made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256i          ewitab;
86     __m128i          ewitab_lo,ewitab_hi;
87     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
89     real             *ewtab;
90     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
91     real             rswitch_scalar,d_scalar;
92     __m256           dummy_mask,cutoff_mask;
93     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
94     __m256           one     = _mm256_set1_ps(1.0);
95     __m256           two     = _mm256_set1_ps(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_ps(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
114     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
115     beta2            = _mm256_mul_ps(beta,beta);
116     beta3            = _mm256_mul_ps(beta,beta2);
117
118     ewtab            = fr->ic->tabq_coul_FDV0;
119     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
120     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
121
122     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123     rcutoff_scalar   = fr->rcoulomb;
124     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
125     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
126
127     rswitch_scalar   = fr->rcoulomb_switch;
128     rswitch          = _mm256_set1_ps(rswitch_scalar);
129     /* Setup switch parameters */
130     d_scalar         = rcutoff_scalar-rswitch_scalar;
131     d                = _mm256_set1_ps(d_scalar);
132     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
133     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
134     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
135     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
136     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
137     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145     j_coord_offsetE = 0;
146     j_coord_offsetF = 0;
147     j_coord_offsetG = 0;
148     j_coord_offsetH = 0;
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     for(iidx=0;iidx<4*DIM;iidx++)
154     {
155         scratch[iidx] = 0.0;
156     }
157
158     /* Start outer loop over neighborlists */
159     for(iidx=0; iidx<nri; iidx++)
160     {
161         /* Load shift vector for this list */
162         i_shift_offset   = DIM*shiftidx[iidx];
163
164         /* Load limits for loop over neighbors */
165         j_index_start    = jindex[iidx];
166         j_index_end      = jindex[iidx+1];
167
168         /* Get outer coordinate index */
169         inr              = iinr[iidx];
170         i_coord_offset   = DIM*inr;
171
172         /* Load i particle coords and add shift vector */
173         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
174
175         fix0             = _mm256_setzero_ps();
176         fiy0             = _mm256_setzero_ps();
177         fiz0             = _mm256_setzero_ps();
178
179         /* Load parameters for i particles */
180         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
181         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_ps();
185         vvdwsum          = _mm256_setzero_ps();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             jnrE             = jjnr[jidx+4];
197             jnrF             = jjnr[jidx+5];
198             jnrG             = jjnr[jidx+6];
199             jnrH             = jjnr[jidx+7];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204             j_coord_offsetE  = DIM*jnrE;
205             j_coord_offsetF  = DIM*jnrF;
206             j_coord_offsetG  = DIM*jnrG;
207             j_coord_offsetH  = DIM*jnrH;
208
209             /* load j atom coordinates */
210             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211                                                  x+j_coord_offsetC,x+j_coord_offsetD,
212                                                  x+j_coord_offsetE,x+j_coord_offsetF,
213                                                  x+j_coord_offsetG,x+j_coord_offsetH,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm256_sub_ps(ix0,jx0);
218             dy00             = _mm256_sub_ps(iy0,jy0);
219             dz00             = _mm256_sub_ps(iz0,jz0);
220
221             /* Calculate squared distance and things based on it */
222             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
223
224             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
225
226             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
227
228             /* Load parameters for j particles */
229             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
230                                                                  charge+jnrC+0,charge+jnrD+0,
231                                                                  charge+jnrE+0,charge+jnrF+0,
232                                                                  charge+jnrG+0,charge+jnrH+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235             vdwjidx0C        = 2*vdwtype[jnrC+0];
236             vdwjidx0D        = 2*vdwtype[jnrD+0];
237             vdwjidx0E        = 2*vdwtype[jnrE+0];
238             vdwjidx0F        = 2*vdwtype[jnrF+0];
239             vdwjidx0G        = 2*vdwtype[jnrG+0];
240             vdwjidx0H        = 2*vdwtype[jnrH+0];
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             if (gmx_mm256_any_lt(rsq00,rcutoff2))
247             {
248
249             r00              = _mm256_mul_ps(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm256_mul_ps(iq0,jq0);
253             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
254                                             vdwioffsetptr0+vdwjidx0B,
255                                             vdwioffsetptr0+vdwjidx0C,
256                                             vdwioffsetptr0+vdwjidx0D,
257                                             vdwioffsetptr0+vdwjidx0E,
258                                             vdwioffsetptr0+vdwjidx0F,
259                                             vdwioffsetptr0+vdwjidx0G,
260                                             vdwioffsetptr0+vdwjidx0H,
261                                             &c6_00,&c12_00);
262
263             /* EWALD ELECTROSTATICS */
264             
265             /* Analytical PME correction */
266             zeta2            = _mm256_mul_ps(beta2,rsq00);
267             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
268             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
269             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
270             felec            = _mm256_mul_ps(qq00,felec);
271             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
272             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
273             velec            = _mm256_sub_ps(rinv00,pmecorrV);
274             velec            = _mm256_mul_ps(qq00,velec);
275             
276             /* LENNARD-JONES DISPERSION/REPULSION */
277
278             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
279             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
280             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
281             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
282             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
283
284             d                = _mm256_sub_ps(r00,rswitch);
285             d                = _mm256_max_ps(d,_mm256_setzero_ps());
286             d2               = _mm256_mul_ps(d,d);
287             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
288
289             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
290
291             /* Evaluate switch function */
292             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
293             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
294             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
295             velec            = _mm256_mul_ps(velec,sw);
296             vvdw             = _mm256_mul_ps(vvdw,sw);
297             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             velec            = _mm256_and_ps(velec,cutoff_mask);
301             velecsum         = _mm256_add_ps(velecsum,velec);
302             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
303             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
304
305             fscal            = _mm256_add_ps(felec,fvdw);
306
307             fscal            = _mm256_and_ps(fscal,cutoff_mask);
308
309             /* Calculate temporary vectorial force */
310             tx               = _mm256_mul_ps(fscal,dx00);
311             ty               = _mm256_mul_ps(fscal,dy00);
312             tz               = _mm256_mul_ps(fscal,dz00);
313
314             /* Update vectorial force */
315             fix0             = _mm256_add_ps(fix0,tx);
316             fiy0             = _mm256_add_ps(fiy0,ty);
317             fiz0             = _mm256_add_ps(fiz0,tz);
318
319             fjptrA             = f+j_coord_offsetA;
320             fjptrB             = f+j_coord_offsetB;
321             fjptrC             = f+j_coord_offsetC;
322             fjptrD             = f+j_coord_offsetD;
323             fjptrE             = f+j_coord_offsetE;
324             fjptrF             = f+j_coord_offsetF;
325             fjptrG             = f+j_coord_offsetG;
326             fjptrH             = f+j_coord_offsetH;
327             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
328
329             }
330
331             /* Inner loop uses 126 flops */
332         }
333
334         if(jidx<j_index_end)
335         {
336
337             /* Get j neighbor index, and coordinate index */
338             jnrlistA         = jjnr[jidx];
339             jnrlistB         = jjnr[jidx+1];
340             jnrlistC         = jjnr[jidx+2];
341             jnrlistD         = jjnr[jidx+3];
342             jnrlistE         = jjnr[jidx+4];
343             jnrlistF         = jjnr[jidx+5];
344             jnrlistG         = jjnr[jidx+6];
345             jnrlistH         = jjnr[jidx+7];
346             /* Sign of each element will be negative for non-real atoms.
347              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
348              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
349              */
350             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
351                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
352                                             
353             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
354             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
355             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
356             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
357             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
358             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
359             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
360             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
361             j_coord_offsetA  = DIM*jnrA;
362             j_coord_offsetB  = DIM*jnrB;
363             j_coord_offsetC  = DIM*jnrC;
364             j_coord_offsetD  = DIM*jnrD;
365             j_coord_offsetE  = DIM*jnrE;
366             j_coord_offsetF  = DIM*jnrF;
367             j_coord_offsetG  = DIM*jnrG;
368             j_coord_offsetH  = DIM*jnrH;
369
370             /* load j atom coordinates */
371             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
372                                                  x+j_coord_offsetC,x+j_coord_offsetD,
373                                                  x+j_coord_offsetE,x+j_coord_offsetF,
374                                                  x+j_coord_offsetG,x+j_coord_offsetH,
375                                                  &jx0,&jy0,&jz0);
376
377             /* Calculate displacement vector */
378             dx00             = _mm256_sub_ps(ix0,jx0);
379             dy00             = _mm256_sub_ps(iy0,jy0);
380             dz00             = _mm256_sub_ps(iz0,jz0);
381
382             /* Calculate squared distance and things based on it */
383             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
384
385             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
386
387             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
388
389             /* Load parameters for j particles */
390             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
391                                                                  charge+jnrC+0,charge+jnrD+0,
392                                                                  charge+jnrE+0,charge+jnrF+0,
393                                                                  charge+jnrG+0,charge+jnrH+0);
394             vdwjidx0A        = 2*vdwtype[jnrA+0];
395             vdwjidx0B        = 2*vdwtype[jnrB+0];
396             vdwjidx0C        = 2*vdwtype[jnrC+0];
397             vdwjidx0D        = 2*vdwtype[jnrD+0];
398             vdwjidx0E        = 2*vdwtype[jnrE+0];
399             vdwjidx0F        = 2*vdwtype[jnrF+0];
400             vdwjidx0G        = 2*vdwtype[jnrG+0];
401             vdwjidx0H        = 2*vdwtype[jnrH+0];
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             if (gmx_mm256_any_lt(rsq00,rcutoff2))
408             {
409
410             r00              = _mm256_mul_ps(rsq00,rinv00);
411             r00              = _mm256_andnot_ps(dummy_mask,r00);
412
413             /* Compute parameters for interactions between i and j atoms */
414             qq00             = _mm256_mul_ps(iq0,jq0);
415             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
416                                             vdwioffsetptr0+vdwjidx0B,
417                                             vdwioffsetptr0+vdwjidx0C,
418                                             vdwioffsetptr0+vdwjidx0D,
419                                             vdwioffsetptr0+vdwjidx0E,
420                                             vdwioffsetptr0+vdwjidx0F,
421                                             vdwioffsetptr0+vdwjidx0G,
422                                             vdwioffsetptr0+vdwjidx0H,
423                                             &c6_00,&c12_00);
424
425             /* EWALD ELECTROSTATICS */
426             
427             /* Analytical PME correction */
428             zeta2            = _mm256_mul_ps(beta2,rsq00);
429             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
430             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
431             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
432             felec            = _mm256_mul_ps(qq00,felec);
433             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
434             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
435             velec            = _mm256_sub_ps(rinv00,pmecorrV);
436             velec            = _mm256_mul_ps(qq00,velec);
437             
438             /* LENNARD-JONES DISPERSION/REPULSION */
439
440             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
441             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
442             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
443             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
444             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
445
446             d                = _mm256_sub_ps(r00,rswitch);
447             d                = _mm256_max_ps(d,_mm256_setzero_ps());
448             d2               = _mm256_mul_ps(d,d);
449             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
450
451             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
452
453             /* Evaluate switch function */
454             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
455             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
456             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
457             velec            = _mm256_mul_ps(velec,sw);
458             vvdw             = _mm256_mul_ps(vvdw,sw);
459             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
460
461             /* Update potential sum for this i atom from the interaction with this j atom. */
462             velec            = _mm256_and_ps(velec,cutoff_mask);
463             velec            = _mm256_andnot_ps(dummy_mask,velec);
464             velecsum         = _mm256_add_ps(velecsum,velec);
465             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
466             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
467             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
468
469             fscal            = _mm256_add_ps(felec,fvdw);
470
471             fscal            = _mm256_and_ps(fscal,cutoff_mask);
472
473             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
474
475             /* Calculate temporary vectorial force */
476             tx               = _mm256_mul_ps(fscal,dx00);
477             ty               = _mm256_mul_ps(fscal,dy00);
478             tz               = _mm256_mul_ps(fscal,dz00);
479
480             /* Update vectorial force */
481             fix0             = _mm256_add_ps(fix0,tx);
482             fiy0             = _mm256_add_ps(fiy0,ty);
483             fiz0             = _mm256_add_ps(fiz0,tz);
484
485             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
486             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
487             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
488             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
489             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
490             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
491             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
492             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
493             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
494
495             }
496
497             /* Inner loop uses 127 flops */
498         }
499
500         /* End of innermost loop */
501
502         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
503                                                  f+i_coord_offset,fshift+i_shift_offset);
504
505         ggid                        = gid[iidx];
506         /* Update potential energies */
507         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
508         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
509
510         /* Increment number of inner iterations */
511         inneriter                  += j_index_end - j_index_start;
512
513         /* Outer loop uses 9 flops */
514     }
515
516     /* Increment number of outer iterations */
517     outeriter        += nri;
518
519     /* Update outer/inner flops */
520
521     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*127);
522 }
523 /*
524  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_single
525  * Electrostatics interaction: Ewald
526  * VdW interaction:            LennardJones
527  * Geometry:                   Particle-Particle
528  * Calculate force/pot:        Force
529  */
530 void
531 nb_kernel_ElecEwSw_VdwLJSw_GeomP1P1_F_avx_256_single
532                     (t_nblist * gmx_restrict                nlist,
533                      rvec * gmx_restrict                    xx,
534                      rvec * gmx_restrict                    ff,
535                      t_forcerec * gmx_restrict              fr,
536                      t_mdatoms * gmx_restrict               mdatoms,
537                      nb_kernel_data_t * gmx_restrict        kernel_data,
538                      t_nrnb * gmx_restrict                  nrnb)
539 {
540     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
541      * just 0 for non-waters.
542      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
543      * jnr indices corresponding to data put in the four positions in the SIMD register.
544      */
545     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
546     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
547     int              jnrA,jnrB,jnrC,jnrD;
548     int              jnrE,jnrF,jnrG,jnrH;
549     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
550     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
551     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
552     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
553     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
554     real             rcutoff_scalar;
555     real             *shiftvec,*fshift,*x,*f;
556     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
557     real             scratch[4*DIM];
558     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
559     real *           vdwioffsetptr0;
560     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
561     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
562     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
563     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
564     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
565     real             *charge;
566     int              nvdwtype;
567     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
568     int              *vdwtype;
569     real             *vdwparam;
570     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
571     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
572     __m256i          ewitab;
573     __m128i          ewitab_lo,ewitab_hi;
574     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
575     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
576     real             *ewtab;
577     __m256           rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
578     real             rswitch_scalar,d_scalar;
579     __m256           dummy_mask,cutoff_mask;
580     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
581     __m256           one     = _mm256_set1_ps(1.0);
582     __m256           two     = _mm256_set1_ps(2.0);
583     x                = xx[0];
584     f                = ff[0];
585
586     nri              = nlist->nri;
587     iinr             = nlist->iinr;
588     jindex           = nlist->jindex;
589     jjnr             = nlist->jjnr;
590     shiftidx         = nlist->shift;
591     gid              = nlist->gid;
592     shiftvec         = fr->shift_vec[0];
593     fshift           = fr->fshift[0];
594     facel            = _mm256_set1_ps(fr->epsfac);
595     charge           = mdatoms->chargeA;
596     nvdwtype         = fr->ntype;
597     vdwparam         = fr->nbfp;
598     vdwtype          = mdatoms->typeA;
599
600     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
601     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
602     beta2            = _mm256_mul_ps(beta,beta);
603     beta3            = _mm256_mul_ps(beta,beta2);
604
605     ewtab            = fr->ic->tabq_coul_FDV0;
606     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
607     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
608
609     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
610     rcutoff_scalar   = fr->rcoulomb;
611     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
612     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
613
614     rswitch_scalar   = fr->rcoulomb_switch;
615     rswitch          = _mm256_set1_ps(rswitch_scalar);
616     /* Setup switch parameters */
617     d_scalar         = rcutoff_scalar-rswitch_scalar;
618     d                = _mm256_set1_ps(d_scalar);
619     swV3             = _mm256_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
620     swV4             = _mm256_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
621     swV5             = _mm256_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
622     swF2             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
623     swF3             = _mm256_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
624     swF4             = _mm256_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
625
626     /* Avoid stupid compiler warnings */
627     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
628     j_coord_offsetA = 0;
629     j_coord_offsetB = 0;
630     j_coord_offsetC = 0;
631     j_coord_offsetD = 0;
632     j_coord_offsetE = 0;
633     j_coord_offsetF = 0;
634     j_coord_offsetG = 0;
635     j_coord_offsetH = 0;
636
637     outeriter        = 0;
638     inneriter        = 0;
639
640     for(iidx=0;iidx<4*DIM;iidx++)
641     {
642         scratch[iidx] = 0.0;
643     }
644
645     /* Start outer loop over neighborlists */
646     for(iidx=0; iidx<nri; iidx++)
647     {
648         /* Load shift vector for this list */
649         i_shift_offset   = DIM*shiftidx[iidx];
650
651         /* Load limits for loop over neighbors */
652         j_index_start    = jindex[iidx];
653         j_index_end      = jindex[iidx+1];
654
655         /* Get outer coordinate index */
656         inr              = iinr[iidx];
657         i_coord_offset   = DIM*inr;
658
659         /* Load i particle coords and add shift vector */
660         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
661
662         fix0             = _mm256_setzero_ps();
663         fiy0             = _mm256_setzero_ps();
664         fiz0             = _mm256_setzero_ps();
665
666         /* Load parameters for i particles */
667         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
668         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
669
670         /* Start inner kernel loop */
671         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
672         {
673
674             /* Get j neighbor index, and coordinate index */
675             jnrA             = jjnr[jidx];
676             jnrB             = jjnr[jidx+1];
677             jnrC             = jjnr[jidx+2];
678             jnrD             = jjnr[jidx+3];
679             jnrE             = jjnr[jidx+4];
680             jnrF             = jjnr[jidx+5];
681             jnrG             = jjnr[jidx+6];
682             jnrH             = jjnr[jidx+7];
683             j_coord_offsetA  = DIM*jnrA;
684             j_coord_offsetB  = DIM*jnrB;
685             j_coord_offsetC  = DIM*jnrC;
686             j_coord_offsetD  = DIM*jnrD;
687             j_coord_offsetE  = DIM*jnrE;
688             j_coord_offsetF  = DIM*jnrF;
689             j_coord_offsetG  = DIM*jnrG;
690             j_coord_offsetH  = DIM*jnrH;
691
692             /* load j atom coordinates */
693             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
694                                                  x+j_coord_offsetC,x+j_coord_offsetD,
695                                                  x+j_coord_offsetE,x+j_coord_offsetF,
696                                                  x+j_coord_offsetG,x+j_coord_offsetH,
697                                                  &jx0,&jy0,&jz0);
698
699             /* Calculate displacement vector */
700             dx00             = _mm256_sub_ps(ix0,jx0);
701             dy00             = _mm256_sub_ps(iy0,jy0);
702             dz00             = _mm256_sub_ps(iz0,jz0);
703
704             /* Calculate squared distance and things based on it */
705             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
706
707             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
708
709             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
710
711             /* Load parameters for j particles */
712             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
713                                                                  charge+jnrC+0,charge+jnrD+0,
714                                                                  charge+jnrE+0,charge+jnrF+0,
715                                                                  charge+jnrG+0,charge+jnrH+0);
716             vdwjidx0A        = 2*vdwtype[jnrA+0];
717             vdwjidx0B        = 2*vdwtype[jnrB+0];
718             vdwjidx0C        = 2*vdwtype[jnrC+0];
719             vdwjidx0D        = 2*vdwtype[jnrD+0];
720             vdwjidx0E        = 2*vdwtype[jnrE+0];
721             vdwjidx0F        = 2*vdwtype[jnrF+0];
722             vdwjidx0G        = 2*vdwtype[jnrG+0];
723             vdwjidx0H        = 2*vdwtype[jnrH+0];
724
725             /**************************
726              * CALCULATE INTERACTIONS *
727              **************************/
728
729             if (gmx_mm256_any_lt(rsq00,rcutoff2))
730             {
731
732             r00              = _mm256_mul_ps(rsq00,rinv00);
733
734             /* Compute parameters for interactions between i and j atoms */
735             qq00             = _mm256_mul_ps(iq0,jq0);
736             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
737                                             vdwioffsetptr0+vdwjidx0B,
738                                             vdwioffsetptr0+vdwjidx0C,
739                                             vdwioffsetptr0+vdwjidx0D,
740                                             vdwioffsetptr0+vdwjidx0E,
741                                             vdwioffsetptr0+vdwjidx0F,
742                                             vdwioffsetptr0+vdwjidx0G,
743                                             vdwioffsetptr0+vdwjidx0H,
744                                             &c6_00,&c12_00);
745
746             /* EWALD ELECTROSTATICS */
747             
748             /* Analytical PME correction */
749             zeta2            = _mm256_mul_ps(beta2,rsq00);
750             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
751             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
752             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
753             felec            = _mm256_mul_ps(qq00,felec);
754             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
755             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
756             velec            = _mm256_sub_ps(rinv00,pmecorrV);
757             velec            = _mm256_mul_ps(qq00,velec);
758             
759             /* LENNARD-JONES DISPERSION/REPULSION */
760
761             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
762             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
763             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
764             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
765             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
766
767             d                = _mm256_sub_ps(r00,rswitch);
768             d                = _mm256_max_ps(d,_mm256_setzero_ps());
769             d2               = _mm256_mul_ps(d,d);
770             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
771
772             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
773
774             /* Evaluate switch function */
775             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
776             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
777             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
778             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
779
780             fscal            = _mm256_add_ps(felec,fvdw);
781
782             fscal            = _mm256_and_ps(fscal,cutoff_mask);
783
784             /* Calculate temporary vectorial force */
785             tx               = _mm256_mul_ps(fscal,dx00);
786             ty               = _mm256_mul_ps(fscal,dy00);
787             tz               = _mm256_mul_ps(fscal,dz00);
788
789             /* Update vectorial force */
790             fix0             = _mm256_add_ps(fix0,tx);
791             fiy0             = _mm256_add_ps(fiy0,ty);
792             fiz0             = _mm256_add_ps(fiz0,tz);
793
794             fjptrA             = f+j_coord_offsetA;
795             fjptrB             = f+j_coord_offsetB;
796             fjptrC             = f+j_coord_offsetC;
797             fjptrD             = f+j_coord_offsetD;
798             fjptrE             = f+j_coord_offsetE;
799             fjptrF             = f+j_coord_offsetF;
800             fjptrG             = f+j_coord_offsetG;
801             fjptrH             = f+j_coord_offsetH;
802             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
803
804             }
805
806             /* Inner loop uses 120 flops */
807         }
808
809         if(jidx<j_index_end)
810         {
811
812             /* Get j neighbor index, and coordinate index */
813             jnrlistA         = jjnr[jidx];
814             jnrlistB         = jjnr[jidx+1];
815             jnrlistC         = jjnr[jidx+2];
816             jnrlistD         = jjnr[jidx+3];
817             jnrlistE         = jjnr[jidx+4];
818             jnrlistF         = jjnr[jidx+5];
819             jnrlistG         = jjnr[jidx+6];
820             jnrlistH         = jjnr[jidx+7];
821             /* Sign of each element will be negative for non-real atoms.
822              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
823              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
824              */
825             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
826                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
827                                             
828             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
829             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
830             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
831             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
832             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
833             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
834             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
835             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
836             j_coord_offsetA  = DIM*jnrA;
837             j_coord_offsetB  = DIM*jnrB;
838             j_coord_offsetC  = DIM*jnrC;
839             j_coord_offsetD  = DIM*jnrD;
840             j_coord_offsetE  = DIM*jnrE;
841             j_coord_offsetF  = DIM*jnrF;
842             j_coord_offsetG  = DIM*jnrG;
843             j_coord_offsetH  = DIM*jnrH;
844
845             /* load j atom coordinates */
846             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
847                                                  x+j_coord_offsetC,x+j_coord_offsetD,
848                                                  x+j_coord_offsetE,x+j_coord_offsetF,
849                                                  x+j_coord_offsetG,x+j_coord_offsetH,
850                                                  &jx0,&jy0,&jz0);
851
852             /* Calculate displacement vector */
853             dx00             = _mm256_sub_ps(ix0,jx0);
854             dy00             = _mm256_sub_ps(iy0,jy0);
855             dz00             = _mm256_sub_ps(iz0,jz0);
856
857             /* Calculate squared distance and things based on it */
858             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
859
860             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
861
862             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
863
864             /* Load parameters for j particles */
865             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
866                                                                  charge+jnrC+0,charge+jnrD+0,
867                                                                  charge+jnrE+0,charge+jnrF+0,
868                                                                  charge+jnrG+0,charge+jnrH+0);
869             vdwjidx0A        = 2*vdwtype[jnrA+0];
870             vdwjidx0B        = 2*vdwtype[jnrB+0];
871             vdwjidx0C        = 2*vdwtype[jnrC+0];
872             vdwjidx0D        = 2*vdwtype[jnrD+0];
873             vdwjidx0E        = 2*vdwtype[jnrE+0];
874             vdwjidx0F        = 2*vdwtype[jnrF+0];
875             vdwjidx0G        = 2*vdwtype[jnrG+0];
876             vdwjidx0H        = 2*vdwtype[jnrH+0];
877
878             /**************************
879              * CALCULATE INTERACTIONS *
880              **************************/
881
882             if (gmx_mm256_any_lt(rsq00,rcutoff2))
883             {
884
885             r00              = _mm256_mul_ps(rsq00,rinv00);
886             r00              = _mm256_andnot_ps(dummy_mask,r00);
887
888             /* Compute parameters for interactions between i and j atoms */
889             qq00             = _mm256_mul_ps(iq0,jq0);
890             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
891                                             vdwioffsetptr0+vdwjidx0B,
892                                             vdwioffsetptr0+vdwjidx0C,
893                                             vdwioffsetptr0+vdwjidx0D,
894                                             vdwioffsetptr0+vdwjidx0E,
895                                             vdwioffsetptr0+vdwjidx0F,
896                                             vdwioffsetptr0+vdwjidx0G,
897                                             vdwioffsetptr0+vdwjidx0H,
898                                             &c6_00,&c12_00);
899
900             /* EWALD ELECTROSTATICS */
901             
902             /* Analytical PME correction */
903             zeta2            = _mm256_mul_ps(beta2,rsq00);
904             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
905             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
906             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
907             felec            = _mm256_mul_ps(qq00,felec);
908             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
909             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
910             velec            = _mm256_sub_ps(rinv00,pmecorrV);
911             velec            = _mm256_mul_ps(qq00,velec);
912             
913             /* LENNARD-JONES DISPERSION/REPULSION */
914
915             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
916             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
917             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
918             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
919             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
920
921             d                = _mm256_sub_ps(r00,rswitch);
922             d                = _mm256_max_ps(d,_mm256_setzero_ps());
923             d2               = _mm256_mul_ps(d,d);
924             sw               = _mm256_add_ps(one,_mm256_mul_ps(d2,_mm256_mul_ps(d,_mm256_add_ps(swV3,_mm256_mul_ps(d,_mm256_add_ps(swV4,_mm256_mul_ps(d,swV5)))))));
925
926             dsw              = _mm256_mul_ps(d2,_mm256_add_ps(swF2,_mm256_mul_ps(d,_mm256_add_ps(swF3,_mm256_mul_ps(d,swF4)))));
927
928             /* Evaluate switch function */
929             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
930             felec            = _mm256_sub_ps( _mm256_mul_ps(felec,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(velec,dsw)) );
931             fvdw             = _mm256_sub_ps( _mm256_mul_ps(fvdw,sw) , _mm256_mul_ps(rinv00,_mm256_mul_ps(vvdw,dsw)) );
932             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
933
934             fscal            = _mm256_add_ps(felec,fvdw);
935
936             fscal            = _mm256_and_ps(fscal,cutoff_mask);
937
938             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
939
940             /* Calculate temporary vectorial force */
941             tx               = _mm256_mul_ps(fscal,dx00);
942             ty               = _mm256_mul_ps(fscal,dy00);
943             tz               = _mm256_mul_ps(fscal,dz00);
944
945             /* Update vectorial force */
946             fix0             = _mm256_add_ps(fix0,tx);
947             fiy0             = _mm256_add_ps(fiy0,ty);
948             fiz0             = _mm256_add_ps(fiz0,tz);
949
950             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
951             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
952             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
953             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
954             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
955             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
956             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
957             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
958             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
959
960             }
961
962             /* Inner loop uses 121 flops */
963         }
964
965         /* End of innermost loop */
966
967         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
968                                                  f+i_coord_offset,fshift+i_shift_offset);
969
970         /* Increment number of inner iterations */
971         inneriter                  += j_index_end - j_index_start;
972
973         /* Outer loop uses 7 flops */
974     }
975
976     /* Increment number of outer iterations */
977     outeriter        += nri;
978
979     /* Update outer/inner flops */
980
981     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*121);
982 }