6c595c2c0782f16398b1bf3b9ca9554d33435175
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m256i          ewitab;
80     __m128i          ewitab_lo,ewitab_hi;
81     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
82     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
83     real             *ewtab;
84     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
85     real             rswitch_scalar,d_scalar;
86     __m256           dummy_mask,cutoff_mask;
87     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
88     __m256           one     = _mm256_set1_ps(1.0);
89     __m256           two     = _mm256_set1_ps(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm256_set1_ps(fr->epsfac);
102     charge           = mdatoms->chargeA;
103
104     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
105     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
106     beta2            = _mm256_mul_ps(beta,beta);
107     beta3            = _mm256_mul_ps(beta,beta2);
108
109     ewtab            = fr->ic->tabq_coul_FDV0;
110     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
111     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
112
113     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
114     rcutoff_scalar   = fr->rcoulomb;
115     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
116     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
117
118     rswitch_scalar   = fr->rcoulomb_switch;
119     rswitch          = _mm256_set1_ps(rswitch_scalar);
120     /* Setup switch parameters */
121     d_scalar         = rcutoff_scalar-rswitch_scalar;
122     d                = _mm256_set1_ps(d_scalar);
123     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
124     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
125     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
126     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
127     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
128     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136     j_coord_offsetE = 0;
137     j_coord_offsetF = 0;
138     j_coord_offsetG = 0;
139     j_coord_offsetH = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166         fix0             = _mm256_setzero_ps();
167         fiy0             = _mm256_setzero_ps();
168         fiz0             = _mm256_setzero_ps();
169
170         /* Load parameters for i particles */
171         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
172
173         /* Reset potential sums */
174         velecsum         = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0,
220                                                                  charge+jnrE+0,charge+jnrF+0,
221                                                                  charge+jnrG+0,charge+jnrH+0);
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             if (gmx_mm256_any_lt(rsq00,rcutoff2))
228             {
229
230             r00              = _mm256_mul_ps(rsq00,rinv00);
231
232             /* Compute parameters for interactions between i and j atoms */
233             qq00             = _mm256_mul_ps(iq0,jq0);
234
235             /* EWALD ELECTROSTATICS */
236             
237             /* Analytical PME correction */
238             zeta2            = _mm256_mul_ps(beta2,rsq00);
239             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
240             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
241             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
242             felec            = _mm256_mul_ps(qq00,felec);
243             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
244             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
245             velec            = _mm256_sub_ps(rinv00,pmecorrV);
246             velec            = _mm256_mul_ps(qq00,velec);
247             
248             d                = _mm256_sub_ps(r00,rswitch);
249             d                = _mm256_max_ps(d,_mm256_setzero_ps());
250             d2               = _mm256_mul_ps(d,d);
251             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
252
253             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
254
255             /* Evaluate switch function */
256             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
257             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
258             velec            = _mm256_mul_ps(velec,sw);
259             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velec            = _mm256_and_ps(velec,cutoff_mask);
263             velecsum         = _mm256_add_ps(velecsum,velec);
264
265             fscal            = felec;
266
267             fscal            = _mm256_and_ps(fscal,cutoff_mask);
268
269             /* Calculate temporary vectorial force */
270             tx               = _mm256_mul_ps(fscal,dx00);
271             ty               = _mm256_mul_ps(fscal,dy00);
272             tz               = _mm256_mul_ps(fscal,dz00);
273
274             /* Update vectorial force */
275             fix0             = _mm256_add_ps(fix0,tx);
276             fiy0             = _mm256_add_ps(fiy0,ty);
277             fiz0             = _mm256_add_ps(fiz0,tz);
278
279             fjptrA             = f+j_coord_offsetA;
280             fjptrB             = f+j_coord_offsetB;
281             fjptrC             = f+j_coord_offsetC;
282             fjptrD             = f+j_coord_offsetD;
283             fjptrE             = f+j_coord_offsetE;
284             fjptrF             = f+j_coord_offsetF;
285             fjptrG             = f+j_coord_offsetG;
286             fjptrH             = f+j_coord_offsetH;
287             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
288
289             }
290
291             /* Inner loop uses 108 flops */
292         }
293
294         if(jidx<j_index_end)
295         {
296
297             /* Get j neighbor index, and coordinate index */
298             jnrlistA         = jjnr[jidx];
299             jnrlistB         = jjnr[jidx+1];
300             jnrlistC         = jjnr[jidx+2];
301             jnrlistD         = jjnr[jidx+3];
302             jnrlistE         = jjnr[jidx+4];
303             jnrlistF         = jjnr[jidx+5];
304             jnrlistG         = jjnr[jidx+6];
305             jnrlistH         = jjnr[jidx+7];
306             /* Sign of each element will be negative for non-real atoms.
307              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
308              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
309              */
310             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
311                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
312                                             
313             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
314             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
315             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
316             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
317             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
318             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
319             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
320             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
321             j_coord_offsetA  = DIM*jnrA;
322             j_coord_offsetB  = DIM*jnrB;
323             j_coord_offsetC  = DIM*jnrC;
324             j_coord_offsetD  = DIM*jnrD;
325             j_coord_offsetE  = DIM*jnrE;
326             j_coord_offsetF  = DIM*jnrF;
327             j_coord_offsetG  = DIM*jnrG;
328             j_coord_offsetH  = DIM*jnrH;
329
330             /* load j atom coordinates */
331             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
332                                                  x+j_coord_offsetC,x+j_coord_offsetD,
333                                                  x+j_coord_offsetE,x+j_coord_offsetF,
334                                                  x+j_coord_offsetG,x+j_coord_offsetH,
335                                                  &jx0,&jy0,&jz0);
336
337             /* Calculate displacement vector */
338             dx00             = _mm256_sub_ps(ix0,jx0);
339             dy00             = _mm256_sub_ps(iy0,jy0);
340             dz00             = _mm256_sub_ps(iz0,jz0);
341
342             /* Calculate squared distance and things based on it */
343             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
344
345             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
346
347             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
348
349             /* Load parameters for j particles */
350             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
351                                                                  charge+jnrC+0,charge+jnrD+0,
352                                                                  charge+jnrE+0,charge+jnrF+0,
353                                                                  charge+jnrG+0,charge+jnrH+0);
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             if (gmx_mm256_any_lt(rsq00,rcutoff2))
360             {
361
362             r00              = _mm256_mul_ps(rsq00,rinv00);
363             r00              = _mm256_andnot_ps(dummy_mask,r00);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq00             = _mm256_mul_ps(iq0,jq0);
367
368             /* EWALD ELECTROSTATICS */
369             
370             /* Analytical PME correction */
371             zeta2            = _mm256_mul_ps(beta2,rsq00);
372             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
373             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
374             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
375             felec            = _mm256_mul_ps(qq00,felec);
376             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
377             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
378             velec            = _mm256_sub_ps(rinv00,pmecorrV);
379             velec            = _mm256_mul_ps(qq00,velec);
380             
381             d                = _mm256_sub_ps(r00,rswitch);
382             d                = _mm256_max_ps(d,_mm256_setzero_ps());
383             d2               = _mm256_mul_ps(d,d);
384             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
385
386             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
387
388             /* Evaluate switch function */
389             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
390             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
391             velec            = _mm256_mul_ps(velec,sw);
392             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
393
394             /* Update potential sum for this i atom from the interaction with this j atom. */
395             velec            = _mm256_and_ps(velec,cutoff_mask);
396             velec            = _mm256_andnot_ps(dummy_mask,velec);
397             velecsum         = _mm256_add_ps(velecsum,velec);
398
399             fscal            = felec;
400
401             fscal            = _mm256_and_ps(fscal,cutoff_mask);
402
403             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm256_mul_ps(fscal,dx00);
407             ty               = _mm256_mul_ps(fscal,dy00);
408             tz               = _mm256_mul_ps(fscal,dz00);
409
410             /* Update vectorial force */
411             fix0             = _mm256_add_ps(fix0,tx);
412             fiy0             = _mm256_add_ps(fiy0,ty);
413             fiz0             = _mm256_add_ps(fiz0,tz);
414
415             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
416             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
417             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
418             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
419             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
420             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
421             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
422             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
423             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
424
425             }
426
427             /* Inner loop uses 109 flops */
428         }
429
430         /* End of innermost loop */
431
432         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
433                                                  f+i_coord_offset,fshift+i_shift_offset);
434
435         ggid                        = gid[iidx];
436         /* Update potential energies */
437         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
438
439         /* Increment number of inner iterations */
440         inneriter                  += j_index_end - j_index_start;
441
442         /* Outer loop uses 8 flops */
443     }
444
445     /* Increment number of outer iterations */
446     outeriter        += nri;
447
448     /* Update outer/inner flops */
449
450     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*109);
451 }
452 /*
453  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
454  * Electrostatics interaction: Ewald
455  * VdW interaction:            None
456  * Geometry:                   Particle-Particle
457  * Calculate force/pot:        Force
458  */
459 void
460 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_single
461                     (t_nblist * gmx_restrict                nlist,
462                      rvec * gmx_restrict                    xx,
463                      rvec * gmx_restrict                    ff,
464                      t_forcerec * gmx_restrict              fr,
465                      t_mdatoms * gmx_restrict               mdatoms,
466                      nb_kernel_data_t * gmx_restrict        kernel_data,
467                      t_nrnb * gmx_restrict                  nrnb)
468 {
469     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
470      * just 0 for non-waters.
471      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
472      * jnr indices corresponding to data put in the four positions in the SIMD register.
473      */
474     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
475     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
476     int              jnrA,jnrB,jnrC,jnrD;
477     int              jnrE,jnrF,jnrG,jnrH;
478     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
479     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
480     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
481     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
482     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
483     real             rcutoff_scalar;
484     real             *shiftvec,*fshift,*x,*f;
485     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
486     real             scratch[4*DIM];
487     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
488     real *           vdwioffsetptr0;
489     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
490     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
491     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
492     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
493     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
494     real             *charge;
495     __m256i          ewitab;
496     __m128i          ewitab_lo,ewitab_hi;
497     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
498     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
499     real             *ewtab;
500     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
501     real             rswitch_scalar,d_scalar;
502     __m256           dummy_mask,cutoff_mask;
503     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
504     __m256           one     = _mm256_set1_ps(1.0);
505     __m256           two     = _mm256_set1_ps(2.0);
506     x                = xx[0];
507     f                = ff[0];
508
509     nri              = nlist->nri;
510     iinr             = nlist->iinr;
511     jindex           = nlist->jindex;
512     jjnr             = nlist->jjnr;
513     shiftidx         = nlist->shift;
514     gid              = nlist->gid;
515     shiftvec         = fr->shift_vec[0];
516     fshift           = fr->fshift[0];
517     facel            = _mm256_set1_ps(fr->epsfac);
518     charge           = mdatoms->chargeA;
519
520     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
521     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
522     beta2            = _mm256_mul_ps(beta,beta);
523     beta3            = _mm256_mul_ps(beta,beta2);
524
525     ewtab            = fr->ic->tabq_coul_FDV0;
526     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
527     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
528
529     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
530     rcutoff_scalar   = fr->rcoulomb;
531     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
532     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
533
534     rswitch_scalar   = fr->rcoulomb_switch;
535     rswitch          = _mm256_set1_ps(rswitch_scalar);
536     /* Setup switch parameters */
537     d_scalar         = rcutoff_scalar-rswitch_scalar;
538     d                = _mm256_set1_ps(d_scalar);
539     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
540     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
541     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
542     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
543     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
544     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
545
546     /* Avoid stupid compiler warnings */
547     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
548     j_coord_offsetA = 0;
549     j_coord_offsetB = 0;
550     j_coord_offsetC = 0;
551     j_coord_offsetD = 0;
552     j_coord_offsetE = 0;
553     j_coord_offsetF = 0;
554     j_coord_offsetG = 0;
555     j_coord_offsetH = 0;
556
557     outeriter        = 0;
558     inneriter        = 0;
559
560     for(iidx=0;iidx<4*DIM;iidx++)
561     {
562         scratch[iidx] = 0.0;
563     }
564
565     /* Start outer loop over neighborlists */
566     for(iidx=0; iidx<nri; iidx++)
567     {
568         /* Load shift vector for this list */
569         i_shift_offset   = DIM*shiftidx[iidx];
570
571         /* Load limits for loop over neighbors */
572         j_index_start    = jindex[iidx];
573         j_index_end      = jindex[iidx+1];
574
575         /* Get outer coordinate index */
576         inr              = iinr[iidx];
577         i_coord_offset   = DIM*inr;
578
579         /* Load i particle coords and add shift vector */
580         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
581
582         fix0             = _mm256_setzero_ps();
583         fiy0             = _mm256_setzero_ps();
584         fiz0             = _mm256_setzero_ps();
585
586         /* Load parameters for i particles */
587         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
588
589         /* Start inner kernel loop */
590         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
591         {
592
593             /* Get j neighbor index, and coordinate index */
594             jnrA             = jjnr[jidx];
595             jnrB             = jjnr[jidx+1];
596             jnrC             = jjnr[jidx+2];
597             jnrD             = jjnr[jidx+3];
598             jnrE             = jjnr[jidx+4];
599             jnrF             = jjnr[jidx+5];
600             jnrG             = jjnr[jidx+6];
601             jnrH             = jjnr[jidx+7];
602             j_coord_offsetA  = DIM*jnrA;
603             j_coord_offsetB  = DIM*jnrB;
604             j_coord_offsetC  = DIM*jnrC;
605             j_coord_offsetD  = DIM*jnrD;
606             j_coord_offsetE  = DIM*jnrE;
607             j_coord_offsetF  = DIM*jnrF;
608             j_coord_offsetG  = DIM*jnrG;
609             j_coord_offsetH  = DIM*jnrH;
610
611             /* load j atom coordinates */
612             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
613                                                  x+j_coord_offsetC,x+j_coord_offsetD,
614                                                  x+j_coord_offsetE,x+j_coord_offsetF,
615                                                  x+j_coord_offsetG,x+j_coord_offsetH,
616                                                  &jx0,&jy0,&jz0);
617
618             /* Calculate displacement vector */
619             dx00             = _mm256_sub_ps(ix0,jx0);
620             dy00             = _mm256_sub_ps(iy0,jy0);
621             dz00             = _mm256_sub_ps(iz0,jz0);
622
623             /* Calculate squared distance and things based on it */
624             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
625
626             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
627
628             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
629
630             /* Load parameters for j particles */
631             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
632                                                                  charge+jnrC+0,charge+jnrD+0,
633                                                                  charge+jnrE+0,charge+jnrF+0,
634                                                                  charge+jnrG+0,charge+jnrH+0);
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             if (gmx_mm256_any_lt(rsq00,rcutoff2))
641             {
642
643             r00              = _mm256_mul_ps(rsq00,rinv00);
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq00             = _mm256_mul_ps(iq0,jq0);
647
648             /* EWALD ELECTROSTATICS */
649             
650             /* Analytical PME correction */
651             zeta2            = _mm256_mul_ps(beta2,rsq00);
652             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
653             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
654             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
655             felec            = _mm256_mul_ps(qq00,felec);
656             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
657             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
658             velec            = _mm256_sub_ps(rinv00,pmecorrV);
659             velec            = _mm256_mul_ps(qq00,velec);
660             
661             d                = _mm256_sub_ps(r00,rswitch);
662             d                = _mm256_max_ps(d,_mm256_setzero_ps());
663             d2               = _mm256_mul_ps(d,d);
664             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
665
666             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
667
668             /* Evaluate switch function */
669             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
670             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
671             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
672
673             fscal            = felec;
674
675             fscal            = _mm256_and_ps(fscal,cutoff_mask);
676
677             /* Calculate temporary vectorial force */
678             tx               = _mm256_mul_ps(fscal,dx00);
679             ty               = _mm256_mul_ps(fscal,dy00);
680             tz               = _mm256_mul_ps(fscal,dz00);
681
682             /* Update vectorial force */
683             fix0             = _mm256_add_ps(fix0,tx);
684             fiy0             = _mm256_add_ps(fiy0,ty);
685             fiz0             = _mm256_add_ps(fiz0,tz);
686
687             fjptrA             = f+j_coord_offsetA;
688             fjptrB             = f+j_coord_offsetB;
689             fjptrC             = f+j_coord_offsetC;
690             fjptrD             = f+j_coord_offsetD;
691             fjptrE             = f+j_coord_offsetE;
692             fjptrF             = f+j_coord_offsetF;
693             fjptrG             = f+j_coord_offsetG;
694             fjptrH             = f+j_coord_offsetH;
695             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
696
697             }
698
699             /* Inner loop uses 105 flops */
700         }
701
702         if(jidx<j_index_end)
703         {
704
705             /* Get j neighbor index, and coordinate index */
706             jnrlistA         = jjnr[jidx];
707             jnrlistB         = jjnr[jidx+1];
708             jnrlistC         = jjnr[jidx+2];
709             jnrlistD         = jjnr[jidx+3];
710             jnrlistE         = jjnr[jidx+4];
711             jnrlistF         = jjnr[jidx+5];
712             jnrlistG         = jjnr[jidx+6];
713             jnrlistH         = jjnr[jidx+7];
714             /* Sign of each element will be negative for non-real atoms.
715              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
716              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
717              */
718             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
719                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
720                                             
721             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
722             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
723             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
724             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
725             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
726             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
727             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
728             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
729             j_coord_offsetA  = DIM*jnrA;
730             j_coord_offsetB  = DIM*jnrB;
731             j_coord_offsetC  = DIM*jnrC;
732             j_coord_offsetD  = DIM*jnrD;
733             j_coord_offsetE  = DIM*jnrE;
734             j_coord_offsetF  = DIM*jnrF;
735             j_coord_offsetG  = DIM*jnrG;
736             j_coord_offsetH  = DIM*jnrH;
737
738             /* load j atom coordinates */
739             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
740                                                  x+j_coord_offsetC,x+j_coord_offsetD,
741                                                  x+j_coord_offsetE,x+j_coord_offsetF,
742                                                  x+j_coord_offsetG,x+j_coord_offsetH,
743                                                  &jx0,&jy0,&jz0);
744
745             /* Calculate displacement vector */
746             dx00             = _mm256_sub_ps(ix0,jx0);
747             dy00             = _mm256_sub_ps(iy0,jy0);
748             dz00             = _mm256_sub_ps(iz0,jz0);
749
750             /* Calculate squared distance and things based on it */
751             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
752
753             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
754
755             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
756
757             /* Load parameters for j particles */
758             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
759                                                                  charge+jnrC+0,charge+jnrD+0,
760                                                                  charge+jnrE+0,charge+jnrF+0,
761                                                                  charge+jnrG+0,charge+jnrH+0);
762
763             /**************************
764              * CALCULATE INTERACTIONS *
765              **************************/
766
767             if (gmx_mm256_any_lt(rsq00,rcutoff2))
768             {
769
770             r00              = _mm256_mul_ps(rsq00,rinv00);
771             r00              = _mm256_andnot_ps(dummy_mask,r00);
772
773             /* Compute parameters for interactions between i and j atoms */
774             qq00             = _mm256_mul_ps(iq0,jq0);
775
776             /* EWALD ELECTROSTATICS */
777             
778             /* Analytical PME correction */
779             zeta2            = _mm256_mul_ps(beta2,rsq00);
780             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
781             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
782             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
783             felec            = _mm256_mul_ps(qq00,felec);
784             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
785             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
786             velec            = _mm256_sub_ps(rinv00,pmecorrV);
787             velec            = _mm256_mul_ps(qq00,velec);
788             
789             d                = _mm256_sub_ps(r00,rswitch);
790             d                = _mm256_max_ps(d,_mm256_setzero_ps());
791             d2               = _mm256_mul_ps(d,d);
792             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
793
794             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
795
796             /* Evaluate switch function */
797             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
798             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
799             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
800
801             fscal            = felec;
802
803             fscal            = _mm256_and_ps(fscal,cutoff_mask);
804
805             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
806
807             /* Calculate temporary vectorial force */
808             tx               = _mm256_mul_ps(fscal,dx00);
809             ty               = _mm256_mul_ps(fscal,dy00);
810             tz               = _mm256_mul_ps(fscal,dz00);
811
812             /* Update vectorial force */
813             fix0             = _mm256_add_ps(fix0,tx);
814             fiy0             = _mm256_add_ps(fiy0,ty);
815             fiz0             = _mm256_add_ps(fiz0,tz);
816
817             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
818             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
819             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
820             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
821             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
822             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
823             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
824             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
825             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
826
827             }
828
829             /* Inner loop uses 106 flops */
830         }
831
832         /* End of innermost loop */
833
834         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
835                                                  f+i_coord_offset,fshift+i_shift_offset);
836
837         /* Increment number of inner iterations */
838         inneriter                  += j_index_end - j_index_start;
839
840         /* Outer loop uses 7 flops */
841     }
842
843     /* Increment number of outer iterations */
844     outeriter        += nri;
845
846     /* Update outer/inner flops */
847
848     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*106);
849 }