433cd1b3eea508f34f690afe3d43deee78b57e74
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256i          ewitab;
92     __m128i          ewitab_lo,ewitab_hi;
93     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
95     real             *ewtab;
96     __m256           dummy_mask,cutoff_mask;
97     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
98     __m256           one     = _mm256_set1_ps(1.0);
99     __m256           two     = _mm256_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm256_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
118     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
119     beta2            = _mm256_mul_ps(beta,beta);
120     beta3            = _mm256_mul_ps(beta,beta2);
121
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
129     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
130     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
131     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139     j_coord_offsetE = 0;
140     j_coord_offsetF = 0;
141     j_coord_offsetG = 0;
142     j_coord_offsetH = 0;
143
144     outeriter        = 0;
145     inneriter        = 0;
146
147     for(iidx=0;iidx<4*DIM;iidx++)
148     {
149         scratch[iidx] = 0.0;
150     }
151
152     /* Start outer loop over neighborlists */
153     for(iidx=0; iidx<nri; iidx++)
154     {
155         /* Load shift vector for this list */
156         i_shift_offset   = DIM*shiftidx[iidx];
157
158         /* Load limits for loop over neighbors */
159         j_index_start    = jindex[iidx];
160         j_index_end      = jindex[iidx+1];
161
162         /* Get outer coordinate index */
163         inr              = iinr[iidx];
164         i_coord_offset   = DIM*inr;
165
166         /* Load i particle coords and add shift vector */
167         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
168                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
169
170         fix0             = _mm256_setzero_ps();
171         fiy0             = _mm256_setzero_ps();
172         fiz0             = _mm256_setzero_ps();
173         fix1             = _mm256_setzero_ps();
174         fiy1             = _mm256_setzero_ps();
175         fiz1             = _mm256_setzero_ps();
176         fix2             = _mm256_setzero_ps();
177         fiy2             = _mm256_setzero_ps();
178         fiz2             = _mm256_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_ps();
182         vvdwsum          = _mm256_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             jnrE             = jjnr[jidx+4];
194             jnrF             = jjnr[jidx+5];
195             jnrG             = jjnr[jidx+6];
196             jnrH             = jjnr[jidx+7];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201             j_coord_offsetE  = DIM*jnrE;
202             j_coord_offsetF  = DIM*jnrF;
203             j_coord_offsetG  = DIM*jnrG;
204             j_coord_offsetH  = DIM*jnrH;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  x+j_coord_offsetE,x+j_coord_offsetF,
210                                                  x+j_coord_offsetG,x+j_coord_offsetH,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_ps(ix0,jx0);
215             dy00             = _mm256_sub_ps(iy0,jy0);
216             dz00             = _mm256_sub_ps(iz0,jz0);
217             dx10             = _mm256_sub_ps(ix1,jx0);
218             dy10             = _mm256_sub_ps(iy1,jy0);
219             dz10             = _mm256_sub_ps(iz1,jz0);
220             dx20             = _mm256_sub_ps(ix2,jx0);
221             dy20             = _mm256_sub_ps(iy2,jy0);
222             dz20             = _mm256_sub_ps(iz2,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
226             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
227             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
228
229             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
230             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
231             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
232
233             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
234             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
235             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
236
237             /* Load parameters for j particles */
238             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239                                                                  charge+jnrC+0,charge+jnrD+0,
240                                                                  charge+jnrE+0,charge+jnrF+0,
241                                                                  charge+jnrG+0,charge+jnrH+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246             vdwjidx0E        = 2*vdwtype[jnrE+0];
247             vdwjidx0F        = 2*vdwtype[jnrF+0];
248             vdwjidx0G        = 2*vdwtype[jnrG+0];
249             vdwjidx0H        = 2*vdwtype[jnrH+0];
250
251             fjx0             = _mm256_setzero_ps();
252             fjy0             = _mm256_setzero_ps();
253             fjz0             = _mm256_setzero_ps();
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r00              = _mm256_mul_ps(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq00             = _mm256_mul_ps(iq0,jq0);
263             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
264                                             vdwioffsetptr0+vdwjidx0B,
265                                             vdwioffsetptr0+vdwjidx0C,
266                                             vdwioffsetptr0+vdwjidx0D,
267                                             vdwioffsetptr0+vdwjidx0E,
268                                             vdwioffsetptr0+vdwjidx0F,
269                                             vdwioffsetptr0+vdwjidx0G,
270                                             vdwioffsetptr0+vdwjidx0H,
271                                             &c6_00,&c12_00);
272
273             /* EWALD ELECTROSTATICS */
274             
275             /* Analytical PME correction */
276             zeta2            = _mm256_mul_ps(beta2,rsq00);
277             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
278             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
279             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
280             felec            = _mm256_mul_ps(qq00,felec);
281             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
282             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
283             velec            = _mm256_sub_ps(rinv00,pmecorrV);
284             velec            = _mm256_mul_ps(qq00,velec);
285             
286             /* LENNARD-JONES DISPERSION/REPULSION */
287
288             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
289             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
290             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
291             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
292             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
293
294             /* Update potential sum for this i atom from the interaction with this j atom. */
295             velecsum         = _mm256_add_ps(velecsum,velec);
296             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
297
298             fscal            = _mm256_add_ps(felec,fvdw);
299
300             /* Calculate temporary vectorial force */
301             tx               = _mm256_mul_ps(fscal,dx00);
302             ty               = _mm256_mul_ps(fscal,dy00);
303             tz               = _mm256_mul_ps(fscal,dz00);
304
305             /* Update vectorial force */
306             fix0             = _mm256_add_ps(fix0,tx);
307             fiy0             = _mm256_add_ps(fiy0,ty);
308             fiz0             = _mm256_add_ps(fiz0,tz);
309
310             fjx0             = _mm256_add_ps(fjx0,tx);
311             fjy0             = _mm256_add_ps(fjy0,ty);
312             fjz0             = _mm256_add_ps(fjz0,tz);
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             r10              = _mm256_mul_ps(rsq10,rinv10);
319
320             /* Compute parameters for interactions between i and j atoms */
321             qq10             = _mm256_mul_ps(iq1,jq0);
322
323             /* EWALD ELECTROSTATICS */
324             
325             /* Analytical PME correction */
326             zeta2            = _mm256_mul_ps(beta2,rsq10);
327             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
328             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
329             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
330             felec            = _mm256_mul_ps(qq10,felec);
331             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
332             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
333             velec            = _mm256_sub_ps(rinv10,pmecorrV);
334             velec            = _mm256_mul_ps(qq10,velec);
335             
336             /* Update potential sum for this i atom from the interaction with this j atom. */
337             velecsum         = _mm256_add_ps(velecsum,velec);
338
339             fscal            = felec;
340
341             /* Calculate temporary vectorial force */
342             tx               = _mm256_mul_ps(fscal,dx10);
343             ty               = _mm256_mul_ps(fscal,dy10);
344             tz               = _mm256_mul_ps(fscal,dz10);
345
346             /* Update vectorial force */
347             fix1             = _mm256_add_ps(fix1,tx);
348             fiy1             = _mm256_add_ps(fiy1,ty);
349             fiz1             = _mm256_add_ps(fiz1,tz);
350
351             fjx0             = _mm256_add_ps(fjx0,tx);
352             fjy0             = _mm256_add_ps(fjy0,ty);
353             fjz0             = _mm256_add_ps(fjz0,tz);
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r20              = _mm256_mul_ps(rsq20,rinv20);
360
361             /* Compute parameters for interactions between i and j atoms */
362             qq20             = _mm256_mul_ps(iq2,jq0);
363
364             /* EWALD ELECTROSTATICS */
365             
366             /* Analytical PME correction */
367             zeta2            = _mm256_mul_ps(beta2,rsq20);
368             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
369             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
370             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
371             felec            = _mm256_mul_ps(qq20,felec);
372             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
373             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
374             velec            = _mm256_sub_ps(rinv20,pmecorrV);
375             velec            = _mm256_mul_ps(qq20,velec);
376             
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velecsum         = _mm256_add_ps(velecsum,velec);
379
380             fscal            = felec;
381
382             /* Calculate temporary vectorial force */
383             tx               = _mm256_mul_ps(fscal,dx20);
384             ty               = _mm256_mul_ps(fscal,dy20);
385             tz               = _mm256_mul_ps(fscal,dz20);
386
387             /* Update vectorial force */
388             fix2             = _mm256_add_ps(fix2,tx);
389             fiy2             = _mm256_add_ps(fiy2,ty);
390             fiz2             = _mm256_add_ps(fiz2,tz);
391
392             fjx0             = _mm256_add_ps(fjx0,tx);
393             fjy0             = _mm256_add_ps(fjy0,ty);
394             fjz0             = _mm256_add_ps(fjz0,tz);
395
396             fjptrA             = f+j_coord_offsetA;
397             fjptrB             = f+j_coord_offsetB;
398             fjptrC             = f+j_coord_offsetC;
399             fjptrD             = f+j_coord_offsetD;
400             fjptrE             = f+j_coord_offsetE;
401             fjptrF             = f+j_coord_offsetF;
402             fjptrG             = f+j_coord_offsetG;
403             fjptrH             = f+j_coord_offsetH;
404
405             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
406
407             /* Inner loop uses 267 flops */
408         }
409
410         if(jidx<j_index_end)
411         {
412
413             /* Get j neighbor index, and coordinate index */
414             jnrlistA         = jjnr[jidx];
415             jnrlistB         = jjnr[jidx+1];
416             jnrlistC         = jjnr[jidx+2];
417             jnrlistD         = jjnr[jidx+3];
418             jnrlistE         = jjnr[jidx+4];
419             jnrlistF         = jjnr[jidx+5];
420             jnrlistG         = jjnr[jidx+6];
421             jnrlistH         = jjnr[jidx+7];
422             /* Sign of each element will be negative for non-real atoms.
423              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
424              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
425              */
426             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
427                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
428                                             
429             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
430             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
431             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
432             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
433             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
434             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
435             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
436             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
437             j_coord_offsetA  = DIM*jnrA;
438             j_coord_offsetB  = DIM*jnrB;
439             j_coord_offsetC  = DIM*jnrC;
440             j_coord_offsetD  = DIM*jnrD;
441             j_coord_offsetE  = DIM*jnrE;
442             j_coord_offsetF  = DIM*jnrF;
443             j_coord_offsetG  = DIM*jnrG;
444             j_coord_offsetH  = DIM*jnrH;
445
446             /* load j atom coordinates */
447             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
448                                                  x+j_coord_offsetC,x+j_coord_offsetD,
449                                                  x+j_coord_offsetE,x+j_coord_offsetF,
450                                                  x+j_coord_offsetG,x+j_coord_offsetH,
451                                                  &jx0,&jy0,&jz0);
452
453             /* Calculate displacement vector */
454             dx00             = _mm256_sub_ps(ix0,jx0);
455             dy00             = _mm256_sub_ps(iy0,jy0);
456             dz00             = _mm256_sub_ps(iz0,jz0);
457             dx10             = _mm256_sub_ps(ix1,jx0);
458             dy10             = _mm256_sub_ps(iy1,jy0);
459             dz10             = _mm256_sub_ps(iz1,jz0);
460             dx20             = _mm256_sub_ps(ix2,jx0);
461             dy20             = _mm256_sub_ps(iy2,jy0);
462             dz20             = _mm256_sub_ps(iz2,jz0);
463
464             /* Calculate squared distance and things based on it */
465             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
466             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
467             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
468
469             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
470             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
471             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
472
473             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
474             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
475             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
476
477             /* Load parameters for j particles */
478             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
479                                                                  charge+jnrC+0,charge+jnrD+0,
480                                                                  charge+jnrE+0,charge+jnrF+0,
481                                                                  charge+jnrG+0,charge+jnrH+0);
482             vdwjidx0A        = 2*vdwtype[jnrA+0];
483             vdwjidx0B        = 2*vdwtype[jnrB+0];
484             vdwjidx0C        = 2*vdwtype[jnrC+0];
485             vdwjidx0D        = 2*vdwtype[jnrD+0];
486             vdwjidx0E        = 2*vdwtype[jnrE+0];
487             vdwjidx0F        = 2*vdwtype[jnrF+0];
488             vdwjidx0G        = 2*vdwtype[jnrG+0];
489             vdwjidx0H        = 2*vdwtype[jnrH+0];
490
491             fjx0             = _mm256_setzero_ps();
492             fjy0             = _mm256_setzero_ps();
493             fjz0             = _mm256_setzero_ps();
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r00              = _mm256_mul_ps(rsq00,rinv00);
500             r00              = _mm256_andnot_ps(dummy_mask,r00);
501
502             /* Compute parameters for interactions between i and j atoms */
503             qq00             = _mm256_mul_ps(iq0,jq0);
504             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
505                                             vdwioffsetptr0+vdwjidx0B,
506                                             vdwioffsetptr0+vdwjidx0C,
507                                             vdwioffsetptr0+vdwjidx0D,
508                                             vdwioffsetptr0+vdwjidx0E,
509                                             vdwioffsetptr0+vdwjidx0F,
510                                             vdwioffsetptr0+vdwjidx0G,
511                                             vdwioffsetptr0+vdwjidx0H,
512                                             &c6_00,&c12_00);
513
514             /* EWALD ELECTROSTATICS */
515             
516             /* Analytical PME correction */
517             zeta2            = _mm256_mul_ps(beta2,rsq00);
518             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
519             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
520             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
521             felec            = _mm256_mul_ps(qq00,felec);
522             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
523             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
524             velec            = _mm256_sub_ps(rinv00,pmecorrV);
525             velec            = _mm256_mul_ps(qq00,velec);
526             
527             /* LENNARD-JONES DISPERSION/REPULSION */
528
529             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
530             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
531             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
532             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
533             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velec            = _mm256_andnot_ps(dummy_mask,velec);
537             velecsum         = _mm256_add_ps(velecsum,velec);
538             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
539             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
540
541             fscal            = _mm256_add_ps(felec,fvdw);
542
543             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
544
545             /* Calculate temporary vectorial force */
546             tx               = _mm256_mul_ps(fscal,dx00);
547             ty               = _mm256_mul_ps(fscal,dy00);
548             tz               = _mm256_mul_ps(fscal,dz00);
549
550             /* Update vectorial force */
551             fix0             = _mm256_add_ps(fix0,tx);
552             fiy0             = _mm256_add_ps(fiy0,ty);
553             fiz0             = _mm256_add_ps(fiz0,tz);
554
555             fjx0             = _mm256_add_ps(fjx0,tx);
556             fjy0             = _mm256_add_ps(fjy0,ty);
557             fjz0             = _mm256_add_ps(fjz0,tz);
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r10              = _mm256_mul_ps(rsq10,rinv10);
564             r10              = _mm256_andnot_ps(dummy_mask,r10);
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq10             = _mm256_mul_ps(iq1,jq0);
568
569             /* EWALD ELECTROSTATICS */
570             
571             /* Analytical PME correction */
572             zeta2            = _mm256_mul_ps(beta2,rsq10);
573             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
574             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
575             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
576             felec            = _mm256_mul_ps(qq10,felec);
577             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
578             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
579             velec            = _mm256_sub_ps(rinv10,pmecorrV);
580             velec            = _mm256_mul_ps(qq10,velec);
581             
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm256_andnot_ps(dummy_mask,velec);
584             velecsum         = _mm256_add_ps(velecsum,velec);
585
586             fscal            = felec;
587
588             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
589
590             /* Calculate temporary vectorial force */
591             tx               = _mm256_mul_ps(fscal,dx10);
592             ty               = _mm256_mul_ps(fscal,dy10);
593             tz               = _mm256_mul_ps(fscal,dz10);
594
595             /* Update vectorial force */
596             fix1             = _mm256_add_ps(fix1,tx);
597             fiy1             = _mm256_add_ps(fiy1,ty);
598             fiz1             = _mm256_add_ps(fiz1,tz);
599
600             fjx0             = _mm256_add_ps(fjx0,tx);
601             fjy0             = _mm256_add_ps(fjy0,ty);
602             fjz0             = _mm256_add_ps(fjz0,tz);
603
604             /**************************
605              * CALCULATE INTERACTIONS *
606              **************************/
607
608             r20              = _mm256_mul_ps(rsq20,rinv20);
609             r20              = _mm256_andnot_ps(dummy_mask,r20);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq20             = _mm256_mul_ps(iq2,jq0);
613
614             /* EWALD ELECTROSTATICS */
615             
616             /* Analytical PME correction */
617             zeta2            = _mm256_mul_ps(beta2,rsq20);
618             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
619             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
620             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
621             felec            = _mm256_mul_ps(qq20,felec);
622             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
623             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
624             velec            = _mm256_sub_ps(rinv20,pmecorrV);
625             velec            = _mm256_mul_ps(qq20,velec);
626             
627             /* Update potential sum for this i atom from the interaction with this j atom. */
628             velec            = _mm256_andnot_ps(dummy_mask,velec);
629             velecsum         = _mm256_add_ps(velecsum,velec);
630
631             fscal            = felec;
632
633             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
634
635             /* Calculate temporary vectorial force */
636             tx               = _mm256_mul_ps(fscal,dx20);
637             ty               = _mm256_mul_ps(fscal,dy20);
638             tz               = _mm256_mul_ps(fscal,dz20);
639
640             /* Update vectorial force */
641             fix2             = _mm256_add_ps(fix2,tx);
642             fiy2             = _mm256_add_ps(fiy2,ty);
643             fiz2             = _mm256_add_ps(fiz2,tz);
644
645             fjx0             = _mm256_add_ps(fjx0,tx);
646             fjy0             = _mm256_add_ps(fjy0,ty);
647             fjz0             = _mm256_add_ps(fjz0,tz);
648
649             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
650             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
651             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
652             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
653             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
654             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
655             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
656             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
657
658             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
659
660             /* Inner loop uses 270 flops */
661         }
662
663         /* End of innermost loop */
664
665         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
666                                                  f+i_coord_offset,fshift+i_shift_offset);
667
668         ggid                        = gid[iidx];
669         /* Update potential energies */
670         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
671         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
672
673         /* Increment number of inner iterations */
674         inneriter                  += j_index_end - j_index_start;
675
676         /* Outer loop uses 20 flops */
677     }
678
679     /* Increment number of outer iterations */
680     outeriter        += nri;
681
682     /* Update outer/inner flops */
683
684     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*270);
685 }
686 /*
687  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_single
688  * Electrostatics interaction: Ewald
689  * VdW interaction:            LennardJones
690  * Geometry:                   Water3-Particle
691  * Calculate force/pot:        Force
692  */
693 void
694 nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_avx_256_single
695                     (t_nblist * gmx_restrict                nlist,
696                      rvec * gmx_restrict                    xx,
697                      rvec * gmx_restrict                    ff,
698                      t_forcerec * gmx_restrict              fr,
699                      t_mdatoms * gmx_restrict               mdatoms,
700                      nb_kernel_data_t * gmx_restrict        kernel_data,
701                      t_nrnb * gmx_restrict                  nrnb)
702 {
703     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
704      * just 0 for non-waters.
705      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
706      * jnr indices corresponding to data put in the four positions in the SIMD register.
707      */
708     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
709     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
710     int              jnrA,jnrB,jnrC,jnrD;
711     int              jnrE,jnrF,jnrG,jnrH;
712     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
713     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
714     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
715     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
716     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
717     real             rcutoff_scalar;
718     real             *shiftvec,*fshift,*x,*f;
719     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
720     real             scratch[4*DIM];
721     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
722     real *           vdwioffsetptr0;
723     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
724     real *           vdwioffsetptr1;
725     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
726     real *           vdwioffsetptr2;
727     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
728     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
729     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
730     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
731     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
732     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
733     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
734     real             *charge;
735     int              nvdwtype;
736     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
737     int              *vdwtype;
738     real             *vdwparam;
739     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
740     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
741     __m256i          ewitab;
742     __m128i          ewitab_lo,ewitab_hi;
743     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
744     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
745     real             *ewtab;
746     __m256           dummy_mask,cutoff_mask;
747     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
748     __m256           one     = _mm256_set1_ps(1.0);
749     __m256           two     = _mm256_set1_ps(2.0);
750     x                = xx[0];
751     f                = ff[0];
752
753     nri              = nlist->nri;
754     iinr             = nlist->iinr;
755     jindex           = nlist->jindex;
756     jjnr             = nlist->jjnr;
757     shiftidx         = nlist->shift;
758     gid              = nlist->gid;
759     shiftvec         = fr->shift_vec[0];
760     fshift           = fr->fshift[0];
761     facel            = _mm256_set1_ps(fr->epsfac);
762     charge           = mdatoms->chargeA;
763     nvdwtype         = fr->ntype;
764     vdwparam         = fr->nbfp;
765     vdwtype          = mdatoms->typeA;
766
767     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
768     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
769     beta2            = _mm256_mul_ps(beta,beta);
770     beta3            = _mm256_mul_ps(beta,beta2);
771
772     ewtab            = fr->ic->tabq_coul_F;
773     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
774     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
775
776     /* Setup water-specific parameters */
777     inr              = nlist->iinr[0];
778     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
779     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
780     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
781     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
782
783     /* Avoid stupid compiler warnings */
784     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
785     j_coord_offsetA = 0;
786     j_coord_offsetB = 0;
787     j_coord_offsetC = 0;
788     j_coord_offsetD = 0;
789     j_coord_offsetE = 0;
790     j_coord_offsetF = 0;
791     j_coord_offsetG = 0;
792     j_coord_offsetH = 0;
793
794     outeriter        = 0;
795     inneriter        = 0;
796
797     for(iidx=0;iidx<4*DIM;iidx++)
798     {
799         scratch[iidx] = 0.0;
800     }
801
802     /* Start outer loop over neighborlists */
803     for(iidx=0; iidx<nri; iidx++)
804     {
805         /* Load shift vector for this list */
806         i_shift_offset   = DIM*shiftidx[iidx];
807
808         /* Load limits for loop over neighbors */
809         j_index_start    = jindex[iidx];
810         j_index_end      = jindex[iidx+1];
811
812         /* Get outer coordinate index */
813         inr              = iinr[iidx];
814         i_coord_offset   = DIM*inr;
815
816         /* Load i particle coords and add shift vector */
817         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
818                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
819
820         fix0             = _mm256_setzero_ps();
821         fiy0             = _mm256_setzero_ps();
822         fiz0             = _mm256_setzero_ps();
823         fix1             = _mm256_setzero_ps();
824         fiy1             = _mm256_setzero_ps();
825         fiz1             = _mm256_setzero_ps();
826         fix2             = _mm256_setzero_ps();
827         fiy2             = _mm256_setzero_ps();
828         fiz2             = _mm256_setzero_ps();
829
830         /* Start inner kernel loop */
831         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
832         {
833
834             /* Get j neighbor index, and coordinate index */
835             jnrA             = jjnr[jidx];
836             jnrB             = jjnr[jidx+1];
837             jnrC             = jjnr[jidx+2];
838             jnrD             = jjnr[jidx+3];
839             jnrE             = jjnr[jidx+4];
840             jnrF             = jjnr[jidx+5];
841             jnrG             = jjnr[jidx+6];
842             jnrH             = jjnr[jidx+7];
843             j_coord_offsetA  = DIM*jnrA;
844             j_coord_offsetB  = DIM*jnrB;
845             j_coord_offsetC  = DIM*jnrC;
846             j_coord_offsetD  = DIM*jnrD;
847             j_coord_offsetE  = DIM*jnrE;
848             j_coord_offsetF  = DIM*jnrF;
849             j_coord_offsetG  = DIM*jnrG;
850             j_coord_offsetH  = DIM*jnrH;
851
852             /* load j atom coordinates */
853             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
854                                                  x+j_coord_offsetC,x+j_coord_offsetD,
855                                                  x+j_coord_offsetE,x+j_coord_offsetF,
856                                                  x+j_coord_offsetG,x+j_coord_offsetH,
857                                                  &jx0,&jy0,&jz0);
858
859             /* Calculate displacement vector */
860             dx00             = _mm256_sub_ps(ix0,jx0);
861             dy00             = _mm256_sub_ps(iy0,jy0);
862             dz00             = _mm256_sub_ps(iz0,jz0);
863             dx10             = _mm256_sub_ps(ix1,jx0);
864             dy10             = _mm256_sub_ps(iy1,jy0);
865             dz10             = _mm256_sub_ps(iz1,jz0);
866             dx20             = _mm256_sub_ps(ix2,jx0);
867             dy20             = _mm256_sub_ps(iy2,jy0);
868             dz20             = _mm256_sub_ps(iz2,jz0);
869
870             /* Calculate squared distance and things based on it */
871             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
872             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
873             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
874
875             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
876             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
877             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
878
879             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
880             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
881             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
885                                                                  charge+jnrC+0,charge+jnrD+0,
886                                                                  charge+jnrE+0,charge+jnrF+0,
887                                                                  charge+jnrG+0,charge+jnrH+0);
888             vdwjidx0A        = 2*vdwtype[jnrA+0];
889             vdwjidx0B        = 2*vdwtype[jnrB+0];
890             vdwjidx0C        = 2*vdwtype[jnrC+0];
891             vdwjidx0D        = 2*vdwtype[jnrD+0];
892             vdwjidx0E        = 2*vdwtype[jnrE+0];
893             vdwjidx0F        = 2*vdwtype[jnrF+0];
894             vdwjidx0G        = 2*vdwtype[jnrG+0];
895             vdwjidx0H        = 2*vdwtype[jnrH+0];
896
897             fjx0             = _mm256_setzero_ps();
898             fjy0             = _mm256_setzero_ps();
899             fjz0             = _mm256_setzero_ps();
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             r00              = _mm256_mul_ps(rsq00,rinv00);
906
907             /* Compute parameters for interactions between i and j atoms */
908             qq00             = _mm256_mul_ps(iq0,jq0);
909             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
910                                             vdwioffsetptr0+vdwjidx0B,
911                                             vdwioffsetptr0+vdwjidx0C,
912                                             vdwioffsetptr0+vdwjidx0D,
913                                             vdwioffsetptr0+vdwjidx0E,
914                                             vdwioffsetptr0+vdwjidx0F,
915                                             vdwioffsetptr0+vdwjidx0G,
916                                             vdwioffsetptr0+vdwjidx0H,
917                                             &c6_00,&c12_00);
918
919             /* EWALD ELECTROSTATICS */
920             
921             /* Analytical PME correction */
922             zeta2            = _mm256_mul_ps(beta2,rsq00);
923             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
924             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
925             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
926             felec            = _mm256_mul_ps(qq00,felec);
927             
928             /* LENNARD-JONES DISPERSION/REPULSION */
929
930             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
931             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
932
933             fscal            = _mm256_add_ps(felec,fvdw);
934
935             /* Calculate temporary vectorial force */
936             tx               = _mm256_mul_ps(fscal,dx00);
937             ty               = _mm256_mul_ps(fscal,dy00);
938             tz               = _mm256_mul_ps(fscal,dz00);
939
940             /* Update vectorial force */
941             fix0             = _mm256_add_ps(fix0,tx);
942             fiy0             = _mm256_add_ps(fiy0,ty);
943             fiz0             = _mm256_add_ps(fiz0,tz);
944
945             fjx0             = _mm256_add_ps(fjx0,tx);
946             fjy0             = _mm256_add_ps(fjy0,ty);
947             fjz0             = _mm256_add_ps(fjz0,tz);
948
949             /**************************
950              * CALCULATE INTERACTIONS *
951              **************************/
952
953             r10              = _mm256_mul_ps(rsq10,rinv10);
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq10             = _mm256_mul_ps(iq1,jq0);
957
958             /* EWALD ELECTROSTATICS */
959             
960             /* Analytical PME correction */
961             zeta2            = _mm256_mul_ps(beta2,rsq10);
962             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
963             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
964             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
965             felec            = _mm256_mul_ps(qq10,felec);
966             
967             fscal            = felec;
968
969             /* Calculate temporary vectorial force */
970             tx               = _mm256_mul_ps(fscal,dx10);
971             ty               = _mm256_mul_ps(fscal,dy10);
972             tz               = _mm256_mul_ps(fscal,dz10);
973
974             /* Update vectorial force */
975             fix1             = _mm256_add_ps(fix1,tx);
976             fiy1             = _mm256_add_ps(fiy1,ty);
977             fiz1             = _mm256_add_ps(fiz1,tz);
978
979             fjx0             = _mm256_add_ps(fjx0,tx);
980             fjy0             = _mm256_add_ps(fjy0,ty);
981             fjz0             = _mm256_add_ps(fjz0,tz);
982
983             /**************************
984              * CALCULATE INTERACTIONS *
985              **************************/
986
987             r20              = _mm256_mul_ps(rsq20,rinv20);
988
989             /* Compute parameters for interactions between i and j atoms */
990             qq20             = _mm256_mul_ps(iq2,jq0);
991
992             /* EWALD ELECTROSTATICS */
993             
994             /* Analytical PME correction */
995             zeta2            = _mm256_mul_ps(beta2,rsq20);
996             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
997             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
998             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
999             felec            = _mm256_mul_ps(qq20,felec);
1000             
1001             fscal            = felec;
1002
1003             /* Calculate temporary vectorial force */
1004             tx               = _mm256_mul_ps(fscal,dx20);
1005             ty               = _mm256_mul_ps(fscal,dy20);
1006             tz               = _mm256_mul_ps(fscal,dz20);
1007
1008             /* Update vectorial force */
1009             fix2             = _mm256_add_ps(fix2,tx);
1010             fiy2             = _mm256_add_ps(fiy2,ty);
1011             fiz2             = _mm256_add_ps(fiz2,tz);
1012
1013             fjx0             = _mm256_add_ps(fjx0,tx);
1014             fjy0             = _mm256_add_ps(fjy0,ty);
1015             fjz0             = _mm256_add_ps(fjz0,tz);
1016
1017             fjptrA             = f+j_coord_offsetA;
1018             fjptrB             = f+j_coord_offsetB;
1019             fjptrC             = f+j_coord_offsetC;
1020             fjptrD             = f+j_coord_offsetD;
1021             fjptrE             = f+j_coord_offsetE;
1022             fjptrF             = f+j_coord_offsetF;
1023             fjptrG             = f+j_coord_offsetG;
1024             fjptrH             = f+j_coord_offsetH;
1025
1026             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1027
1028             /* Inner loop uses 178 flops */
1029         }
1030
1031         if(jidx<j_index_end)
1032         {
1033
1034             /* Get j neighbor index, and coordinate index */
1035             jnrlistA         = jjnr[jidx];
1036             jnrlistB         = jjnr[jidx+1];
1037             jnrlistC         = jjnr[jidx+2];
1038             jnrlistD         = jjnr[jidx+3];
1039             jnrlistE         = jjnr[jidx+4];
1040             jnrlistF         = jjnr[jidx+5];
1041             jnrlistG         = jjnr[jidx+6];
1042             jnrlistH         = jjnr[jidx+7];
1043             /* Sign of each element will be negative for non-real atoms.
1044              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1045              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1046              */
1047             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1048                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1049                                             
1050             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1051             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1052             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1053             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1054             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1055             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1056             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1057             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1058             j_coord_offsetA  = DIM*jnrA;
1059             j_coord_offsetB  = DIM*jnrB;
1060             j_coord_offsetC  = DIM*jnrC;
1061             j_coord_offsetD  = DIM*jnrD;
1062             j_coord_offsetE  = DIM*jnrE;
1063             j_coord_offsetF  = DIM*jnrF;
1064             j_coord_offsetG  = DIM*jnrG;
1065             j_coord_offsetH  = DIM*jnrH;
1066
1067             /* load j atom coordinates */
1068             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1069                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1070                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1071                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1072                                                  &jx0,&jy0,&jz0);
1073
1074             /* Calculate displacement vector */
1075             dx00             = _mm256_sub_ps(ix0,jx0);
1076             dy00             = _mm256_sub_ps(iy0,jy0);
1077             dz00             = _mm256_sub_ps(iz0,jz0);
1078             dx10             = _mm256_sub_ps(ix1,jx0);
1079             dy10             = _mm256_sub_ps(iy1,jy0);
1080             dz10             = _mm256_sub_ps(iz1,jz0);
1081             dx20             = _mm256_sub_ps(ix2,jx0);
1082             dy20             = _mm256_sub_ps(iy2,jy0);
1083             dz20             = _mm256_sub_ps(iz2,jz0);
1084
1085             /* Calculate squared distance and things based on it */
1086             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1087             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1088             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1089
1090             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1091             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1092             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1093
1094             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1095             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1096             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1097
1098             /* Load parameters for j particles */
1099             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1100                                                                  charge+jnrC+0,charge+jnrD+0,
1101                                                                  charge+jnrE+0,charge+jnrF+0,
1102                                                                  charge+jnrG+0,charge+jnrH+0);
1103             vdwjidx0A        = 2*vdwtype[jnrA+0];
1104             vdwjidx0B        = 2*vdwtype[jnrB+0];
1105             vdwjidx0C        = 2*vdwtype[jnrC+0];
1106             vdwjidx0D        = 2*vdwtype[jnrD+0];
1107             vdwjidx0E        = 2*vdwtype[jnrE+0];
1108             vdwjidx0F        = 2*vdwtype[jnrF+0];
1109             vdwjidx0G        = 2*vdwtype[jnrG+0];
1110             vdwjidx0H        = 2*vdwtype[jnrH+0];
1111
1112             fjx0             = _mm256_setzero_ps();
1113             fjy0             = _mm256_setzero_ps();
1114             fjz0             = _mm256_setzero_ps();
1115
1116             /**************************
1117              * CALCULATE INTERACTIONS *
1118              **************************/
1119
1120             r00              = _mm256_mul_ps(rsq00,rinv00);
1121             r00              = _mm256_andnot_ps(dummy_mask,r00);
1122
1123             /* Compute parameters for interactions between i and j atoms */
1124             qq00             = _mm256_mul_ps(iq0,jq0);
1125             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1126                                             vdwioffsetptr0+vdwjidx0B,
1127                                             vdwioffsetptr0+vdwjidx0C,
1128                                             vdwioffsetptr0+vdwjidx0D,
1129                                             vdwioffsetptr0+vdwjidx0E,
1130                                             vdwioffsetptr0+vdwjidx0F,
1131                                             vdwioffsetptr0+vdwjidx0G,
1132                                             vdwioffsetptr0+vdwjidx0H,
1133                                             &c6_00,&c12_00);
1134
1135             /* EWALD ELECTROSTATICS */
1136             
1137             /* Analytical PME correction */
1138             zeta2            = _mm256_mul_ps(beta2,rsq00);
1139             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1140             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1141             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1142             felec            = _mm256_mul_ps(qq00,felec);
1143             
1144             /* LENNARD-JONES DISPERSION/REPULSION */
1145
1146             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1147             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1148
1149             fscal            = _mm256_add_ps(felec,fvdw);
1150
1151             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1152
1153             /* Calculate temporary vectorial force */
1154             tx               = _mm256_mul_ps(fscal,dx00);
1155             ty               = _mm256_mul_ps(fscal,dy00);
1156             tz               = _mm256_mul_ps(fscal,dz00);
1157
1158             /* Update vectorial force */
1159             fix0             = _mm256_add_ps(fix0,tx);
1160             fiy0             = _mm256_add_ps(fiy0,ty);
1161             fiz0             = _mm256_add_ps(fiz0,tz);
1162
1163             fjx0             = _mm256_add_ps(fjx0,tx);
1164             fjy0             = _mm256_add_ps(fjy0,ty);
1165             fjz0             = _mm256_add_ps(fjz0,tz);
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             r10              = _mm256_mul_ps(rsq10,rinv10);
1172             r10              = _mm256_andnot_ps(dummy_mask,r10);
1173
1174             /* Compute parameters for interactions between i and j atoms */
1175             qq10             = _mm256_mul_ps(iq1,jq0);
1176
1177             /* EWALD ELECTROSTATICS */
1178             
1179             /* Analytical PME correction */
1180             zeta2            = _mm256_mul_ps(beta2,rsq10);
1181             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1182             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1183             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1184             felec            = _mm256_mul_ps(qq10,felec);
1185             
1186             fscal            = felec;
1187
1188             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1189
1190             /* Calculate temporary vectorial force */
1191             tx               = _mm256_mul_ps(fscal,dx10);
1192             ty               = _mm256_mul_ps(fscal,dy10);
1193             tz               = _mm256_mul_ps(fscal,dz10);
1194
1195             /* Update vectorial force */
1196             fix1             = _mm256_add_ps(fix1,tx);
1197             fiy1             = _mm256_add_ps(fiy1,ty);
1198             fiz1             = _mm256_add_ps(fiz1,tz);
1199
1200             fjx0             = _mm256_add_ps(fjx0,tx);
1201             fjy0             = _mm256_add_ps(fjy0,ty);
1202             fjz0             = _mm256_add_ps(fjz0,tz);
1203
1204             /**************************
1205              * CALCULATE INTERACTIONS *
1206              **************************/
1207
1208             r20              = _mm256_mul_ps(rsq20,rinv20);
1209             r20              = _mm256_andnot_ps(dummy_mask,r20);
1210
1211             /* Compute parameters for interactions between i and j atoms */
1212             qq20             = _mm256_mul_ps(iq2,jq0);
1213
1214             /* EWALD ELECTROSTATICS */
1215             
1216             /* Analytical PME correction */
1217             zeta2            = _mm256_mul_ps(beta2,rsq20);
1218             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1219             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1220             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1221             felec            = _mm256_mul_ps(qq20,felec);
1222             
1223             fscal            = felec;
1224
1225             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1226
1227             /* Calculate temporary vectorial force */
1228             tx               = _mm256_mul_ps(fscal,dx20);
1229             ty               = _mm256_mul_ps(fscal,dy20);
1230             tz               = _mm256_mul_ps(fscal,dz20);
1231
1232             /* Update vectorial force */
1233             fix2             = _mm256_add_ps(fix2,tx);
1234             fiy2             = _mm256_add_ps(fiy2,ty);
1235             fiz2             = _mm256_add_ps(fiz2,tz);
1236
1237             fjx0             = _mm256_add_ps(fjx0,tx);
1238             fjy0             = _mm256_add_ps(fjy0,ty);
1239             fjz0             = _mm256_add_ps(fjz0,tz);
1240
1241             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1242             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1243             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1244             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1245             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1246             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1247             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1248             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1249
1250             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1251
1252             /* Inner loop uses 181 flops */
1253         }
1254
1255         /* End of innermost loop */
1256
1257         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1258                                                  f+i_coord_offset,fshift+i_shift_offset);
1259
1260         /* Increment number of inner iterations */
1261         inneriter                  += j_index_end - j_index_start;
1262
1263         /* Outer loop uses 18 flops */
1264     }
1265
1266     /* Increment number of outer iterations */
1267     outeriter        += nri;
1268
1269     /* Update outer/inner flops */
1270
1271     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*181);
1272 }