made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256i          ewitab;
86     __m128i          ewitab_lo,ewitab_hi;
87     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
89     real             *ewtab;
90     __m256           dummy_mask,cutoff_mask;
91     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
92     __m256           one     = _mm256_set1_ps(1.0);
93     __m256           two     = _mm256_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
112     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
113     beta2            = _mm256_mul_ps(beta,beta);
114     beta3            = _mm256_mul_ps(beta,beta2);
115
116     ewtab            = fr->ic->tabq_coul_FDV0;
117     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
118     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126     j_coord_offsetE = 0;
127     j_coord_offsetF = 0;
128     j_coord_offsetG = 0;
129     j_coord_offsetH = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156         fix0             = _mm256_setzero_ps();
157         fiy0             = _mm256_setzero_ps();
158         fiz0             = _mm256_setzero_ps();
159
160         /* Load parameters for i particles */
161         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
162         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_ps();
166         vvdwsum          = _mm256_setzero_ps();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             jnrE             = jjnr[jidx+4];
178             jnrF             = jjnr[jidx+5];
179             jnrG             = jjnr[jidx+6];
180             jnrH             = jjnr[jidx+7];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185             j_coord_offsetE  = DIM*jnrE;
186             j_coord_offsetF  = DIM*jnrF;
187             j_coord_offsetG  = DIM*jnrG;
188             j_coord_offsetH  = DIM*jnrH;
189
190             /* load j atom coordinates */
191             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192                                                  x+j_coord_offsetC,x+j_coord_offsetD,
193                                                  x+j_coord_offsetE,x+j_coord_offsetF,
194                                                  x+j_coord_offsetG,x+j_coord_offsetH,
195                                                  &jx0,&jy0,&jz0);
196
197             /* Calculate displacement vector */
198             dx00             = _mm256_sub_ps(ix0,jx0);
199             dy00             = _mm256_sub_ps(iy0,jy0);
200             dz00             = _mm256_sub_ps(iz0,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
204
205             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
206
207             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
208
209             /* Load parameters for j particles */
210             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211                                                                  charge+jnrC+0,charge+jnrD+0,
212                                                                  charge+jnrE+0,charge+jnrF+0,
213                                                                  charge+jnrG+0,charge+jnrH+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218             vdwjidx0E        = 2*vdwtype[jnrE+0];
219             vdwjidx0F        = 2*vdwtype[jnrF+0];
220             vdwjidx0G        = 2*vdwtype[jnrG+0];
221             vdwjidx0H        = 2*vdwtype[jnrH+0];
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             r00              = _mm256_mul_ps(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm256_mul_ps(iq0,jq0);
231             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
232                                             vdwioffsetptr0+vdwjidx0B,
233                                             vdwioffsetptr0+vdwjidx0C,
234                                             vdwioffsetptr0+vdwjidx0D,
235                                             vdwioffsetptr0+vdwjidx0E,
236                                             vdwioffsetptr0+vdwjidx0F,
237                                             vdwioffsetptr0+vdwjidx0G,
238                                             vdwioffsetptr0+vdwjidx0H,
239                                             &c6_00,&c12_00);
240
241             /* EWALD ELECTROSTATICS */
242             
243             /* Analytical PME correction */
244             zeta2            = _mm256_mul_ps(beta2,rsq00);
245             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
246             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
247             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
248             felec            = _mm256_mul_ps(qq00,felec);
249             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
250             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
251             velec            = _mm256_sub_ps(rinv00,pmecorrV);
252             velec            = _mm256_mul_ps(qq00,velec);
253             
254             /* LENNARD-JONES DISPERSION/REPULSION */
255
256             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
257             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
258             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
259             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
260             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
261
262             /* Update potential sum for this i atom from the interaction with this j atom. */
263             velecsum         = _mm256_add_ps(velecsum,velec);
264             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
265
266             fscal            = _mm256_add_ps(felec,fvdw);
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm256_mul_ps(fscal,dx00);
270             ty               = _mm256_mul_ps(fscal,dy00);
271             tz               = _mm256_mul_ps(fscal,dz00);
272
273             /* Update vectorial force */
274             fix0             = _mm256_add_ps(fix0,tx);
275             fiy0             = _mm256_add_ps(fiy0,ty);
276             fiz0             = _mm256_add_ps(fiz0,tz);
277
278             fjptrA             = f+j_coord_offsetA;
279             fjptrB             = f+j_coord_offsetB;
280             fjptrC             = f+j_coord_offsetC;
281             fjptrD             = f+j_coord_offsetD;
282             fjptrE             = f+j_coord_offsetE;
283             fjptrF             = f+j_coord_offsetF;
284             fjptrG             = f+j_coord_offsetG;
285             fjptrH             = f+j_coord_offsetH;
286             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
287
288             /* Inner loop uses 96 flops */
289         }
290
291         if(jidx<j_index_end)
292         {
293
294             /* Get j neighbor index, and coordinate index */
295             jnrlistA         = jjnr[jidx];
296             jnrlistB         = jjnr[jidx+1];
297             jnrlistC         = jjnr[jidx+2];
298             jnrlistD         = jjnr[jidx+3];
299             jnrlistE         = jjnr[jidx+4];
300             jnrlistF         = jjnr[jidx+5];
301             jnrlistG         = jjnr[jidx+6];
302             jnrlistH         = jjnr[jidx+7];
303             /* Sign of each element will be negative for non-real atoms.
304              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
305              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
306              */
307             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
308                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
309                                             
310             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
311             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
312             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
313             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
314             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
315             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
316             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
317             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
318             j_coord_offsetA  = DIM*jnrA;
319             j_coord_offsetB  = DIM*jnrB;
320             j_coord_offsetC  = DIM*jnrC;
321             j_coord_offsetD  = DIM*jnrD;
322             j_coord_offsetE  = DIM*jnrE;
323             j_coord_offsetF  = DIM*jnrF;
324             j_coord_offsetG  = DIM*jnrG;
325             j_coord_offsetH  = DIM*jnrH;
326
327             /* load j atom coordinates */
328             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
329                                                  x+j_coord_offsetC,x+j_coord_offsetD,
330                                                  x+j_coord_offsetE,x+j_coord_offsetF,
331                                                  x+j_coord_offsetG,x+j_coord_offsetH,
332                                                  &jx0,&jy0,&jz0);
333
334             /* Calculate displacement vector */
335             dx00             = _mm256_sub_ps(ix0,jx0);
336             dy00             = _mm256_sub_ps(iy0,jy0);
337             dz00             = _mm256_sub_ps(iz0,jz0);
338
339             /* Calculate squared distance and things based on it */
340             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
341
342             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
343
344             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
345
346             /* Load parameters for j particles */
347             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
348                                                                  charge+jnrC+0,charge+jnrD+0,
349                                                                  charge+jnrE+0,charge+jnrF+0,
350                                                                  charge+jnrG+0,charge+jnrH+0);
351             vdwjidx0A        = 2*vdwtype[jnrA+0];
352             vdwjidx0B        = 2*vdwtype[jnrB+0];
353             vdwjidx0C        = 2*vdwtype[jnrC+0];
354             vdwjidx0D        = 2*vdwtype[jnrD+0];
355             vdwjidx0E        = 2*vdwtype[jnrE+0];
356             vdwjidx0F        = 2*vdwtype[jnrF+0];
357             vdwjidx0G        = 2*vdwtype[jnrG+0];
358             vdwjidx0H        = 2*vdwtype[jnrH+0];
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r00              = _mm256_mul_ps(rsq00,rinv00);
365             r00              = _mm256_andnot_ps(dummy_mask,r00);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq00             = _mm256_mul_ps(iq0,jq0);
369             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
370                                             vdwioffsetptr0+vdwjidx0B,
371                                             vdwioffsetptr0+vdwjidx0C,
372                                             vdwioffsetptr0+vdwjidx0D,
373                                             vdwioffsetptr0+vdwjidx0E,
374                                             vdwioffsetptr0+vdwjidx0F,
375                                             vdwioffsetptr0+vdwjidx0G,
376                                             vdwioffsetptr0+vdwjidx0H,
377                                             &c6_00,&c12_00);
378
379             /* EWALD ELECTROSTATICS */
380             
381             /* Analytical PME correction */
382             zeta2            = _mm256_mul_ps(beta2,rsq00);
383             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
384             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
385             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
386             felec            = _mm256_mul_ps(qq00,felec);
387             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
388             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
389             velec            = _mm256_sub_ps(rinv00,pmecorrV);
390             velec            = _mm256_mul_ps(qq00,velec);
391             
392             /* LENNARD-JONES DISPERSION/REPULSION */
393
394             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
395             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
396             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
397             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
398             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
399
400             /* Update potential sum for this i atom from the interaction with this j atom. */
401             velec            = _mm256_andnot_ps(dummy_mask,velec);
402             velecsum         = _mm256_add_ps(velecsum,velec);
403             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
404             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
405
406             fscal            = _mm256_add_ps(felec,fvdw);
407
408             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
409
410             /* Calculate temporary vectorial force */
411             tx               = _mm256_mul_ps(fscal,dx00);
412             ty               = _mm256_mul_ps(fscal,dy00);
413             tz               = _mm256_mul_ps(fscal,dz00);
414
415             /* Update vectorial force */
416             fix0             = _mm256_add_ps(fix0,tx);
417             fiy0             = _mm256_add_ps(fiy0,ty);
418             fiz0             = _mm256_add_ps(fiz0,tz);
419
420             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
421             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
422             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
423             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
424             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
425             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
426             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
427             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
428             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
429
430             /* Inner loop uses 97 flops */
431         }
432
433         /* End of innermost loop */
434
435         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
436                                                  f+i_coord_offset,fshift+i_shift_offset);
437
438         ggid                        = gid[iidx];
439         /* Update potential energies */
440         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
441         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
442
443         /* Increment number of inner iterations */
444         inneriter                  += j_index_end - j_index_start;
445
446         /* Outer loop uses 9 flops */
447     }
448
449     /* Increment number of outer iterations */
450     outeriter        += nri;
451
452     /* Update outer/inner flops */
453
454     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*97);
455 }
456 /*
457  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_single
458  * Electrostatics interaction: Ewald
459  * VdW interaction:            LennardJones
460  * Geometry:                   Particle-Particle
461  * Calculate force/pot:        Force
462  */
463 void
464 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_avx_256_single
465                     (t_nblist * gmx_restrict                nlist,
466                      rvec * gmx_restrict                    xx,
467                      rvec * gmx_restrict                    ff,
468                      t_forcerec * gmx_restrict              fr,
469                      t_mdatoms * gmx_restrict               mdatoms,
470                      nb_kernel_data_t * gmx_restrict        kernel_data,
471                      t_nrnb * gmx_restrict                  nrnb)
472 {
473     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
474      * just 0 for non-waters.
475      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
476      * jnr indices corresponding to data put in the four positions in the SIMD register.
477      */
478     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
479     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
480     int              jnrA,jnrB,jnrC,jnrD;
481     int              jnrE,jnrF,jnrG,jnrH;
482     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
483     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
484     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
485     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
486     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
487     real             rcutoff_scalar;
488     real             *shiftvec,*fshift,*x,*f;
489     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
490     real             scratch[4*DIM];
491     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
492     real *           vdwioffsetptr0;
493     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
494     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
495     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
496     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
497     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
498     real             *charge;
499     int              nvdwtype;
500     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
501     int              *vdwtype;
502     real             *vdwparam;
503     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
504     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
505     __m256i          ewitab;
506     __m128i          ewitab_lo,ewitab_hi;
507     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
508     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
509     real             *ewtab;
510     __m256           dummy_mask,cutoff_mask;
511     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
512     __m256           one     = _mm256_set1_ps(1.0);
513     __m256           two     = _mm256_set1_ps(2.0);
514     x                = xx[0];
515     f                = ff[0];
516
517     nri              = nlist->nri;
518     iinr             = nlist->iinr;
519     jindex           = nlist->jindex;
520     jjnr             = nlist->jjnr;
521     shiftidx         = nlist->shift;
522     gid              = nlist->gid;
523     shiftvec         = fr->shift_vec[0];
524     fshift           = fr->fshift[0];
525     facel            = _mm256_set1_ps(fr->epsfac);
526     charge           = mdatoms->chargeA;
527     nvdwtype         = fr->ntype;
528     vdwparam         = fr->nbfp;
529     vdwtype          = mdatoms->typeA;
530
531     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
532     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
533     beta2            = _mm256_mul_ps(beta,beta);
534     beta3            = _mm256_mul_ps(beta,beta2);
535
536     ewtab            = fr->ic->tabq_coul_F;
537     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
538     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
539
540     /* Avoid stupid compiler warnings */
541     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
542     j_coord_offsetA = 0;
543     j_coord_offsetB = 0;
544     j_coord_offsetC = 0;
545     j_coord_offsetD = 0;
546     j_coord_offsetE = 0;
547     j_coord_offsetF = 0;
548     j_coord_offsetG = 0;
549     j_coord_offsetH = 0;
550
551     outeriter        = 0;
552     inneriter        = 0;
553
554     for(iidx=0;iidx<4*DIM;iidx++)
555     {
556         scratch[iidx] = 0.0;
557     }
558
559     /* Start outer loop over neighborlists */
560     for(iidx=0; iidx<nri; iidx++)
561     {
562         /* Load shift vector for this list */
563         i_shift_offset   = DIM*shiftidx[iidx];
564
565         /* Load limits for loop over neighbors */
566         j_index_start    = jindex[iidx];
567         j_index_end      = jindex[iidx+1];
568
569         /* Get outer coordinate index */
570         inr              = iinr[iidx];
571         i_coord_offset   = DIM*inr;
572
573         /* Load i particle coords and add shift vector */
574         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
575
576         fix0             = _mm256_setzero_ps();
577         fiy0             = _mm256_setzero_ps();
578         fiz0             = _mm256_setzero_ps();
579
580         /* Load parameters for i particles */
581         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
582         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
583
584         /* Start inner kernel loop */
585         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
586         {
587
588             /* Get j neighbor index, and coordinate index */
589             jnrA             = jjnr[jidx];
590             jnrB             = jjnr[jidx+1];
591             jnrC             = jjnr[jidx+2];
592             jnrD             = jjnr[jidx+3];
593             jnrE             = jjnr[jidx+4];
594             jnrF             = jjnr[jidx+5];
595             jnrG             = jjnr[jidx+6];
596             jnrH             = jjnr[jidx+7];
597             j_coord_offsetA  = DIM*jnrA;
598             j_coord_offsetB  = DIM*jnrB;
599             j_coord_offsetC  = DIM*jnrC;
600             j_coord_offsetD  = DIM*jnrD;
601             j_coord_offsetE  = DIM*jnrE;
602             j_coord_offsetF  = DIM*jnrF;
603             j_coord_offsetG  = DIM*jnrG;
604             j_coord_offsetH  = DIM*jnrH;
605
606             /* load j atom coordinates */
607             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
608                                                  x+j_coord_offsetC,x+j_coord_offsetD,
609                                                  x+j_coord_offsetE,x+j_coord_offsetF,
610                                                  x+j_coord_offsetG,x+j_coord_offsetH,
611                                                  &jx0,&jy0,&jz0);
612
613             /* Calculate displacement vector */
614             dx00             = _mm256_sub_ps(ix0,jx0);
615             dy00             = _mm256_sub_ps(iy0,jy0);
616             dz00             = _mm256_sub_ps(iz0,jz0);
617
618             /* Calculate squared distance and things based on it */
619             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
620
621             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
622
623             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
624
625             /* Load parameters for j particles */
626             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
627                                                                  charge+jnrC+0,charge+jnrD+0,
628                                                                  charge+jnrE+0,charge+jnrF+0,
629                                                                  charge+jnrG+0,charge+jnrH+0);
630             vdwjidx0A        = 2*vdwtype[jnrA+0];
631             vdwjidx0B        = 2*vdwtype[jnrB+0];
632             vdwjidx0C        = 2*vdwtype[jnrC+0];
633             vdwjidx0D        = 2*vdwtype[jnrD+0];
634             vdwjidx0E        = 2*vdwtype[jnrE+0];
635             vdwjidx0F        = 2*vdwtype[jnrF+0];
636             vdwjidx0G        = 2*vdwtype[jnrG+0];
637             vdwjidx0H        = 2*vdwtype[jnrH+0];
638
639             /**************************
640              * CALCULATE INTERACTIONS *
641              **************************/
642
643             r00              = _mm256_mul_ps(rsq00,rinv00);
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq00             = _mm256_mul_ps(iq0,jq0);
647             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
648                                             vdwioffsetptr0+vdwjidx0B,
649                                             vdwioffsetptr0+vdwjidx0C,
650                                             vdwioffsetptr0+vdwjidx0D,
651                                             vdwioffsetptr0+vdwjidx0E,
652                                             vdwioffsetptr0+vdwjidx0F,
653                                             vdwioffsetptr0+vdwjidx0G,
654                                             vdwioffsetptr0+vdwjidx0H,
655                                             &c6_00,&c12_00);
656
657             /* EWALD ELECTROSTATICS */
658             
659             /* Analytical PME correction */
660             zeta2            = _mm256_mul_ps(beta2,rsq00);
661             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
662             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
663             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
664             felec            = _mm256_mul_ps(qq00,felec);
665             
666             /* LENNARD-JONES DISPERSION/REPULSION */
667
668             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
669             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
670
671             fscal            = _mm256_add_ps(felec,fvdw);
672
673             /* Calculate temporary vectorial force */
674             tx               = _mm256_mul_ps(fscal,dx00);
675             ty               = _mm256_mul_ps(fscal,dy00);
676             tz               = _mm256_mul_ps(fscal,dz00);
677
678             /* Update vectorial force */
679             fix0             = _mm256_add_ps(fix0,tx);
680             fiy0             = _mm256_add_ps(fiy0,ty);
681             fiz0             = _mm256_add_ps(fiz0,tz);
682
683             fjptrA             = f+j_coord_offsetA;
684             fjptrB             = f+j_coord_offsetB;
685             fjptrC             = f+j_coord_offsetC;
686             fjptrD             = f+j_coord_offsetD;
687             fjptrE             = f+j_coord_offsetE;
688             fjptrF             = f+j_coord_offsetF;
689             fjptrG             = f+j_coord_offsetG;
690             fjptrH             = f+j_coord_offsetH;
691             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
692
693             /* Inner loop uses 63 flops */
694         }
695
696         if(jidx<j_index_end)
697         {
698
699             /* Get j neighbor index, and coordinate index */
700             jnrlistA         = jjnr[jidx];
701             jnrlistB         = jjnr[jidx+1];
702             jnrlistC         = jjnr[jidx+2];
703             jnrlistD         = jjnr[jidx+3];
704             jnrlistE         = jjnr[jidx+4];
705             jnrlistF         = jjnr[jidx+5];
706             jnrlistG         = jjnr[jidx+6];
707             jnrlistH         = jjnr[jidx+7];
708             /* Sign of each element will be negative for non-real atoms.
709              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
710              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
711              */
712             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
713                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
714                                             
715             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
716             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
717             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
718             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
719             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
720             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
721             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
722             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
723             j_coord_offsetA  = DIM*jnrA;
724             j_coord_offsetB  = DIM*jnrB;
725             j_coord_offsetC  = DIM*jnrC;
726             j_coord_offsetD  = DIM*jnrD;
727             j_coord_offsetE  = DIM*jnrE;
728             j_coord_offsetF  = DIM*jnrF;
729             j_coord_offsetG  = DIM*jnrG;
730             j_coord_offsetH  = DIM*jnrH;
731
732             /* load j atom coordinates */
733             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
734                                                  x+j_coord_offsetC,x+j_coord_offsetD,
735                                                  x+j_coord_offsetE,x+j_coord_offsetF,
736                                                  x+j_coord_offsetG,x+j_coord_offsetH,
737                                                  &jx0,&jy0,&jz0);
738
739             /* Calculate displacement vector */
740             dx00             = _mm256_sub_ps(ix0,jx0);
741             dy00             = _mm256_sub_ps(iy0,jy0);
742             dz00             = _mm256_sub_ps(iz0,jz0);
743
744             /* Calculate squared distance and things based on it */
745             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
746
747             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
748
749             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
750
751             /* Load parameters for j particles */
752             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
753                                                                  charge+jnrC+0,charge+jnrD+0,
754                                                                  charge+jnrE+0,charge+jnrF+0,
755                                                                  charge+jnrG+0,charge+jnrH+0);
756             vdwjidx0A        = 2*vdwtype[jnrA+0];
757             vdwjidx0B        = 2*vdwtype[jnrB+0];
758             vdwjidx0C        = 2*vdwtype[jnrC+0];
759             vdwjidx0D        = 2*vdwtype[jnrD+0];
760             vdwjidx0E        = 2*vdwtype[jnrE+0];
761             vdwjidx0F        = 2*vdwtype[jnrF+0];
762             vdwjidx0G        = 2*vdwtype[jnrG+0];
763             vdwjidx0H        = 2*vdwtype[jnrH+0];
764
765             /**************************
766              * CALCULATE INTERACTIONS *
767              **************************/
768
769             r00              = _mm256_mul_ps(rsq00,rinv00);
770             r00              = _mm256_andnot_ps(dummy_mask,r00);
771
772             /* Compute parameters for interactions between i and j atoms */
773             qq00             = _mm256_mul_ps(iq0,jq0);
774             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
775                                             vdwioffsetptr0+vdwjidx0B,
776                                             vdwioffsetptr0+vdwjidx0C,
777                                             vdwioffsetptr0+vdwjidx0D,
778                                             vdwioffsetptr0+vdwjidx0E,
779                                             vdwioffsetptr0+vdwjidx0F,
780                                             vdwioffsetptr0+vdwjidx0G,
781                                             vdwioffsetptr0+vdwjidx0H,
782                                             &c6_00,&c12_00);
783
784             /* EWALD ELECTROSTATICS */
785             
786             /* Analytical PME correction */
787             zeta2            = _mm256_mul_ps(beta2,rsq00);
788             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
789             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
790             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
791             felec            = _mm256_mul_ps(qq00,felec);
792             
793             /* LENNARD-JONES DISPERSION/REPULSION */
794
795             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
796             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
797
798             fscal            = _mm256_add_ps(felec,fvdw);
799
800             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
801
802             /* Calculate temporary vectorial force */
803             tx               = _mm256_mul_ps(fscal,dx00);
804             ty               = _mm256_mul_ps(fscal,dy00);
805             tz               = _mm256_mul_ps(fscal,dz00);
806
807             /* Update vectorial force */
808             fix0             = _mm256_add_ps(fix0,tx);
809             fiy0             = _mm256_add_ps(fiy0,ty);
810             fiz0             = _mm256_add_ps(fiz0,tz);
811
812             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
813             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
814             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
815             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
816             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
817             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
818             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
819             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
820             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
821
822             /* Inner loop uses 64 flops */
823         }
824
825         /* End of innermost loop */
826
827         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
828                                                  f+i_coord_offset,fshift+i_shift_offset);
829
830         /* Increment number of inner iterations */
831         inneriter                  += j_index_end - j_index_start;
832
833         /* Outer loop uses 7 flops */
834     }
835
836     /* Increment number of outer iterations */
837     outeriter        += nri;
838
839     /* Update outer/inner flops */
840
841     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
842 }