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1155             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1156             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1157             j_coord_offsetA  = DIM*jnrA;
1158             j_coord_offsetB  = DIM*jnrB;
1159             j_coord_offsetC  = DIM*jnrC;
1160             j_coord_offsetD  = DIM*jnrD;
1161             j_coord_offsetE  = DIM*jnrE;
1162             j_coord_offsetF  = DIM*jnrF;
1163             j_coord_offsetG  = DIM*jnrG;
1164             j_coord_offsetH  = DIM*jnrH;
1165
1166             /* load j atom coordinates */
1167             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1168                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1169                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1170                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1171                                                  &jx0,&jy0,&jz0);
1172
1173             /* Calculate displacement vector */
1174             dx00             = _mm256_sub_ps(ix0,jx0);
1175             dy00             = _mm256_sub_ps(iy0,jy0);
1176             dz00             = _mm256_sub_ps(iz0,jz0);
1177             dx10             = _mm256_sub_ps(ix1,jx0);
1178             dy10             = _mm256_sub_ps(iy1,jy0);
1179             dz10             = _mm256_sub_ps(iz1,jz0);
1180             dx20             = _mm256_sub_ps(ix2,jx0);
1181             dy20             = _mm256_sub_ps(iy2,jy0);
1182             dz20             = _mm256_sub_ps(iz2,jz0);
1183             dx30             = _mm256_sub_ps(ix3,jx0);
1184             dy30             = _mm256_sub_ps(iy3,jy0);
1185             dz30             = _mm256_sub_ps(iz3,jz0);
1186
1187             /* Calculate squared distance and things based on it */
1188             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1189             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1190             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1191             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1192
1193             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1194             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1195             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1196
1197             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1198             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1199             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1200             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1201
1202             /* Load parameters for j particles */
1203             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1204                                                                  charge+jnrC+0,charge+jnrD+0,
1205                                                                  charge+jnrE+0,charge+jnrF+0,
1206                                                                  charge+jnrG+0,charge+jnrH+0);
1207             vdwjidx0A        = 2*vdwtype[jnrA+0];
1208             vdwjidx0B        = 2*vdwtype[jnrB+0];
1209             vdwjidx0C        = 2*vdwtype[jnrC+0];
1210             vdwjidx0D        = 2*vdwtype[jnrD+0];
1211             vdwjidx0E        = 2*vdwtype[jnrE+0];
1212             vdwjidx0F        = 2*vdwtype[jnrF+0];
1213             vdwjidx0G        = 2*vdwtype[jnrG+0];
1214             vdwjidx0H        = 2*vdwtype[jnrH+0];
1215
1216             fjx0             = _mm256_setzero_ps();
1217             fjy0             = _mm256_setzero_ps();
1218             fjz0             = _mm256_setzero_ps();
1219
1220             /**************************
1221              * CALCULATE INTERACTIONS *
1222              **************************/
1223
1224             /* Compute parameters for interactions between i and j atoms */
1225             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1226                                             vdwioffsetptr0+vdwjidx0B,
1227                                             vdwioffsetptr0+vdwjidx0C,
1228                                             vdwioffsetptr0+vdwjidx0D,
1229                                             vdwioffsetptr0+vdwjidx0E,
1230                                             vdwioffsetptr0+vdwjidx0F,
1231                                             vdwioffsetptr0+vdwjidx0G,
1232                                             vdwioffsetptr0+vdwjidx0H,
1233                                             &c6_00,&c12_00);
1234
1235             /* LENNARD-JONES DISPERSION/REPULSION */
1236
1237             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1238             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1239
1240             fscal            = fvdw;
1241
1242             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1243
1244             /* Calculate temporary vectorial force */
1245             tx               = _mm256_mul_ps(fscal,dx00);
1246             ty               = _mm256_mul_ps(fscal,dy00);
1247             tz               = _mm256_mul_ps(fscal,dz00);
1248
1249             /* Update vectorial force */
1250             fix0             = _mm256_add_ps(fix0,tx);
1251             fiy0             = _mm256_add_ps(fiy0,ty);
1252             fiz0             = _mm256_add_ps(fiz0,tz);
1253
1254             fjx0             = _mm256_add_ps(fjx0,tx);
1255             fjy0             = _mm256_add_ps(fjy0,ty);
1256             fjz0             = _mm256_add_ps(fjz0,tz);
1257
1258             /**************************
1259              * CALCULATE INTERACTIONS *
1260              **************************/
1261
1262             r10              = _mm256_mul_ps(rsq10,rinv10);
1263             r10              = _mm256_andnot_ps(dummy_mask,r10);
1264
1265             /* Compute parameters for interactions between i and j atoms */
1266             qq10             = _mm256_mul_ps(iq1,jq0);
1267
1268             /* EWALD ELECTROSTATICS */
1269             
1270             /* Analytical PME correction */
1271             zeta2            = _mm256_mul_ps(beta2,rsq10);
1272             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1273             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1274             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1275             felec            = _mm256_mul_ps(qq10,felec);
1276             
1277             fscal            = felec;
1278
1279             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1280
1281             /* Calculate temporary vectorial force */
1282             tx               = _mm256_mul_ps(fscal,dx10);
1283             ty               = _mm256_mul_ps(fscal,dy10);
1284             tz               = _mm256_mul_ps(fscal,dz10);
1285
1286             /* Update vectorial force */
1287             fix1             = _mm256_add_ps(fix1,tx);
1288             fiy1             = _mm256_add_ps(fiy1,ty);
1289             fiz1             = _mm256_add_ps(fiz1,tz);
1290
1291             fjx0             = _mm256_add_ps(fjx0,tx);
1292             fjy0             = _mm256_add_ps(fjy0,ty);
1293             fjz0             = _mm256_add_ps(fjz0,tz);
1294
1295             /**************************
1296              * CALCULATE INTERACTIONS *
1297              **************************/
1298
1299             r20              = _mm256_mul_ps(rsq20,rinv20);
1300             r20              = _mm256_andnot_ps(dummy_mask,r20);
1301
1302             /* Compute parameters for interactions between i and j atoms */
1303             qq20             = _mm256_mul_ps(iq2,jq0);
1304
1305             /* EWALD ELECTROSTATICS */
1306             
1307             /* Analytical PME correction */
1308             zeta2            = _mm256_mul_ps(beta2,rsq20);
1309             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1310             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1311             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1312             felec            = _mm256_mul_ps(qq20,felec);
1313             
1314             fscal            = felec;
1315
1316             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1317
1318             /* Calculate temporary vectorial force */
1319             tx               = _mm256_mul_ps(fscal,dx20);
1320             ty               = _mm256_mul_ps(fscal,dy20);
1321             tz               = _mm256_mul_ps(fscal,dz20);
1322
1323             /* Update vectorial force */
1324             fix2             = _mm256_add_ps(fix2,tx);
1325             fiy2             = _mm256_add_ps(fiy2,ty);
1326             fiz2             = _mm256_add_ps(fiz2,tz);
1327
1328             fjx0             = _mm256_add_ps(fjx0,tx);
1329             fjy0             = _mm256_add_ps(fjy0,ty);
1330             fjz0             = _mm256_add_ps(fjz0,tz);
1331
1332             /**************************
1333              * CALCULATE INTERACTIONS *
1334              **************************/
1335
1336             r30              = _mm256_mul_ps(rsq30,rinv30);
1337             r30              = _mm256_andnot_ps(dummy_mask,r30);
1338
1339             /* Compute parameters for interactions between i and j atoms */
1340             qq30             = _mm256_mul_ps(iq3,jq0);
1341
1342             /* EWALD ELECTROSTATICS */
1343             
1344             /* Analytical PME correction */
1345             zeta2            = _mm256_mul_ps(beta2,rsq30);
1346             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1347             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1348             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1349             felec            = _mm256_mul_ps(qq30,felec);
1350             
1351             fscal            = felec;
1352
1353             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1354
1355             /* Calculate temporary vectorial force */
1356             tx               = _mm256_mul_ps(fscal,dx30);
1357             ty               = _mm256_mul_ps(fscal,dy30);
1358             tz               = _mm256_mul_ps(fscal,dz30);
1359
1360             /* Update vectorial force */
1361             fix3             = _mm256_add_ps(fix3,tx);
1362             fiy3             = _mm256_add_ps(fiy3,ty);
1363             fiz3             = _mm256_add_ps(fiz3,tz);
1364
1365             fjx0             = _mm256_add_ps(fjx0,tx);
1366             fjy0             = _mm256_add_ps(fjy0,ty);
1367             fjz0             = _mm256_add_ps(fjz0,tz);
1368
1369             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1370             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1371             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1372             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1373             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1374             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1375             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1376             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1377
1378             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1379
1380             /* Inner loop uses 201 flops */
1381         }
1382
1383         /* End of innermost loop */
1384
1385         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1386                                                  f+i_coord_offset,fshift+i_shift_offset);
1387
1388         /* Increment number of inner iterations */
1389         inneriter                  += j_index_end - j_index_start;
1390
1391         /* Outer loop uses 24 flops */
1392     }
1393
1394     /* Increment number of outer iterations */
1395     outeriter        += nri;
1396
1397     /* Update outer/inner flops */
1398
1399     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*201);
1400 }