made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256i          vfitab;
86     __m128i          vfitab_lo,vfitab_hi;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m256i          ewitab;
91     __m128i          ewitab_lo,ewitab_hi;
92     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
93     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
94     real             *ewtab;
95     __m256           dummy_mask,cutoff_mask;
96     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
97     __m256           one     = _mm256_set1_ps(1.0);
98     __m256           two     = _mm256_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
118
119     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
120     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
121     beta2            = _mm256_mul_ps(beta,beta);
122     beta3            = _mm256_mul_ps(beta,beta2);
123
124     ewtab            = fr->ic->tabq_coul_FDV0;
125     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
126     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134     j_coord_offsetE = 0;
135     j_coord_offsetF = 0;
136     j_coord_offsetG = 0;
137     j_coord_offsetH = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_ps();
165         fiy0             = _mm256_setzero_ps();
166         fiz0             = _mm256_setzero_ps();
167
168         /* Load parameters for i particles */
169         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
170         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_ps();
174         vvdwsum          = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0,
220                                                                  charge+jnrE+0,charge+jnrF+0,
221                                                                  charge+jnrG+0,charge+jnrH+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226             vdwjidx0E        = 2*vdwtype[jnrE+0];
227             vdwjidx0F        = 2*vdwtype[jnrF+0];
228             vdwjidx0G        = 2*vdwtype[jnrG+0];
229             vdwjidx0H        = 2*vdwtype[jnrH+0];
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             r00              = _mm256_mul_ps(rsq00,rinv00);
236
237             /* Compute parameters for interactions between i and j atoms */
238             qq00             = _mm256_mul_ps(iq0,jq0);
239             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
240                                             vdwioffsetptr0+vdwjidx0B,
241                                             vdwioffsetptr0+vdwjidx0C,
242                                             vdwioffsetptr0+vdwjidx0D,
243                                             vdwioffsetptr0+vdwjidx0E,
244                                             vdwioffsetptr0+vdwjidx0F,
245                                             vdwioffsetptr0+vdwjidx0G,
246                                             vdwioffsetptr0+vdwjidx0H,
247                                             &c6_00,&c12_00);
248
249             /* Calculate table index by multiplying r with table scale and truncate to integer */
250             rt               = _mm256_mul_ps(r00,vftabscale);
251             vfitab           = _mm256_cvttps_epi32(rt);
252             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
253             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
254             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
255             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
256             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
257             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
258
259             /* EWALD ELECTROSTATICS */
260             
261             /* Analytical PME correction */
262             zeta2            = _mm256_mul_ps(beta2,rsq00);
263             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
264             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
265             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
266             felec            = _mm256_mul_ps(qq00,felec);
267             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
268             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
269             velec            = _mm256_sub_ps(rinv00,pmecorrV);
270             velec            = _mm256_mul_ps(qq00,velec);
271             
272             /* CUBIC SPLINE TABLE DISPERSION */
273             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
274                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
275             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
276                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
277             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
278                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
279             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
280                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
281             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
282             Heps             = _mm256_mul_ps(vfeps,H);
283             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
284             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
285             vvdw6            = _mm256_mul_ps(c6_00,VV);
286             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
287             fvdw6            = _mm256_mul_ps(c6_00,FF);
288
289             /* CUBIC SPLINE TABLE REPULSION */
290             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
291             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
292             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
294             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
296             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
297                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
298             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
299                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
300             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
301             Heps             = _mm256_mul_ps(vfeps,H);
302             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
303             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
304             vvdw12           = _mm256_mul_ps(c12_00,VV);
305             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
306             fvdw12           = _mm256_mul_ps(c12_00,FF);
307             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
308             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
309
310             /* Update potential sum for this i atom from the interaction with this j atom. */
311             velecsum         = _mm256_add_ps(velecsum,velec);
312             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
313
314             fscal            = _mm256_add_ps(felec,fvdw);
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm256_mul_ps(fscal,dx00);
318             ty               = _mm256_mul_ps(fscal,dy00);
319             tz               = _mm256_mul_ps(fscal,dz00);
320
321             /* Update vectorial force */
322             fix0             = _mm256_add_ps(fix0,tx);
323             fiy0             = _mm256_add_ps(fiy0,ty);
324             fiz0             = _mm256_add_ps(fiz0,tz);
325
326             fjptrA             = f+j_coord_offsetA;
327             fjptrB             = f+j_coord_offsetB;
328             fjptrC             = f+j_coord_offsetC;
329             fjptrD             = f+j_coord_offsetD;
330             fjptrE             = f+j_coord_offsetE;
331             fjptrF             = f+j_coord_offsetF;
332             fjptrG             = f+j_coord_offsetG;
333             fjptrH             = f+j_coord_offsetH;
334             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
335
336             /* Inner loop uses 118 flops */
337         }
338
339         if(jidx<j_index_end)
340         {
341
342             /* Get j neighbor index, and coordinate index */
343             jnrlistA         = jjnr[jidx];
344             jnrlistB         = jjnr[jidx+1];
345             jnrlistC         = jjnr[jidx+2];
346             jnrlistD         = jjnr[jidx+3];
347             jnrlistE         = jjnr[jidx+4];
348             jnrlistF         = jjnr[jidx+5];
349             jnrlistG         = jjnr[jidx+6];
350             jnrlistH         = jjnr[jidx+7];
351             /* Sign of each element will be negative for non-real atoms.
352              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
353              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
354              */
355             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
356                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
357                                             
358             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
359             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
360             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
361             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
362             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
363             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
364             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
365             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
366             j_coord_offsetA  = DIM*jnrA;
367             j_coord_offsetB  = DIM*jnrB;
368             j_coord_offsetC  = DIM*jnrC;
369             j_coord_offsetD  = DIM*jnrD;
370             j_coord_offsetE  = DIM*jnrE;
371             j_coord_offsetF  = DIM*jnrF;
372             j_coord_offsetG  = DIM*jnrG;
373             j_coord_offsetH  = DIM*jnrH;
374
375             /* load j atom coordinates */
376             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
377                                                  x+j_coord_offsetC,x+j_coord_offsetD,
378                                                  x+j_coord_offsetE,x+j_coord_offsetF,
379                                                  x+j_coord_offsetG,x+j_coord_offsetH,
380                                                  &jx0,&jy0,&jz0);
381
382             /* Calculate displacement vector */
383             dx00             = _mm256_sub_ps(ix0,jx0);
384             dy00             = _mm256_sub_ps(iy0,jy0);
385             dz00             = _mm256_sub_ps(iz0,jz0);
386
387             /* Calculate squared distance and things based on it */
388             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
389
390             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
391
392             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
393
394             /* Load parameters for j particles */
395             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
396                                                                  charge+jnrC+0,charge+jnrD+0,
397                                                                  charge+jnrE+0,charge+jnrF+0,
398                                                                  charge+jnrG+0,charge+jnrH+0);
399             vdwjidx0A        = 2*vdwtype[jnrA+0];
400             vdwjidx0B        = 2*vdwtype[jnrB+0];
401             vdwjidx0C        = 2*vdwtype[jnrC+0];
402             vdwjidx0D        = 2*vdwtype[jnrD+0];
403             vdwjidx0E        = 2*vdwtype[jnrE+0];
404             vdwjidx0F        = 2*vdwtype[jnrF+0];
405             vdwjidx0G        = 2*vdwtype[jnrG+0];
406             vdwjidx0H        = 2*vdwtype[jnrH+0];
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             r00              = _mm256_mul_ps(rsq00,rinv00);
413             r00              = _mm256_andnot_ps(dummy_mask,r00);
414
415             /* Compute parameters for interactions between i and j atoms */
416             qq00             = _mm256_mul_ps(iq0,jq0);
417             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
418                                             vdwioffsetptr0+vdwjidx0B,
419                                             vdwioffsetptr0+vdwjidx0C,
420                                             vdwioffsetptr0+vdwjidx0D,
421                                             vdwioffsetptr0+vdwjidx0E,
422                                             vdwioffsetptr0+vdwjidx0F,
423                                             vdwioffsetptr0+vdwjidx0G,
424                                             vdwioffsetptr0+vdwjidx0H,
425                                             &c6_00,&c12_00);
426
427             /* Calculate table index by multiplying r with table scale and truncate to integer */
428             rt               = _mm256_mul_ps(r00,vftabscale);
429             vfitab           = _mm256_cvttps_epi32(rt);
430             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
431             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
432             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
433             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
434             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
435             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
436
437             /* EWALD ELECTROSTATICS */
438             
439             /* Analytical PME correction */
440             zeta2            = _mm256_mul_ps(beta2,rsq00);
441             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
442             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
443             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
444             felec            = _mm256_mul_ps(qq00,felec);
445             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
446             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
447             velec            = _mm256_sub_ps(rinv00,pmecorrV);
448             velec            = _mm256_mul_ps(qq00,velec);
449             
450             /* CUBIC SPLINE TABLE DISPERSION */
451             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
452                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
453             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
454                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
455             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
456                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
457             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
458                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
459             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
460             Heps             = _mm256_mul_ps(vfeps,H);
461             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
462             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
463             vvdw6            = _mm256_mul_ps(c6_00,VV);
464             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
465             fvdw6            = _mm256_mul_ps(c6_00,FF);
466
467             /* CUBIC SPLINE TABLE REPULSION */
468             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
469             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
470             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
471                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
472             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
473                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
474             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
475                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
476             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
477                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
478             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
479             Heps             = _mm256_mul_ps(vfeps,H);
480             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
481             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
482             vvdw12           = _mm256_mul_ps(c12_00,VV);
483             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
484             fvdw12           = _mm256_mul_ps(c12_00,FF);
485             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
486             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
487
488             /* Update potential sum for this i atom from the interaction with this j atom. */
489             velec            = _mm256_andnot_ps(dummy_mask,velec);
490             velecsum         = _mm256_add_ps(velecsum,velec);
491             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
492             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
493
494             fscal            = _mm256_add_ps(felec,fvdw);
495
496             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
497
498             /* Calculate temporary vectorial force */
499             tx               = _mm256_mul_ps(fscal,dx00);
500             ty               = _mm256_mul_ps(fscal,dy00);
501             tz               = _mm256_mul_ps(fscal,dz00);
502
503             /* Update vectorial force */
504             fix0             = _mm256_add_ps(fix0,tx);
505             fiy0             = _mm256_add_ps(fiy0,ty);
506             fiz0             = _mm256_add_ps(fiz0,tz);
507
508             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
509             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
510             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
511             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
512             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
513             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
514             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
515             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
516             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
517
518             /* Inner loop uses 119 flops */
519         }
520
521         /* End of innermost loop */
522
523         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
524                                                  f+i_coord_offset,fshift+i_shift_offset);
525
526         ggid                        = gid[iidx];
527         /* Update potential energies */
528         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
529         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
530
531         /* Increment number of inner iterations */
532         inneriter                  += j_index_end - j_index_start;
533
534         /* Outer loop uses 9 flops */
535     }
536
537     /* Increment number of outer iterations */
538     outeriter        += nri;
539
540     /* Update outer/inner flops */
541
542     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*119);
543 }
544 /*
545  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_single
546  * Electrostatics interaction: Ewald
547  * VdW interaction:            CubicSplineTable
548  * Geometry:                   Particle-Particle
549  * Calculate force/pot:        Force
550  */
551 void
552 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_single
553                     (t_nblist * gmx_restrict                nlist,
554                      rvec * gmx_restrict                    xx,
555                      rvec * gmx_restrict                    ff,
556                      t_forcerec * gmx_restrict              fr,
557                      t_mdatoms * gmx_restrict               mdatoms,
558                      nb_kernel_data_t * gmx_restrict        kernel_data,
559                      t_nrnb * gmx_restrict                  nrnb)
560 {
561     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
562      * just 0 for non-waters.
563      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
564      * jnr indices corresponding to data put in the four positions in the SIMD register.
565      */
566     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
567     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
568     int              jnrA,jnrB,jnrC,jnrD;
569     int              jnrE,jnrF,jnrG,jnrH;
570     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
571     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
572     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
573     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
574     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
575     real             rcutoff_scalar;
576     real             *shiftvec,*fshift,*x,*f;
577     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
578     real             scratch[4*DIM];
579     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
580     real *           vdwioffsetptr0;
581     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
582     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
583     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
584     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
585     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
586     real             *charge;
587     int              nvdwtype;
588     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
589     int              *vdwtype;
590     real             *vdwparam;
591     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
592     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
593     __m256i          vfitab;
594     __m128i          vfitab_lo,vfitab_hi;
595     __m128i          ifour       = _mm_set1_epi32(4);
596     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
597     real             *vftab;
598     __m256i          ewitab;
599     __m128i          ewitab_lo,ewitab_hi;
600     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
601     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
602     real             *ewtab;
603     __m256           dummy_mask,cutoff_mask;
604     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
605     __m256           one     = _mm256_set1_ps(1.0);
606     __m256           two     = _mm256_set1_ps(2.0);
607     x                = xx[0];
608     f                = ff[0];
609
610     nri              = nlist->nri;
611     iinr             = nlist->iinr;
612     jindex           = nlist->jindex;
613     jjnr             = nlist->jjnr;
614     shiftidx         = nlist->shift;
615     gid              = nlist->gid;
616     shiftvec         = fr->shift_vec[0];
617     fshift           = fr->fshift[0];
618     facel            = _mm256_set1_ps(fr->epsfac);
619     charge           = mdatoms->chargeA;
620     nvdwtype         = fr->ntype;
621     vdwparam         = fr->nbfp;
622     vdwtype          = mdatoms->typeA;
623
624     vftab            = kernel_data->table_vdw->data;
625     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
626
627     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
628     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
629     beta2            = _mm256_mul_ps(beta,beta);
630     beta3            = _mm256_mul_ps(beta,beta2);
631
632     ewtab            = fr->ic->tabq_coul_F;
633     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
634     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
635
636     /* Avoid stupid compiler warnings */
637     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
638     j_coord_offsetA = 0;
639     j_coord_offsetB = 0;
640     j_coord_offsetC = 0;
641     j_coord_offsetD = 0;
642     j_coord_offsetE = 0;
643     j_coord_offsetF = 0;
644     j_coord_offsetG = 0;
645     j_coord_offsetH = 0;
646
647     outeriter        = 0;
648     inneriter        = 0;
649
650     for(iidx=0;iidx<4*DIM;iidx++)
651     {
652         scratch[iidx] = 0.0;
653     }
654
655     /* Start outer loop over neighborlists */
656     for(iidx=0; iidx<nri; iidx++)
657     {
658         /* Load shift vector for this list */
659         i_shift_offset   = DIM*shiftidx[iidx];
660
661         /* Load limits for loop over neighbors */
662         j_index_start    = jindex[iidx];
663         j_index_end      = jindex[iidx+1];
664
665         /* Get outer coordinate index */
666         inr              = iinr[iidx];
667         i_coord_offset   = DIM*inr;
668
669         /* Load i particle coords and add shift vector */
670         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
671
672         fix0             = _mm256_setzero_ps();
673         fiy0             = _mm256_setzero_ps();
674         fiz0             = _mm256_setzero_ps();
675
676         /* Load parameters for i particles */
677         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
678         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
679
680         /* Start inner kernel loop */
681         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
682         {
683
684             /* Get j neighbor index, and coordinate index */
685             jnrA             = jjnr[jidx];
686             jnrB             = jjnr[jidx+1];
687             jnrC             = jjnr[jidx+2];
688             jnrD             = jjnr[jidx+3];
689             jnrE             = jjnr[jidx+4];
690             jnrF             = jjnr[jidx+5];
691             jnrG             = jjnr[jidx+6];
692             jnrH             = jjnr[jidx+7];
693             j_coord_offsetA  = DIM*jnrA;
694             j_coord_offsetB  = DIM*jnrB;
695             j_coord_offsetC  = DIM*jnrC;
696             j_coord_offsetD  = DIM*jnrD;
697             j_coord_offsetE  = DIM*jnrE;
698             j_coord_offsetF  = DIM*jnrF;
699             j_coord_offsetG  = DIM*jnrG;
700             j_coord_offsetH  = DIM*jnrH;
701
702             /* load j atom coordinates */
703             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
704                                                  x+j_coord_offsetC,x+j_coord_offsetD,
705                                                  x+j_coord_offsetE,x+j_coord_offsetF,
706                                                  x+j_coord_offsetG,x+j_coord_offsetH,
707                                                  &jx0,&jy0,&jz0);
708
709             /* Calculate displacement vector */
710             dx00             = _mm256_sub_ps(ix0,jx0);
711             dy00             = _mm256_sub_ps(iy0,jy0);
712             dz00             = _mm256_sub_ps(iz0,jz0);
713
714             /* Calculate squared distance and things based on it */
715             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
716
717             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
718
719             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
720
721             /* Load parameters for j particles */
722             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
723                                                                  charge+jnrC+0,charge+jnrD+0,
724                                                                  charge+jnrE+0,charge+jnrF+0,
725                                                                  charge+jnrG+0,charge+jnrH+0);
726             vdwjidx0A        = 2*vdwtype[jnrA+0];
727             vdwjidx0B        = 2*vdwtype[jnrB+0];
728             vdwjidx0C        = 2*vdwtype[jnrC+0];
729             vdwjidx0D        = 2*vdwtype[jnrD+0];
730             vdwjidx0E        = 2*vdwtype[jnrE+0];
731             vdwjidx0F        = 2*vdwtype[jnrF+0];
732             vdwjidx0G        = 2*vdwtype[jnrG+0];
733             vdwjidx0H        = 2*vdwtype[jnrH+0];
734
735             /**************************
736              * CALCULATE INTERACTIONS *
737              **************************/
738
739             r00              = _mm256_mul_ps(rsq00,rinv00);
740
741             /* Compute parameters for interactions between i and j atoms */
742             qq00             = _mm256_mul_ps(iq0,jq0);
743             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
744                                             vdwioffsetptr0+vdwjidx0B,
745                                             vdwioffsetptr0+vdwjidx0C,
746                                             vdwioffsetptr0+vdwjidx0D,
747                                             vdwioffsetptr0+vdwjidx0E,
748                                             vdwioffsetptr0+vdwjidx0F,
749                                             vdwioffsetptr0+vdwjidx0G,
750                                             vdwioffsetptr0+vdwjidx0H,
751                                             &c6_00,&c12_00);
752
753             /* Calculate table index by multiplying r with table scale and truncate to integer */
754             rt               = _mm256_mul_ps(r00,vftabscale);
755             vfitab           = _mm256_cvttps_epi32(rt);
756             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
757             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
758             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
759             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
760             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
761             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
762
763             /* EWALD ELECTROSTATICS */
764             
765             /* Analytical PME correction */
766             zeta2            = _mm256_mul_ps(beta2,rsq00);
767             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
768             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
769             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
770             felec            = _mm256_mul_ps(qq00,felec);
771             
772             /* CUBIC SPLINE TABLE DISPERSION */
773             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
774                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
775             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
776                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
777             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
778                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
779             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
780                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
781             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
782             Heps             = _mm256_mul_ps(vfeps,H);
783             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
784             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
785             fvdw6            = _mm256_mul_ps(c6_00,FF);
786
787             /* CUBIC SPLINE TABLE REPULSION */
788             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
789             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
790             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
791                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
792             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
793                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
794             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
795                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
796             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
797                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
798             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
799             Heps             = _mm256_mul_ps(vfeps,H);
800             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
801             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
802             fvdw12           = _mm256_mul_ps(c12_00,FF);
803             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
804
805             fscal            = _mm256_add_ps(felec,fvdw);
806
807             /* Calculate temporary vectorial force */
808             tx               = _mm256_mul_ps(fscal,dx00);
809             ty               = _mm256_mul_ps(fscal,dy00);
810             tz               = _mm256_mul_ps(fscal,dz00);
811
812             /* Update vectorial force */
813             fix0             = _mm256_add_ps(fix0,tx);
814             fiy0             = _mm256_add_ps(fiy0,ty);
815             fiz0             = _mm256_add_ps(fiz0,tz);
816
817             fjptrA             = f+j_coord_offsetA;
818             fjptrB             = f+j_coord_offsetB;
819             fjptrC             = f+j_coord_offsetC;
820             fjptrD             = f+j_coord_offsetD;
821             fjptrE             = f+j_coord_offsetE;
822             fjptrF             = f+j_coord_offsetF;
823             fjptrG             = f+j_coord_offsetG;
824             fjptrH             = f+j_coord_offsetH;
825             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
826
827             /* Inner loop uses 82 flops */
828         }
829
830         if(jidx<j_index_end)
831         {
832
833             /* Get j neighbor index, and coordinate index */
834             jnrlistA         = jjnr[jidx];
835             jnrlistB         = jjnr[jidx+1];
836             jnrlistC         = jjnr[jidx+2];
837             jnrlistD         = jjnr[jidx+3];
838             jnrlistE         = jjnr[jidx+4];
839             jnrlistF         = jjnr[jidx+5];
840             jnrlistG         = jjnr[jidx+6];
841             jnrlistH         = jjnr[jidx+7];
842             /* Sign of each element will be negative for non-real atoms.
843              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
844              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
845              */
846             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
847                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
848                                             
849             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
850             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
851             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
852             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
853             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
854             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
855             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
856             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
857             j_coord_offsetA  = DIM*jnrA;
858             j_coord_offsetB  = DIM*jnrB;
859             j_coord_offsetC  = DIM*jnrC;
860             j_coord_offsetD  = DIM*jnrD;
861             j_coord_offsetE  = DIM*jnrE;
862             j_coord_offsetF  = DIM*jnrF;
863             j_coord_offsetG  = DIM*jnrG;
864             j_coord_offsetH  = DIM*jnrH;
865
866             /* load j atom coordinates */
867             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
868                                                  x+j_coord_offsetC,x+j_coord_offsetD,
869                                                  x+j_coord_offsetE,x+j_coord_offsetF,
870                                                  x+j_coord_offsetG,x+j_coord_offsetH,
871                                                  &jx0,&jy0,&jz0);
872
873             /* Calculate displacement vector */
874             dx00             = _mm256_sub_ps(ix0,jx0);
875             dy00             = _mm256_sub_ps(iy0,jy0);
876             dz00             = _mm256_sub_ps(iz0,jz0);
877
878             /* Calculate squared distance and things based on it */
879             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
880
881             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
882
883             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
884
885             /* Load parameters for j particles */
886             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
887                                                                  charge+jnrC+0,charge+jnrD+0,
888                                                                  charge+jnrE+0,charge+jnrF+0,
889                                                                  charge+jnrG+0,charge+jnrH+0);
890             vdwjidx0A        = 2*vdwtype[jnrA+0];
891             vdwjidx0B        = 2*vdwtype[jnrB+0];
892             vdwjidx0C        = 2*vdwtype[jnrC+0];
893             vdwjidx0D        = 2*vdwtype[jnrD+0];
894             vdwjidx0E        = 2*vdwtype[jnrE+0];
895             vdwjidx0F        = 2*vdwtype[jnrF+0];
896             vdwjidx0G        = 2*vdwtype[jnrG+0];
897             vdwjidx0H        = 2*vdwtype[jnrH+0];
898
899             /**************************
900              * CALCULATE INTERACTIONS *
901              **************************/
902
903             r00              = _mm256_mul_ps(rsq00,rinv00);
904             r00              = _mm256_andnot_ps(dummy_mask,r00);
905
906             /* Compute parameters for interactions between i and j atoms */
907             qq00             = _mm256_mul_ps(iq0,jq0);
908             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
909                                             vdwioffsetptr0+vdwjidx0B,
910                                             vdwioffsetptr0+vdwjidx0C,
911                                             vdwioffsetptr0+vdwjidx0D,
912                                             vdwioffsetptr0+vdwjidx0E,
913                                             vdwioffsetptr0+vdwjidx0F,
914                                             vdwioffsetptr0+vdwjidx0G,
915                                             vdwioffsetptr0+vdwjidx0H,
916                                             &c6_00,&c12_00);
917
918             /* Calculate table index by multiplying r with table scale and truncate to integer */
919             rt               = _mm256_mul_ps(r00,vftabscale);
920             vfitab           = _mm256_cvttps_epi32(rt);
921             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
922             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
923             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
924             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
925             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
926             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
927
928             /* EWALD ELECTROSTATICS */
929             
930             /* Analytical PME correction */
931             zeta2            = _mm256_mul_ps(beta2,rsq00);
932             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
933             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
934             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
935             felec            = _mm256_mul_ps(qq00,felec);
936             
937             /* CUBIC SPLINE TABLE DISPERSION */
938             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
939                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
940             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
941                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
942             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
943                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
944             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
945                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
946             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
947             Heps             = _mm256_mul_ps(vfeps,H);
948             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
949             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
950             fvdw6            = _mm256_mul_ps(c6_00,FF);
951
952             /* CUBIC SPLINE TABLE REPULSION */
953             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
954             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
955             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
956                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
957             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
958                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
959             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
960                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
961             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
962                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
963             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
964             Heps             = _mm256_mul_ps(vfeps,H);
965             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
966             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
967             fvdw12           = _mm256_mul_ps(c12_00,FF);
968             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
969
970             fscal            = _mm256_add_ps(felec,fvdw);
971
972             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
973
974             /* Calculate temporary vectorial force */
975             tx               = _mm256_mul_ps(fscal,dx00);
976             ty               = _mm256_mul_ps(fscal,dy00);
977             tz               = _mm256_mul_ps(fscal,dz00);
978
979             /* Update vectorial force */
980             fix0             = _mm256_add_ps(fix0,tx);
981             fiy0             = _mm256_add_ps(fiy0,ty);
982             fiz0             = _mm256_add_ps(fiz0,tz);
983
984             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
985             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
986             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
987             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
988             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
989             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
990             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
991             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
992             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
993
994             /* Inner loop uses 83 flops */
995         }
996
997         /* End of innermost loop */
998
999         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
1000                                                  f+i_coord_offset,fshift+i_shift_offset);
1001
1002         /* Increment number of inner iterations */
1003         inneriter                  += j_index_end - j_index_start;
1004
1005         /* Outer loop uses 7 flops */
1006     }
1007
1008     /* Increment number of outer iterations */
1009     outeriter        += nri;
1010
1011     /* Update outer/inner flops */
1012
1013     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*83);
1014 }