7da11bffcbf55fec89d354ec8603af93c7daaa99
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256i          vfitab;
92     __m128i          vfitab_lo,vfitab_hi;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m256i          ewitab;
97     __m128i          ewitab_lo,ewitab_hi;
98     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
99     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
100     real             *ewtab;
101     __m256           dummy_mask,cutoff_mask;
102     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
103     __m256           one     = _mm256_set1_ps(1.0);
104     __m256           two     = _mm256_set1_ps(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_ps(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_vdw->data;
123     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
124
125     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
126     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
127     beta2            = _mm256_mul_ps(beta,beta);
128     beta3            = _mm256_mul_ps(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
137     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
138     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147     j_coord_offsetE = 0;
148     j_coord_offsetF = 0;
149     j_coord_offsetG = 0;
150     j_coord_offsetH = 0;
151
152     outeriter        = 0;
153     inneriter        = 0;
154
155     for(iidx=0;iidx<4*DIM;iidx++)
156     {
157         scratch[iidx] = 0.0;
158     }
159
160     /* Start outer loop over neighborlists */
161     for(iidx=0; iidx<nri; iidx++)
162     {
163         /* Load shift vector for this list */
164         i_shift_offset   = DIM*shiftidx[iidx];
165
166         /* Load limits for loop over neighbors */
167         j_index_start    = jindex[iidx];
168         j_index_end      = jindex[iidx+1];
169
170         /* Get outer coordinate index */
171         inr              = iinr[iidx];
172         i_coord_offset   = DIM*inr;
173
174         /* Load i particle coords and add shift vector */
175         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
177
178         fix0             = _mm256_setzero_ps();
179         fiy0             = _mm256_setzero_ps();
180         fiz0             = _mm256_setzero_ps();
181         fix1             = _mm256_setzero_ps();
182         fiy1             = _mm256_setzero_ps();
183         fiz1             = _mm256_setzero_ps();
184         fix2             = _mm256_setzero_ps();
185         fiy2             = _mm256_setzero_ps();
186         fiz2             = _mm256_setzero_ps();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_ps();
190         vvdwsum          = _mm256_setzero_ps();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             jnrE             = jjnr[jidx+4];
202             jnrF             = jjnr[jidx+5];
203             jnrG             = jjnr[jidx+6];
204             jnrH             = jjnr[jidx+7];
205             j_coord_offsetA  = DIM*jnrA;
206             j_coord_offsetB  = DIM*jnrB;
207             j_coord_offsetC  = DIM*jnrC;
208             j_coord_offsetD  = DIM*jnrD;
209             j_coord_offsetE  = DIM*jnrE;
210             j_coord_offsetF  = DIM*jnrF;
211             j_coord_offsetG  = DIM*jnrG;
212             j_coord_offsetH  = DIM*jnrH;
213
214             /* load j atom coordinates */
215             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
216                                                  x+j_coord_offsetC,x+j_coord_offsetD,
217                                                  x+j_coord_offsetE,x+j_coord_offsetF,
218                                                  x+j_coord_offsetG,x+j_coord_offsetH,
219                                                  &jx0,&jy0,&jz0);
220
221             /* Calculate displacement vector */
222             dx00             = _mm256_sub_ps(ix0,jx0);
223             dy00             = _mm256_sub_ps(iy0,jy0);
224             dz00             = _mm256_sub_ps(iz0,jz0);
225             dx10             = _mm256_sub_ps(ix1,jx0);
226             dy10             = _mm256_sub_ps(iy1,jy0);
227             dz10             = _mm256_sub_ps(iz1,jz0);
228             dx20             = _mm256_sub_ps(ix2,jx0);
229             dy20             = _mm256_sub_ps(iy2,jy0);
230             dz20             = _mm256_sub_ps(iz2,jz0);
231
232             /* Calculate squared distance and things based on it */
233             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
234             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
235             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
236
237             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
238             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
239             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
240
241             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
242             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
243             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
244
245             /* Load parameters for j particles */
246             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
247                                                                  charge+jnrC+0,charge+jnrD+0,
248                                                                  charge+jnrE+0,charge+jnrF+0,
249                                                                  charge+jnrG+0,charge+jnrH+0);
250             vdwjidx0A        = 2*vdwtype[jnrA+0];
251             vdwjidx0B        = 2*vdwtype[jnrB+0];
252             vdwjidx0C        = 2*vdwtype[jnrC+0];
253             vdwjidx0D        = 2*vdwtype[jnrD+0];
254             vdwjidx0E        = 2*vdwtype[jnrE+0];
255             vdwjidx0F        = 2*vdwtype[jnrF+0];
256             vdwjidx0G        = 2*vdwtype[jnrG+0];
257             vdwjidx0H        = 2*vdwtype[jnrH+0];
258
259             fjx0             = _mm256_setzero_ps();
260             fjy0             = _mm256_setzero_ps();
261             fjz0             = _mm256_setzero_ps();
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r00              = _mm256_mul_ps(rsq00,rinv00);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq00             = _mm256_mul_ps(iq0,jq0);
271             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
272                                             vdwioffsetptr0+vdwjidx0B,
273                                             vdwioffsetptr0+vdwjidx0C,
274                                             vdwioffsetptr0+vdwjidx0D,
275                                             vdwioffsetptr0+vdwjidx0E,
276                                             vdwioffsetptr0+vdwjidx0F,
277                                             vdwioffsetptr0+vdwjidx0G,
278                                             vdwioffsetptr0+vdwjidx0H,
279                                             &c6_00,&c12_00);
280
281             /* Calculate table index by multiplying r with table scale and truncate to integer */
282             rt               = _mm256_mul_ps(r00,vftabscale);
283             vfitab           = _mm256_cvttps_epi32(rt);
284             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
285             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
286             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
287             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
288             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
289             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
290
291             /* EWALD ELECTROSTATICS */
292             
293             /* Analytical PME correction */
294             zeta2            = _mm256_mul_ps(beta2,rsq00);
295             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
296             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
297             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
298             felec            = _mm256_mul_ps(qq00,felec);
299             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
300             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
301             velec            = _mm256_sub_ps(rinv00,pmecorrV);
302             velec            = _mm256_mul_ps(qq00,velec);
303             
304             /* CUBIC SPLINE TABLE DISPERSION */
305             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
306                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
307             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
309             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
311             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
313             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
314             Heps             = _mm256_mul_ps(vfeps,H);
315             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
316             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
317             vvdw6            = _mm256_mul_ps(c6_00,VV);
318             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
319             fvdw6            = _mm256_mul_ps(c6_00,FF);
320
321             /* CUBIC SPLINE TABLE REPULSION */
322             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
323             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
324             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
325                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
326             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
327                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
328             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
329                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
330             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
331                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
332             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
333             Heps             = _mm256_mul_ps(vfeps,H);
334             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
335             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
336             vvdw12           = _mm256_mul_ps(c12_00,VV);
337             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
338             fvdw12           = _mm256_mul_ps(c12_00,FF);
339             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
340             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velecsum         = _mm256_add_ps(velecsum,velec);
344             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
345
346             fscal            = _mm256_add_ps(felec,fvdw);
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm256_mul_ps(fscal,dx00);
350             ty               = _mm256_mul_ps(fscal,dy00);
351             tz               = _mm256_mul_ps(fscal,dz00);
352
353             /* Update vectorial force */
354             fix0             = _mm256_add_ps(fix0,tx);
355             fiy0             = _mm256_add_ps(fiy0,ty);
356             fiz0             = _mm256_add_ps(fiz0,tz);
357
358             fjx0             = _mm256_add_ps(fjx0,tx);
359             fjy0             = _mm256_add_ps(fjy0,ty);
360             fjz0             = _mm256_add_ps(fjz0,tz);
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r10              = _mm256_mul_ps(rsq10,rinv10);
367
368             /* Compute parameters for interactions between i and j atoms */
369             qq10             = _mm256_mul_ps(iq1,jq0);
370
371             /* EWALD ELECTROSTATICS */
372             
373             /* Analytical PME correction */
374             zeta2            = _mm256_mul_ps(beta2,rsq10);
375             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
376             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
377             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
378             felec            = _mm256_mul_ps(qq10,felec);
379             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
380             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
381             velec            = _mm256_sub_ps(rinv10,pmecorrV);
382             velec            = _mm256_mul_ps(qq10,velec);
383             
384             /* Update potential sum for this i atom from the interaction with this j atom. */
385             velecsum         = _mm256_add_ps(velecsum,velec);
386
387             fscal            = felec;
388
389             /* Calculate temporary vectorial force */
390             tx               = _mm256_mul_ps(fscal,dx10);
391             ty               = _mm256_mul_ps(fscal,dy10);
392             tz               = _mm256_mul_ps(fscal,dz10);
393
394             /* Update vectorial force */
395             fix1             = _mm256_add_ps(fix1,tx);
396             fiy1             = _mm256_add_ps(fiy1,ty);
397             fiz1             = _mm256_add_ps(fiz1,tz);
398
399             fjx0             = _mm256_add_ps(fjx0,tx);
400             fjy0             = _mm256_add_ps(fjy0,ty);
401             fjz0             = _mm256_add_ps(fjz0,tz);
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             r20              = _mm256_mul_ps(rsq20,rinv20);
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq20             = _mm256_mul_ps(iq2,jq0);
411
412             /* EWALD ELECTROSTATICS */
413             
414             /* Analytical PME correction */
415             zeta2            = _mm256_mul_ps(beta2,rsq20);
416             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
417             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
418             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
419             felec            = _mm256_mul_ps(qq20,felec);
420             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
421             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
422             velec            = _mm256_sub_ps(rinv20,pmecorrV);
423             velec            = _mm256_mul_ps(qq20,velec);
424             
425             /* Update potential sum for this i atom from the interaction with this j atom. */
426             velecsum         = _mm256_add_ps(velecsum,velec);
427
428             fscal            = felec;
429
430             /* Calculate temporary vectorial force */
431             tx               = _mm256_mul_ps(fscal,dx20);
432             ty               = _mm256_mul_ps(fscal,dy20);
433             tz               = _mm256_mul_ps(fscal,dz20);
434
435             /* Update vectorial force */
436             fix2             = _mm256_add_ps(fix2,tx);
437             fiy2             = _mm256_add_ps(fiy2,ty);
438             fiz2             = _mm256_add_ps(fiz2,tz);
439
440             fjx0             = _mm256_add_ps(fjx0,tx);
441             fjy0             = _mm256_add_ps(fjy0,ty);
442             fjz0             = _mm256_add_ps(fjz0,tz);
443
444             fjptrA             = f+j_coord_offsetA;
445             fjptrB             = f+j_coord_offsetB;
446             fjptrC             = f+j_coord_offsetC;
447             fjptrD             = f+j_coord_offsetD;
448             fjptrE             = f+j_coord_offsetE;
449             fjptrF             = f+j_coord_offsetF;
450             fjptrG             = f+j_coord_offsetG;
451             fjptrH             = f+j_coord_offsetH;
452
453             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
454
455             /* Inner loop uses 289 flops */
456         }
457
458         if(jidx<j_index_end)
459         {
460
461             /* Get j neighbor index, and coordinate index */
462             jnrlistA         = jjnr[jidx];
463             jnrlistB         = jjnr[jidx+1];
464             jnrlistC         = jjnr[jidx+2];
465             jnrlistD         = jjnr[jidx+3];
466             jnrlistE         = jjnr[jidx+4];
467             jnrlistF         = jjnr[jidx+5];
468             jnrlistG         = jjnr[jidx+6];
469             jnrlistH         = jjnr[jidx+7];
470             /* Sign of each element will be negative for non-real atoms.
471              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
472              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
473              */
474             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
475                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
476                                             
477             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
478             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
479             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
480             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
481             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
482             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
483             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
484             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
485             j_coord_offsetA  = DIM*jnrA;
486             j_coord_offsetB  = DIM*jnrB;
487             j_coord_offsetC  = DIM*jnrC;
488             j_coord_offsetD  = DIM*jnrD;
489             j_coord_offsetE  = DIM*jnrE;
490             j_coord_offsetF  = DIM*jnrF;
491             j_coord_offsetG  = DIM*jnrG;
492             j_coord_offsetH  = DIM*jnrH;
493
494             /* load j atom coordinates */
495             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
496                                                  x+j_coord_offsetC,x+j_coord_offsetD,
497                                                  x+j_coord_offsetE,x+j_coord_offsetF,
498                                                  x+j_coord_offsetG,x+j_coord_offsetH,
499                                                  &jx0,&jy0,&jz0);
500
501             /* Calculate displacement vector */
502             dx00             = _mm256_sub_ps(ix0,jx0);
503             dy00             = _mm256_sub_ps(iy0,jy0);
504             dz00             = _mm256_sub_ps(iz0,jz0);
505             dx10             = _mm256_sub_ps(ix1,jx0);
506             dy10             = _mm256_sub_ps(iy1,jy0);
507             dz10             = _mm256_sub_ps(iz1,jz0);
508             dx20             = _mm256_sub_ps(ix2,jx0);
509             dy20             = _mm256_sub_ps(iy2,jy0);
510             dz20             = _mm256_sub_ps(iz2,jz0);
511
512             /* Calculate squared distance and things based on it */
513             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
514             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
515             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
516
517             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
518             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
519             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
520
521             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
522             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
523             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
524
525             /* Load parameters for j particles */
526             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
527                                                                  charge+jnrC+0,charge+jnrD+0,
528                                                                  charge+jnrE+0,charge+jnrF+0,
529                                                                  charge+jnrG+0,charge+jnrH+0);
530             vdwjidx0A        = 2*vdwtype[jnrA+0];
531             vdwjidx0B        = 2*vdwtype[jnrB+0];
532             vdwjidx0C        = 2*vdwtype[jnrC+0];
533             vdwjidx0D        = 2*vdwtype[jnrD+0];
534             vdwjidx0E        = 2*vdwtype[jnrE+0];
535             vdwjidx0F        = 2*vdwtype[jnrF+0];
536             vdwjidx0G        = 2*vdwtype[jnrG+0];
537             vdwjidx0H        = 2*vdwtype[jnrH+0];
538
539             fjx0             = _mm256_setzero_ps();
540             fjy0             = _mm256_setzero_ps();
541             fjz0             = _mm256_setzero_ps();
542
543             /**************************
544              * CALCULATE INTERACTIONS *
545              **************************/
546
547             r00              = _mm256_mul_ps(rsq00,rinv00);
548             r00              = _mm256_andnot_ps(dummy_mask,r00);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq00             = _mm256_mul_ps(iq0,jq0);
552             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
553                                             vdwioffsetptr0+vdwjidx0B,
554                                             vdwioffsetptr0+vdwjidx0C,
555                                             vdwioffsetptr0+vdwjidx0D,
556                                             vdwioffsetptr0+vdwjidx0E,
557                                             vdwioffsetptr0+vdwjidx0F,
558                                             vdwioffsetptr0+vdwjidx0G,
559                                             vdwioffsetptr0+vdwjidx0H,
560                                             &c6_00,&c12_00);
561
562             /* Calculate table index by multiplying r with table scale and truncate to integer */
563             rt               = _mm256_mul_ps(r00,vftabscale);
564             vfitab           = _mm256_cvttps_epi32(rt);
565             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
566             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
567             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
568             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
569             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
570             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
571
572             /* EWALD ELECTROSTATICS */
573             
574             /* Analytical PME correction */
575             zeta2            = _mm256_mul_ps(beta2,rsq00);
576             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
577             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
578             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
579             felec            = _mm256_mul_ps(qq00,felec);
580             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
581             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
582             velec            = _mm256_sub_ps(rinv00,pmecorrV);
583             velec            = _mm256_mul_ps(qq00,velec);
584             
585             /* CUBIC SPLINE TABLE DISPERSION */
586             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
587                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
588             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
589                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
590             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
591                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
592             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
593                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
594             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
595             Heps             = _mm256_mul_ps(vfeps,H);
596             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
597             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
598             vvdw6            = _mm256_mul_ps(c6_00,VV);
599             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
600             fvdw6            = _mm256_mul_ps(c6_00,FF);
601
602             /* CUBIC SPLINE TABLE REPULSION */
603             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
604             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
605             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
606                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
607             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
608                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
609             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
610                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
611             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
612                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
613             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
614             Heps             = _mm256_mul_ps(vfeps,H);
615             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
616             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
617             vvdw12           = _mm256_mul_ps(c12_00,VV);
618             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
619             fvdw12           = _mm256_mul_ps(c12_00,FF);
620             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
621             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm256_andnot_ps(dummy_mask,velec);
625             velecsum         = _mm256_add_ps(velecsum,velec);
626             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
627             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
628
629             fscal            = _mm256_add_ps(felec,fvdw);
630
631             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
632
633             /* Calculate temporary vectorial force */
634             tx               = _mm256_mul_ps(fscal,dx00);
635             ty               = _mm256_mul_ps(fscal,dy00);
636             tz               = _mm256_mul_ps(fscal,dz00);
637
638             /* Update vectorial force */
639             fix0             = _mm256_add_ps(fix0,tx);
640             fiy0             = _mm256_add_ps(fiy0,ty);
641             fiz0             = _mm256_add_ps(fiz0,tz);
642
643             fjx0             = _mm256_add_ps(fjx0,tx);
644             fjy0             = _mm256_add_ps(fjy0,ty);
645             fjz0             = _mm256_add_ps(fjz0,tz);
646
647             /**************************
648              * CALCULATE INTERACTIONS *
649              **************************/
650
651             r10              = _mm256_mul_ps(rsq10,rinv10);
652             r10              = _mm256_andnot_ps(dummy_mask,r10);
653
654             /* Compute parameters for interactions between i and j atoms */
655             qq10             = _mm256_mul_ps(iq1,jq0);
656
657             /* EWALD ELECTROSTATICS */
658             
659             /* Analytical PME correction */
660             zeta2            = _mm256_mul_ps(beta2,rsq10);
661             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
662             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
663             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
664             felec            = _mm256_mul_ps(qq10,felec);
665             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
666             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
667             velec            = _mm256_sub_ps(rinv10,pmecorrV);
668             velec            = _mm256_mul_ps(qq10,velec);
669             
670             /* Update potential sum for this i atom from the interaction with this j atom. */
671             velec            = _mm256_andnot_ps(dummy_mask,velec);
672             velecsum         = _mm256_add_ps(velecsum,velec);
673
674             fscal            = felec;
675
676             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
677
678             /* Calculate temporary vectorial force */
679             tx               = _mm256_mul_ps(fscal,dx10);
680             ty               = _mm256_mul_ps(fscal,dy10);
681             tz               = _mm256_mul_ps(fscal,dz10);
682
683             /* Update vectorial force */
684             fix1             = _mm256_add_ps(fix1,tx);
685             fiy1             = _mm256_add_ps(fiy1,ty);
686             fiz1             = _mm256_add_ps(fiz1,tz);
687
688             fjx0             = _mm256_add_ps(fjx0,tx);
689             fjy0             = _mm256_add_ps(fjy0,ty);
690             fjz0             = _mm256_add_ps(fjz0,tz);
691
692             /**************************
693              * CALCULATE INTERACTIONS *
694              **************************/
695
696             r20              = _mm256_mul_ps(rsq20,rinv20);
697             r20              = _mm256_andnot_ps(dummy_mask,r20);
698
699             /* Compute parameters for interactions between i and j atoms */
700             qq20             = _mm256_mul_ps(iq2,jq0);
701
702             /* EWALD ELECTROSTATICS */
703             
704             /* Analytical PME correction */
705             zeta2            = _mm256_mul_ps(beta2,rsq20);
706             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
707             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
708             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
709             felec            = _mm256_mul_ps(qq20,felec);
710             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
711             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
712             velec            = _mm256_sub_ps(rinv20,pmecorrV);
713             velec            = _mm256_mul_ps(qq20,velec);
714             
715             /* Update potential sum for this i atom from the interaction with this j atom. */
716             velec            = _mm256_andnot_ps(dummy_mask,velec);
717             velecsum         = _mm256_add_ps(velecsum,velec);
718
719             fscal            = felec;
720
721             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
722
723             /* Calculate temporary vectorial force */
724             tx               = _mm256_mul_ps(fscal,dx20);
725             ty               = _mm256_mul_ps(fscal,dy20);
726             tz               = _mm256_mul_ps(fscal,dz20);
727
728             /* Update vectorial force */
729             fix2             = _mm256_add_ps(fix2,tx);
730             fiy2             = _mm256_add_ps(fiy2,ty);
731             fiz2             = _mm256_add_ps(fiz2,tz);
732
733             fjx0             = _mm256_add_ps(fjx0,tx);
734             fjy0             = _mm256_add_ps(fjy0,ty);
735             fjz0             = _mm256_add_ps(fjz0,tz);
736
737             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
738             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
739             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
740             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
741             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
742             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
743             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
744             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
745
746             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
747
748             /* Inner loop uses 292 flops */
749         }
750
751         /* End of innermost loop */
752
753         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
754                                                  f+i_coord_offset,fshift+i_shift_offset);
755
756         ggid                        = gid[iidx];
757         /* Update potential energies */
758         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
759         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
760
761         /* Increment number of inner iterations */
762         inneriter                  += j_index_end - j_index_start;
763
764         /* Outer loop uses 20 flops */
765     }
766
767     /* Increment number of outer iterations */
768     outeriter        += nri;
769
770     /* Update outer/inner flops */
771
772     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*292);
773 }
774 /*
775  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_single
776  * Electrostatics interaction: Ewald
777  * VdW interaction:            CubicSplineTable
778  * Geometry:                   Water3-Particle
779  * Calculate force/pot:        Force
780  */
781 void
782 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_avx_256_single
783                     (t_nblist * gmx_restrict                nlist,
784                      rvec * gmx_restrict                    xx,
785                      rvec * gmx_restrict                    ff,
786                      t_forcerec * gmx_restrict              fr,
787                      t_mdatoms * gmx_restrict               mdatoms,
788                      nb_kernel_data_t * gmx_restrict        kernel_data,
789                      t_nrnb * gmx_restrict                  nrnb)
790 {
791     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
792      * just 0 for non-waters.
793      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
794      * jnr indices corresponding to data put in the four positions in the SIMD register.
795      */
796     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
797     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
798     int              jnrA,jnrB,jnrC,jnrD;
799     int              jnrE,jnrF,jnrG,jnrH;
800     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
801     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
802     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
803     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
804     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
805     real             rcutoff_scalar;
806     real             *shiftvec,*fshift,*x,*f;
807     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
808     real             scratch[4*DIM];
809     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
810     real *           vdwioffsetptr0;
811     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
812     real *           vdwioffsetptr1;
813     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
814     real *           vdwioffsetptr2;
815     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
816     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
817     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
818     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
819     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
820     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
821     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
822     real             *charge;
823     int              nvdwtype;
824     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
825     int              *vdwtype;
826     real             *vdwparam;
827     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
828     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
829     __m256i          vfitab;
830     __m128i          vfitab_lo,vfitab_hi;
831     __m128i          ifour       = _mm_set1_epi32(4);
832     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
833     real             *vftab;
834     __m256i          ewitab;
835     __m128i          ewitab_lo,ewitab_hi;
836     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
837     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
838     real             *ewtab;
839     __m256           dummy_mask,cutoff_mask;
840     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
841     __m256           one     = _mm256_set1_ps(1.0);
842     __m256           two     = _mm256_set1_ps(2.0);
843     x                = xx[0];
844     f                = ff[0];
845
846     nri              = nlist->nri;
847     iinr             = nlist->iinr;
848     jindex           = nlist->jindex;
849     jjnr             = nlist->jjnr;
850     shiftidx         = nlist->shift;
851     gid              = nlist->gid;
852     shiftvec         = fr->shift_vec[0];
853     fshift           = fr->fshift[0];
854     facel            = _mm256_set1_ps(fr->epsfac);
855     charge           = mdatoms->chargeA;
856     nvdwtype         = fr->ntype;
857     vdwparam         = fr->nbfp;
858     vdwtype          = mdatoms->typeA;
859
860     vftab            = kernel_data->table_vdw->data;
861     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
862
863     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
864     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
865     beta2            = _mm256_mul_ps(beta,beta);
866     beta3            = _mm256_mul_ps(beta,beta2);
867
868     ewtab            = fr->ic->tabq_coul_F;
869     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
870     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
871
872     /* Setup water-specific parameters */
873     inr              = nlist->iinr[0];
874     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
875     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
876     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
877     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
878
879     /* Avoid stupid compiler warnings */
880     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
881     j_coord_offsetA = 0;
882     j_coord_offsetB = 0;
883     j_coord_offsetC = 0;
884     j_coord_offsetD = 0;
885     j_coord_offsetE = 0;
886     j_coord_offsetF = 0;
887     j_coord_offsetG = 0;
888     j_coord_offsetH = 0;
889
890     outeriter        = 0;
891     inneriter        = 0;
892
893     for(iidx=0;iidx<4*DIM;iidx++)
894     {
895         scratch[iidx] = 0.0;
896     }
897
898     /* Start outer loop over neighborlists */
899     for(iidx=0; iidx<nri; iidx++)
900     {
901         /* Load shift vector for this list */
902         i_shift_offset   = DIM*shiftidx[iidx];
903
904         /* Load limits for loop over neighbors */
905         j_index_start    = jindex[iidx];
906         j_index_end      = jindex[iidx+1];
907
908         /* Get outer coordinate index */
909         inr              = iinr[iidx];
910         i_coord_offset   = DIM*inr;
911
912         /* Load i particle coords and add shift vector */
913         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
914                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
915
916         fix0             = _mm256_setzero_ps();
917         fiy0             = _mm256_setzero_ps();
918         fiz0             = _mm256_setzero_ps();
919         fix1             = _mm256_setzero_ps();
920         fiy1             = _mm256_setzero_ps();
921         fiz1             = _mm256_setzero_ps();
922         fix2             = _mm256_setzero_ps();
923         fiy2             = _mm256_setzero_ps();
924         fiz2             = _mm256_setzero_ps();
925
926         /* Start inner kernel loop */
927         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
928         {
929
930             /* Get j neighbor index, and coordinate index */
931             jnrA             = jjnr[jidx];
932             jnrB             = jjnr[jidx+1];
933             jnrC             = jjnr[jidx+2];
934             jnrD             = jjnr[jidx+3];
935             jnrE             = jjnr[jidx+4];
936             jnrF             = jjnr[jidx+5];
937             jnrG             = jjnr[jidx+6];
938             jnrH             = jjnr[jidx+7];
939             j_coord_offsetA  = DIM*jnrA;
940             j_coord_offsetB  = DIM*jnrB;
941             j_coord_offsetC  = DIM*jnrC;
942             j_coord_offsetD  = DIM*jnrD;
943             j_coord_offsetE  = DIM*jnrE;
944             j_coord_offsetF  = DIM*jnrF;
945             j_coord_offsetG  = DIM*jnrG;
946             j_coord_offsetH  = DIM*jnrH;
947
948             /* load j atom coordinates */
949             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
950                                                  x+j_coord_offsetC,x+j_coord_offsetD,
951                                                  x+j_coord_offsetE,x+j_coord_offsetF,
952                                                  x+j_coord_offsetG,x+j_coord_offsetH,
953                                                  &jx0,&jy0,&jz0);
954
955             /* Calculate displacement vector */
956             dx00             = _mm256_sub_ps(ix0,jx0);
957             dy00             = _mm256_sub_ps(iy0,jy0);
958             dz00             = _mm256_sub_ps(iz0,jz0);
959             dx10             = _mm256_sub_ps(ix1,jx0);
960             dy10             = _mm256_sub_ps(iy1,jy0);
961             dz10             = _mm256_sub_ps(iz1,jz0);
962             dx20             = _mm256_sub_ps(ix2,jx0);
963             dy20             = _mm256_sub_ps(iy2,jy0);
964             dz20             = _mm256_sub_ps(iz2,jz0);
965
966             /* Calculate squared distance and things based on it */
967             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
968             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
969             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
970
971             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
972             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
973             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
974
975             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
976             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
977             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
978
979             /* Load parameters for j particles */
980             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
981                                                                  charge+jnrC+0,charge+jnrD+0,
982                                                                  charge+jnrE+0,charge+jnrF+0,
983                                                                  charge+jnrG+0,charge+jnrH+0);
984             vdwjidx0A        = 2*vdwtype[jnrA+0];
985             vdwjidx0B        = 2*vdwtype[jnrB+0];
986             vdwjidx0C        = 2*vdwtype[jnrC+0];
987             vdwjidx0D        = 2*vdwtype[jnrD+0];
988             vdwjidx0E        = 2*vdwtype[jnrE+0];
989             vdwjidx0F        = 2*vdwtype[jnrF+0];
990             vdwjidx0G        = 2*vdwtype[jnrG+0];
991             vdwjidx0H        = 2*vdwtype[jnrH+0];
992
993             fjx0             = _mm256_setzero_ps();
994             fjy0             = _mm256_setzero_ps();
995             fjz0             = _mm256_setzero_ps();
996
997             /**************************
998              * CALCULATE INTERACTIONS *
999              **************************/
1000
1001             r00              = _mm256_mul_ps(rsq00,rinv00);
1002
1003             /* Compute parameters for interactions between i and j atoms */
1004             qq00             = _mm256_mul_ps(iq0,jq0);
1005             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1006                                             vdwioffsetptr0+vdwjidx0B,
1007                                             vdwioffsetptr0+vdwjidx0C,
1008                                             vdwioffsetptr0+vdwjidx0D,
1009                                             vdwioffsetptr0+vdwjidx0E,
1010                                             vdwioffsetptr0+vdwjidx0F,
1011                                             vdwioffsetptr0+vdwjidx0G,
1012                                             vdwioffsetptr0+vdwjidx0H,
1013                                             &c6_00,&c12_00);
1014
1015             /* Calculate table index by multiplying r with table scale and truncate to integer */
1016             rt               = _mm256_mul_ps(r00,vftabscale);
1017             vfitab           = _mm256_cvttps_epi32(rt);
1018             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1019             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1020             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1021             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1022             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1023             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1024
1025             /* EWALD ELECTROSTATICS */
1026             
1027             /* Analytical PME correction */
1028             zeta2            = _mm256_mul_ps(beta2,rsq00);
1029             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1030             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1031             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1032             felec            = _mm256_mul_ps(qq00,felec);
1033             
1034             /* CUBIC SPLINE TABLE DISPERSION */
1035             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1036                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1037             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1038                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1039             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1040                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1041             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1042                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1043             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1044             Heps             = _mm256_mul_ps(vfeps,H);
1045             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1046             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1047             fvdw6            = _mm256_mul_ps(c6_00,FF);
1048
1049             /* CUBIC SPLINE TABLE REPULSION */
1050             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1051             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1052             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1053                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1054             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1055                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1056             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1057                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1058             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1059                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1060             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1061             Heps             = _mm256_mul_ps(vfeps,H);
1062             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1063             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1064             fvdw12           = _mm256_mul_ps(c12_00,FF);
1065             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1066
1067             fscal            = _mm256_add_ps(felec,fvdw);
1068
1069             /* Calculate temporary vectorial force */
1070             tx               = _mm256_mul_ps(fscal,dx00);
1071             ty               = _mm256_mul_ps(fscal,dy00);
1072             tz               = _mm256_mul_ps(fscal,dz00);
1073
1074             /* Update vectorial force */
1075             fix0             = _mm256_add_ps(fix0,tx);
1076             fiy0             = _mm256_add_ps(fiy0,ty);
1077             fiz0             = _mm256_add_ps(fiz0,tz);
1078
1079             fjx0             = _mm256_add_ps(fjx0,tx);
1080             fjy0             = _mm256_add_ps(fjy0,ty);
1081             fjz0             = _mm256_add_ps(fjz0,tz);
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             r10              = _mm256_mul_ps(rsq10,rinv10);
1088
1089             /* Compute parameters for interactions between i and j atoms */
1090             qq10             = _mm256_mul_ps(iq1,jq0);
1091
1092             /* EWALD ELECTROSTATICS */
1093             
1094             /* Analytical PME correction */
1095             zeta2            = _mm256_mul_ps(beta2,rsq10);
1096             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1097             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1098             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1099             felec            = _mm256_mul_ps(qq10,felec);
1100             
1101             fscal            = felec;
1102
1103             /* Calculate temporary vectorial force */
1104             tx               = _mm256_mul_ps(fscal,dx10);
1105             ty               = _mm256_mul_ps(fscal,dy10);
1106             tz               = _mm256_mul_ps(fscal,dz10);
1107
1108             /* Update vectorial force */
1109             fix1             = _mm256_add_ps(fix1,tx);
1110             fiy1             = _mm256_add_ps(fiy1,ty);
1111             fiz1             = _mm256_add_ps(fiz1,tz);
1112
1113             fjx0             = _mm256_add_ps(fjx0,tx);
1114             fjy0             = _mm256_add_ps(fjy0,ty);
1115             fjz0             = _mm256_add_ps(fjz0,tz);
1116
1117             /**************************
1118              * CALCULATE INTERACTIONS *
1119              **************************/
1120
1121             r20              = _mm256_mul_ps(rsq20,rinv20);
1122
1123             /* Compute parameters for interactions between i and j atoms */
1124             qq20             = _mm256_mul_ps(iq2,jq0);
1125
1126             /* EWALD ELECTROSTATICS */
1127             
1128             /* Analytical PME correction */
1129             zeta2            = _mm256_mul_ps(beta2,rsq20);
1130             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1131             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1132             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1133             felec            = _mm256_mul_ps(qq20,felec);
1134             
1135             fscal            = felec;
1136
1137             /* Calculate temporary vectorial force */
1138             tx               = _mm256_mul_ps(fscal,dx20);
1139             ty               = _mm256_mul_ps(fscal,dy20);
1140             tz               = _mm256_mul_ps(fscal,dz20);
1141
1142             /* Update vectorial force */
1143             fix2             = _mm256_add_ps(fix2,tx);
1144             fiy2             = _mm256_add_ps(fiy2,ty);
1145             fiz2             = _mm256_add_ps(fiz2,tz);
1146
1147             fjx0             = _mm256_add_ps(fjx0,tx);
1148             fjy0             = _mm256_add_ps(fjy0,ty);
1149             fjz0             = _mm256_add_ps(fjz0,tz);
1150
1151             fjptrA             = f+j_coord_offsetA;
1152             fjptrB             = f+j_coord_offsetB;
1153             fjptrC             = f+j_coord_offsetC;
1154             fjptrD             = f+j_coord_offsetD;
1155             fjptrE             = f+j_coord_offsetE;
1156             fjptrF             = f+j_coord_offsetF;
1157             fjptrG             = f+j_coord_offsetG;
1158             fjptrH             = f+j_coord_offsetH;
1159
1160             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1161
1162             /* Inner loop uses 197 flops */
1163         }
1164
1165         if(jidx<j_index_end)
1166         {
1167
1168             /* Get j neighbor index, and coordinate index */
1169             jnrlistA         = jjnr[jidx];
1170             jnrlistB         = jjnr[jidx+1];
1171             jnrlistC         = jjnr[jidx+2];
1172             jnrlistD         = jjnr[jidx+3];
1173             jnrlistE         = jjnr[jidx+4];
1174             jnrlistF         = jjnr[jidx+5];
1175             jnrlistG         = jjnr[jidx+6];
1176             jnrlistH         = jjnr[jidx+7];
1177             /* Sign of each element will be negative for non-real atoms.
1178              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1179              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1180              */
1181             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1182                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1183                                             
1184             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1185             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1186             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1187             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1188             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1189             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1190             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1191             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1192             j_coord_offsetA  = DIM*jnrA;
1193             j_coord_offsetB  = DIM*jnrB;
1194             j_coord_offsetC  = DIM*jnrC;
1195             j_coord_offsetD  = DIM*jnrD;
1196             j_coord_offsetE  = DIM*jnrE;
1197             j_coord_offsetF  = DIM*jnrF;
1198             j_coord_offsetG  = DIM*jnrG;
1199             j_coord_offsetH  = DIM*jnrH;
1200
1201             /* load j atom coordinates */
1202             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1204                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1205                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1206                                                  &jx0,&jy0,&jz0);
1207
1208             /* Calculate displacement vector */
1209             dx00             = _mm256_sub_ps(ix0,jx0);
1210             dy00             = _mm256_sub_ps(iy0,jy0);
1211             dz00             = _mm256_sub_ps(iz0,jz0);
1212             dx10             = _mm256_sub_ps(ix1,jx0);
1213             dy10             = _mm256_sub_ps(iy1,jy0);
1214             dz10             = _mm256_sub_ps(iz1,jz0);
1215             dx20             = _mm256_sub_ps(ix2,jx0);
1216             dy20             = _mm256_sub_ps(iy2,jy0);
1217             dz20             = _mm256_sub_ps(iz2,jz0);
1218
1219             /* Calculate squared distance and things based on it */
1220             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1221             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1222             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1223
1224             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1225             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1226             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1227
1228             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1229             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1230             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1231
1232             /* Load parameters for j particles */
1233             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1234                                                                  charge+jnrC+0,charge+jnrD+0,
1235                                                                  charge+jnrE+0,charge+jnrF+0,
1236                                                                  charge+jnrG+0,charge+jnrH+0);
1237             vdwjidx0A        = 2*vdwtype[jnrA+0];
1238             vdwjidx0B        = 2*vdwtype[jnrB+0];
1239             vdwjidx0C        = 2*vdwtype[jnrC+0];
1240             vdwjidx0D        = 2*vdwtype[jnrD+0];
1241             vdwjidx0E        = 2*vdwtype[jnrE+0];
1242             vdwjidx0F        = 2*vdwtype[jnrF+0];
1243             vdwjidx0G        = 2*vdwtype[jnrG+0];
1244             vdwjidx0H        = 2*vdwtype[jnrH+0];
1245
1246             fjx0             = _mm256_setzero_ps();
1247             fjy0             = _mm256_setzero_ps();
1248             fjz0             = _mm256_setzero_ps();
1249
1250             /**************************
1251              * CALCULATE INTERACTIONS *
1252              **************************/
1253
1254             r00              = _mm256_mul_ps(rsq00,rinv00);
1255             r00              = _mm256_andnot_ps(dummy_mask,r00);
1256
1257             /* Compute parameters for interactions between i and j atoms */
1258             qq00             = _mm256_mul_ps(iq0,jq0);
1259             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1260                                             vdwioffsetptr0+vdwjidx0B,
1261                                             vdwioffsetptr0+vdwjidx0C,
1262                                             vdwioffsetptr0+vdwjidx0D,
1263                                             vdwioffsetptr0+vdwjidx0E,
1264                                             vdwioffsetptr0+vdwjidx0F,
1265                                             vdwioffsetptr0+vdwjidx0G,
1266                                             vdwioffsetptr0+vdwjidx0H,
1267                                             &c6_00,&c12_00);
1268
1269             /* Calculate table index by multiplying r with table scale and truncate to integer */
1270             rt               = _mm256_mul_ps(r00,vftabscale);
1271             vfitab           = _mm256_cvttps_epi32(rt);
1272             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1273             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1274             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1275             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1276             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1277             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1278
1279             /* EWALD ELECTROSTATICS */
1280             
1281             /* Analytical PME correction */
1282             zeta2            = _mm256_mul_ps(beta2,rsq00);
1283             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1284             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1285             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1286             felec            = _mm256_mul_ps(qq00,felec);
1287             
1288             /* CUBIC SPLINE TABLE DISPERSION */
1289             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1290                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1291             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1293             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1295             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1297             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1298             Heps             = _mm256_mul_ps(vfeps,H);
1299             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1300             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1301             fvdw6            = _mm256_mul_ps(c6_00,FF);
1302
1303             /* CUBIC SPLINE TABLE REPULSION */
1304             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1305             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1306             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1307                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1308             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1309                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1310             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1311                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1312             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1313                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1314             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1315             Heps             = _mm256_mul_ps(vfeps,H);
1316             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1317             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1318             fvdw12           = _mm256_mul_ps(c12_00,FF);
1319             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1320
1321             fscal            = _mm256_add_ps(felec,fvdw);
1322
1323             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1324
1325             /* Calculate temporary vectorial force */
1326             tx               = _mm256_mul_ps(fscal,dx00);
1327             ty               = _mm256_mul_ps(fscal,dy00);
1328             tz               = _mm256_mul_ps(fscal,dz00);
1329
1330             /* Update vectorial force */
1331             fix0             = _mm256_add_ps(fix0,tx);
1332             fiy0             = _mm256_add_ps(fiy0,ty);
1333             fiz0             = _mm256_add_ps(fiz0,tz);
1334
1335             fjx0             = _mm256_add_ps(fjx0,tx);
1336             fjy0             = _mm256_add_ps(fjy0,ty);
1337             fjz0             = _mm256_add_ps(fjz0,tz);
1338
1339             /**************************
1340              * CALCULATE INTERACTIONS *
1341              **************************/
1342
1343             r10              = _mm256_mul_ps(rsq10,rinv10);
1344             r10              = _mm256_andnot_ps(dummy_mask,r10);
1345
1346             /* Compute parameters for interactions between i and j atoms */
1347             qq10             = _mm256_mul_ps(iq1,jq0);
1348
1349             /* EWALD ELECTROSTATICS */
1350             
1351             /* Analytical PME correction */
1352             zeta2            = _mm256_mul_ps(beta2,rsq10);
1353             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1354             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1355             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1356             felec            = _mm256_mul_ps(qq10,felec);
1357             
1358             fscal            = felec;
1359
1360             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1361
1362             /* Calculate temporary vectorial force */
1363             tx               = _mm256_mul_ps(fscal,dx10);
1364             ty               = _mm256_mul_ps(fscal,dy10);
1365             tz               = _mm256_mul_ps(fscal,dz10);
1366
1367             /* Update vectorial force */
1368             fix1             = _mm256_add_ps(fix1,tx);
1369             fiy1             = _mm256_add_ps(fiy1,ty);
1370             fiz1             = _mm256_add_ps(fiz1,tz);
1371
1372             fjx0             = _mm256_add_ps(fjx0,tx);
1373             fjy0             = _mm256_add_ps(fjy0,ty);
1374             fjz0             = _mm256_add_ps(fjz0,tz);
1375
1376             /**************************
1377              * CALCULATE INTERACTIONS *
1378              **************************/
1379
1380             r20              = _mm256_mul_ps(rsq20,rinv20);
1381             r20              = _mm256_andnot_ps(dummy_mask,r20);
1382
1383             /* Compute parameters for interactions between i and j atoms */
1384             qq20             = _mm256_mul_ps(iq2,jq0);
1385
1386             /* EWALD ELECTROSTATICS */
1387             
1388             /* Analytical PME correction */
1389             zeta2            = _mm256_mul_ps(beta2,rsq20);
1390             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1391             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1392             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1393             felec            = _mm256_mul_ps(qq20,felec);
1394             
1395             fscal            = felec;
1396
1397             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1398
1399             /* Calculate temporary vectorial force */
1400             tx               = _mm256_mul_ps(fscal,dx20);
1401             ty               = _mm256_mul_ps(fscal,dy20);
1402             tz               = _mm256_mul_ps(fscal,dz20);
1403
1404             /* Update vectorial force */
1405             fix2             = _mm256_add_ps(fix2,tx);
1406             fiy2             = _mm256_add_ps(fiy2,ty);
1407             fiz2             = _mm256_add_ps(fiz2,tz);
1408
1409             fjx0             = _mm256_add_ps(fjx0,tx);
1410             fjy0             = _mm256_add_ps(fjy0,ty);
1411             fjz0             = _mm256_add_ps(fjz0,tz);
1412
1413             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1414             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1415             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1416             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1417             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1418             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1419             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1420             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1421
1422             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1423
1424             /* Inner loop uses 200 flops */
1425         }
1426
1427         /* End of innermost loop */
1428
1429         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1430                                                  f+i_coord_offset,fshift+i_shift_offset);
1431
1432         /* Increment number of inner iterations */
1433         inneriter                  += j_index_end - j_index_start;
1434
1435         /* Outer loop uses 18 flops */
1436     }
1437
1438     /* Increment number of outer iterations */
1439     outeriter        += nri;
1440
1441     /* Update outer/inner flops */
1442
1443     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*200);
1444 }