ea66b0a646a93709dc8d474c38c66b2a3e4ee378
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     __m256i          ewitab;
86     __m128i          ewitab_lo,ewitab_hi;
87     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
89     real             *ewtab;
90     __m256           dummy_mask,cutoff_mask;
91     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
92     __m256           one     = _mm256_set1_ps(1.0);
93     __m256           two     = _mm256_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107
108     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
109     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
110     beta2            = _mm256_mul_ps(beta,beta);
111     beta3            = _mm256_mul_ps(beta,beta2);
112
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
115     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
120     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
121     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
126     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134     j_coord_offsetE = 0;
135     j_coord_offsetF = 0;
136     j_coord_offsetG = 0;
137     j_coord_offsetH = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
163                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
164
165         fix0             = _mm256_setzero_ps();
166         fiy0             = _mm256_setzero_ps();
167         fiz0             = _mm256_setzero_ps();
168         fix1             = _mm256_setzero_ps();
169         fiy1             = _mm256_setzero_ps();
170         fiz1             = _mm256_setzero_ps();
171         fix2             = _mm256_setzero_ps();
172         fiy2             = _mm256_setzero_ps();
173         fiz2             = _mm256_setzero_ps();
174
175         /* Reset potential sums */
176         velecsum         = _mm256_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             jnrE             = jjnr[jidx+4];
188             jnrF             = jjnr[jidx+5];
189             jnrG             = jjnr[jidx+6];
190             jnrH             = jjnr[jidx+7];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195             j_coord_offsetE  = DIM*jnrE;
196             j_coord_offsetF  = DIM*jnrF;
197             j_coord_offsetG  = DIM*jnrG;
198             j_coord_offsetH  = DIM*jnrH;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  x+j_coord_offsetE,x+j_coord_offsetF,
204                                                  x+j_coord_offsetG,x+j_coord_offsetH,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_ps(ix0,jx0);
209             dy00             = _mm256_sub_ps(iy0,jy0);
210             dz00             = _mm256_sub_ps(iz0,jz0);
211             dx10             = _mm256_sub_ps(ix1,jx0);
212             dy10             = _mm256_sub_ps(iy1,jy0);
213             dz10             = _mm256_sub_ps(iz1,jz0);
214             dx20             = _mm256_sub_ps(ix2,jx0);
215             dy20             = _mm256_sub_ps(iy2,jy0);
216             dz20             = _mm256_sub_ps(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
220             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
221             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
226
227             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
228             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
229             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
230
231             /* Load parameters for j particles */
232             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
233                                                                  charge+jnrC+0,charge+jnrD+0,
234                                                                  charge+jnrE+0,charge+jnrF+0,
235                                                                  charge+jnrG+0,charge+jnrH+0);
236
237             fjx0             = _mm256_setzero_ps();
238             fjy0             = _mm256_setzero_ps();
239             fjz0             = _mm256_setzero_ps();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm256_any_lt(rsq00,rcutoff2))
246             {
247
248             r00              = _mm256_mul_ps(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm256_mul_ps(iq0,jq0);
252
253             /* EWALD ELECTROSTATICS */
254             
255             /* Analytical PME correction */
256             zeta2            = _mm256_mul_ps(beta2,rsq00);
257             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
258             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
259             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
260             felec            = _mm256_mul_ps(qq00,felec);
261             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
262             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
263             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
264             velec            = _mm256_mul_ps(qq00,velec);
265             
266             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
267
268             /* Update potential sum for this i atom from the interaction with this j atom. */
269             velec            = _mm256_and_ps(velec,cutoff_mask);
270             velecsum         = _mm256_add_ps(velecsum,velec);
271
272             fscal            = felec;
273
274             fscal            = _mm256_and_ps(fscal,cutoff_mask);
275
276             /* Calculate temporary vectorial force */
277             tx               = _mm256_mul_ps(fscal,dx00);
278             ty               = _mm256_mul_ps(fscal,dy00);
279             tz               = _mm256_mul_ps(fscal,dz00);
280
281             /* Update vectorial force */
282             fix0             = _mm256_add_ps(fix0,tx);
283             fiy0             = _mm256_add_ps(fiy0,ty);
284             fiz0             = _mm256_add_ps(fiz0,tz);
285
286             fjx0             = _mm256_add_ps(fjx0,tx);
287             fjy0             = _mm256_add_ps(fjy0,ty);
288             fjz0             = _mm256_add_ps(fjz0,tz);
289
290             }
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             if (gmx_mm256_any_lt(rsq10,rcutoff2))
297             {
298
299             r10              = _mm256_mul_ps(rsq10,rinv10);
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq10             = _mm256_mul_ps(iq1,jq0);
303
304             /* EWALD ELECTROSTATICS */
305             
306             /* Analytical PME correction */
307             zeta2            = _mm256_mul_ps(beta2,rsq10);
308             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
309             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
310             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
311             felec            = _mm256_mul_ps(qq10,felec);
312             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
313             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
314             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
315             velec            = _mm256_mul_ps(qq10,velec);
316             
317             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
318
319             /* Update potential sum for this i atom from the interaction with this j atom. */
320             velec            = _mm256_and_ps(velec,cutoff_mask);
321             velecsum         = _mm256_add_ps(velecsum,velec);
322
323             fscal            = felec;
324
325             fscal            = _mm256_and_ps(fscal,cutoff_mask);
326
327             /* Calculate temporary vectorial force */
328             tx               = _mm256_mul_ps(fscal,dx10);
329             ty               = _mm256_mul_ps(fscal,dy10);
330             tz               = _mm256_mul_ps(fscal,dz10);
331
332             /* Update vectorial force */
333             fix1             = _mm256_add_ps(fix1,tx);
334             fiy1             = _mm256_add_ps(fiy1,ty);
335             fiz1             = _mm256_add_ps(fiz1,tz);
336
337             fjx0             = _mm256_add_ps(fjx0,tx);
338             fjy0             = _mm256_add_ps(fjy0,ty);
339             fjz0             = _mm256_add_ps(fjz0,tz);
340
341             }
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (gmx_mm256_any_lt(rsq20,rcutoff2))
348             {
349
350             r20              = _mm256_mul_ps(rsq20,rinv20);
351
352             /* Compute parameters for interactions between i and j atoms */
353             qq20             = _mm256_mul_ps(iq2,jq0);
354
355             /* EWALD ELECTROSTATICS */
356             
357             /* Analytical PME correction */
358             zeta2            = _mm256_mul_ps(beta2,rsq20);
359             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
360             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
361             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
362             felec            = _mm256_mul_ps(qq20,felec);
363             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
364             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
365             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
366             velec            = _mm256_mul_ps(qq20,velec);
367             
368             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
369
370             /* Update potential sum for this i atom from the interaction with this j atom. */
371             velec            = _mm256_and_ps(velec,cutoff_mask);
372             velecsum         = _mm256_add_ps(velecsum,velec);
373
374             fscal            = felec;
375
376             fscal            = _mm256_and_ps(fscal,cutoff_mask);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_ps(fscal,dx20);
380             ty               = _mm256_mul_ps(fscal,dy20);
381             tz               = _mm256_mul_ps(fscal,dz20);
382
383             /* Update vectorial force */
384             fix2             = _mm256_add_ps(fix2,tx);
385             fiy2             = _mm256_add_ps(fiy2,ty);
386             fiz2             = _mm256_add_ps(fiz2,tz);
387
388             fjx0             = _mm256_add_ps(fjx0,tx);
389             fjy0             = _mm256_add_ps(fjy0,ty);
390             fjz0             = _mm256_add_ps(fjz0,tz);
391
392             }
393
394             fjptrA             = f+j_coord_offsetA;
395             fjptrB             = f+j_coord_offsetB;
396             fjptrC             = f+j_coord_offsetC;
397             fjptrD             = f+j_coord_offsetD;
398             fjptrE             = f+j_coord_offsetE;
399             fjptrF             = f+j_coord_offsetF;
400             fjptrG             = f+j_coord_offsetG;
401             fjptrH             = f+j_coord_offsetH;
402
403             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
404
405             /* Inner loop uses 330 flops */
406         }
407
408         if(jidx<j_index_end)
409         {
410
411             /* Get j neighbor index, and coordinate index */
412             jnrlistA         = jjnr[jidx];
413             jnrlistB         = jjnr[jidx+1];
414             jnrlistC         = jjnr[jidx+2];
415             jnrlistD         = jjnr[jidx+3];
416             jnrlistE         = jjnr[jidx+4];
417             jnrlistF         = jjnr[jidx+5];
418             jnrlistG         = jjnr[jidx+6];
419             jnrlistH         = jjnr[jidx+7];
420             /* Sign of each element will be negative for non-real atoms.
421              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
422              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
423              */
424             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
425                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
426                                             
427             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
428             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
429             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
430             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
431             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
432             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
433             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
434             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
435             j_coord_offsetA  = DIM*jnrA;
436             j_coord_offsetB  = DIM*jnrB;
437             j_coord_offsetC  = DIM*jnrC;
438             j_coord_offsetD  = DIM*jnrD;
439             j_coord_offsetE  = DIM*jnrE;
440             j_coord_offsetF  = DIM*jnrF;
441             j_coord_offsetG  = DIM*jnrG;
442             j_coord_offsetH  = DIM*jnrH;
443
444             /* load j atom coordinates */
445             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
446                                                  x+j_coord_offsetC,x+j_coord_offsetD,
447                                                  x+j_coord_offsetE,x+j_coord_offsetF,
448                                                  x+j_coord_offsetG,x+j_coord_offsetH,
449                                                  &jx0,&jy0,&jz0);
450
451             /* Calculate displacement vector */
452             dx00             = _mm256_sub_ps(ix0,jx0);
453             dy00             = _mm256_sub_ps(iy0,jy0);
454             dz00             = _mm256_sub_ps(iz0,jz0);
455             dx10             = _mm256_sub_ps(ix1,jx0);
456             dy10             = _mm256_sub_ps(iy1,jy0);
457             dz10             = _mm256_sub_ps(iz1,jz0);
458             dx20             = _mm256_sub_ps(ix2,jx0);
459             dy20             = _mm256_sub_ps(iy2,jy0);
460             dz20             = _mm256_sub_ps(iz2,jz0);
461
462             /* Calculate squared distance and things based on it */
463             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
464             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
465             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
466
467             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
468             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
469             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
470
471             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
472             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
473             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
474
475             /* Load parameters for j particles */
476             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
477                                                                  charge+jnrC+0,charge+jnrD+0,
478                                                                  charge+jnrE+0,charge+jnrF+0,
479                                                                  charge+jnrG+0,charge+jnrH+0);
480
481             fjx0             = _mm256_setzero_ps();
482             fjy0             = _mm256_setzero_ps();
483             fjz0             = _mm256_setzero_ps();
484
485             /**************************
486              * CALCULATE INTERACTIONS *
487              **************************/
488
489             if (gmx_mm256_any_lt(rsq00,rcutoff2))
490             {
491
492             r00              = _mm256_mul_ps(rsq00,rinv00);
493             r00              = _mm256_andnot_ps(dummy_mask,r00);
494
495             /* Compute parameters for interactions between i and j atoms */
496             qq00             = _mm256_mul_ps(iq0,jq0);
497
498             /* EWALD ELECTROSTATICS */
499             
500             /* Analytical PME correction */
501             zeta2            = _mm256_mul_ps(beta2,rsq00);
502             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
503             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
504             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
505             felec            = _mm256_mul_ps(qq00,felec);
506             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
507             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
508             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
509             velec            = _mm256_mul_ps(qq00,velec);
510             
511             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
512
513             /* Update potential sum for this i atom from the interaction with this j atom. */
514             velec            = _mm256_and_ps(velec,cutoff_mask);
515             velec            = _mm256_andnot_ps(dummy_mask,velec);
516             velecsum         = _mm256_add_ps(velecsum,velec);
517
518             fscal            = felec;
519
520             fscal            = _mm256_and_ps(fscal,cutoff_mask);
521
522             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
523
524             /* Calculate temporary vectorial force */
525             tx               = _mm256_mul_ps(fscal,dx00);
526             ty               = _mm256_mul_ps(fscal,dy00);
527             tz               = _mm256_mul_ps(fscal,dz00);
528
529             /* Update vectorial force */
530             fix0             = _mm256_add_ps(fix0,tx);
531             fiy0             = _mm256_add_ps(fiy0,ty);
532             fiz0             = _mm256_add_ps(fiz0,tz);
533
534             fjx0             = _mm256_add_ps(fjx0,tx);
535             fjy0             = _mm256_add_ps(fjy0,ty);
536             fjz0             = _mm256_add_ps(fjz0,tz);
537
538             }
539
540             /**************************
541              * CALCULATE INTERACTIONS *
542              **************************/
543
544             if (gmx_mm256_any_lt(rsq10,rcutoff2))
545             {
546
547             r10              = _mm256_mul_ps(rsq10,rinv10);
548             r10              = _mm256_andnot_ps(dummy_mask,r10);
549
550             /* Compute parameters for interactions between i and j atoms */
551             qq10             = _mm256_mul_ps(iq1,jq0);
552
553             /* EWALD ELECTROSTATICS */
554             
555             /* Analytical PME correction */
556             zeta2            = _mm256_mul_ps(beta2,rsq10);
557             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
558             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
559             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
560             felec            = _mm256_mul_ps(qq10,felec);
561             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
562             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
563             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
564             velec            = _mm256_mul_ps(qq10,velec);
565             
566             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
567
568             /* Update potential sum for this i atom from the interaction with this j atom. */
569             velec            = _mm256_and_ps(velec,cutoff_mask);
570             velec            = _mm256_andnot_ps(dummy_mask,velec);
571             velecsum         = _mm256_add_ps(velecsum,velec);
572
573             fscal            = felec;
574
575             fscal            = _mm256_and_ps(fscal,cutoff_mask);
576
577             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
578
579             /* Calculate temporary vectorial force */
580             tx               = _mm256_mul_ps(fscal,dx10);
581             ty               = _mm256_mul_ps(fscal,dy10);
582             tz               = _mm256_mul_ps(fscal,dz10);
583
584             /* Update vectorial force */
585             fix1             = _mm256_add_ps(fix1,tx);
586             fiy1             = _mm256_add_ps(fiy1,ty);
587             fiz1             = _mm256_add_ps(fiz1,tz);
588
589             fjx0             = _mm256_add_ps(fjx0,tx);
590             fjy0             = _mm256_add_ps(fjy0,ty);
591             fjz0             = _mm256_add_ps(fjz0,tz);
592
593             }
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             if (gmx_mm256_any_lt(rsq20,rcutoff2))
600             {
601
602             r20              = _mm256_mul_ps(rsq20,rinv20);
603             r20              = _mm256_andnot_ps(dummy_mask,r20);
604
605             /* Compute parameters for interactions between i and j atoms */
606             qq20             = _mm256_mul_ps(iq2,jq0);
607
608             /* EWALD ELECTROSTATICS */
609             
610             /* Analytical PME correction */
611             zeta2            = _mm256_mul_ps(beta2,rsq20);
612             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
613             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
614             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
615             felec            = _mm256_mul_ps(qq20,felec);
616             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
617             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
618             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
619             velec            = _mm256_mul_ps(qq20,velec);
620             
621             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
622
623             /* Update potential sum for this i atom from the interaction with this j atom. */
624             velec            = _mm256_and_ps(velec,cutoff_mask);
625             velec            = _mm256_andnot_ps(dummy_mask,velec);
626             velecsum         = _mm256_add_ps(velecsum,velec);
627
628             fscal            = felec;
629
630             fscal            = _mm256_and_ps(fscal,cutoff_mask);
631
632             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
633
634             /* Calculate temporary vectorial force */
635             tx               = _mm256_mul_ps(fscal,dx20);
636             ty               = _mm256_mul_ps(fscal,dy20);
637             tz               = _mm256_mul_ps(fscal,dz20);
638
639             /* Update vectorial force */
640             fix2             = _mm256_add_ps(fix2,tx);
641             fiy2             = _mm256_add_ps(fiy2,ty);
642             fiz2             = _mm256_add_ps(fiz2,tz);
643
644             fjx0             = _mm256_add_ps(fjx0,tx);
645             fjy0             = _mm256_add_ps(fjy0,ty);
646             fjz0             = _mm256_add_ps(fjz0,tz);
647
648             }
649
650             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
651             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
652             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
653             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
654             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
655             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
656             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
657             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
658
659             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
660
661             /* Inner loop uses 333 flops */
662         }
663
664         /* End of innermost loop */
665
666         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
667                                                  f+i_coord_offset,fshift+i_shift_offset);
668
669         ggid                        = gid[iidx];
670         /* Update potential energies */
671         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
672
673         /* Increment number of inner iterations */
674         inneriter                  += j_index_end - j_index_start;
675
676         /* Outer loop uses 19 flops */
677     }
678
679     /* Increment number of outer iterations */
680     outeriter        += nri;
681
682     /* Update outer/inner flops */
683
684     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*333);
685 }
686 /*
687  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_256_single
688  * Electrostatics interaction: Ewald
689  * VdW interaction:            None
690  * Geometry:                   Water3-Particle
691  * Calculate force/pot:        Force
692  */
693 void
694 nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_avx_256_single
695                     (t_nblist * gmx_restrict                nlist,
696                      rvec * gmx_restrict                    xx,
697                      rvec * gmx_restrict                    ff,
698                      t_forcerec * gmx_restrict              fr,
699                      t_mdatoms * gmx_restrict               mdatoms,
700                      nb_kernel_data_t * gmx_restrict        kernel_data,
701                      t_nrnb * gmx_restrict                  nrnb)
702 {
703     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
704      * just 0 for non-waters.
705      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
706      * jnr indices corresponding to data put in the four positions in the SIMD register.
707      */
708     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
709     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
710     int              jnrA,jnrB,jnrC,jnrD;
711     int              jnrE,jnrF,jnrG,jnrH;
712     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
713     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
714     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
715     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
716     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
717     real             rcutoff_scalar;
718     real             *shiftvec,*fshift,*x,*f;
719     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
720     real             scratch[4*DIM];
721     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
722     real *           vdwioffsetptr0;
723     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
724     real *           vdwioffsetptr1;
725     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
726     real *           vdwioffsetptr2;
727     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
728     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
729     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
730     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
731     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
732     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
733     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
734     real             *charge;
735     __m256i          ewitab;
736     __m128i          ewitab_lo,ewitab_hi;
737     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
738     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
739     real             *ewtab;
740     __m256           dummy_mask,cutoff_mask;
741     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
742     __m256           one     = _mm256_set1_ps(1.0);
743     __m256           two     = _mm256_set1_ps(2.0);
744     x                = xx[0];
745     f                = ff[0];
746
747     nri              = nlist->nri;
748     iinr             = nlist->iinr;
749     jindex           = nlist->jindex;
750     jjnr             = nlist->jjnr;
751     shiftidx         = nlist->shift;
752     gid              = nlist->gid;
753     shiftvec         = fr->shift_vec[0];
754     fshift           = fr->fshift[0];
755     facel            = _mm256_set1_ps(fr->epsfac);
756     charge           = mdatoms->chargeA;
757
758     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
759     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
760     beta2            = _mm256_mul_ps(beta,beta);
761     beta3            = _mm256_mul_ps(beta,beta2);
762
763     ewtab            = fr->ic->tabq_coul_F;
764     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
765     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
766
767     /* Setup water-specific parameters */
768     inr              = nlist->iinr[0];
769     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
770     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
771     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
772
773     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
774     rcutoff_scalar   = fr->rcoulomb;
775     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
776     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
777
778     /* Avoid stupid compiler warnings */
779     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
780     j_coord_offsetA = 0;
781     j_coord_offsetB = 0;
782     j_coord_offsetC = 0;
783     j_coord_offsetD = 0;
784     j_coord_offsetE = 0;
785     j_coord_offsetF = 0;
786     j_coord_offsetG = 0;
787     j_coord_offsetH = 0;
788
789     outeriter        = 0;
790     inneriter        = 0;
791
792     for(iidx=0;iidx<4*DIM;iidx++)
793     {
794         scratch[iidx] = 0.0;
795     }
796
797     /* Start outer loop over neighborlists */
798     for(iidx=0; iidx<nri; iidx++)
799     {
800         /* Load shift vector for this list */
801         i_shift_offset   = DIM*shiftidx[iidx];
802
803         /* Load limits for loop over neighbors */
804         j_index_start    = jindex[iidx];
805         j_index_end      = jindex[iidx+1];
806
807         /* Get outer coordinate index */
808         inr              = iinr[iidx];
809         i_coord_offset   = DIM*inr;
810
811         /* Load i particle coords and add shift vector */
812         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
813                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
814
815         fix0             = _mm256_setzero_ps();
816         fiy0             = _mm256_setzero_ps();
817         fiz0             = _mm256_setzero_ps();
818         fix1             = _mm256_setzero_ps();
819         fiy1             = _mm256_setzero_ps();
820         fiz1             = _mm256_setzero_ps();
821         fix2             = _mm256_setzero_ps();
822         fiy2             = _mm256_setzero_ps();
823         fiz2             = _mm256_setzero_ps();
824
825         /* Start inner kernel loop */
826         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
827         {
828
829             /* Get j neighbor index, and coordinate index */
830             jnrA             = jjnr[jidx];
831             jnrB             = jjnr[jidx+1];
832             jnrC             = jjnr[jidx+2];
833             jnrD             = jjnr[jidx+3];
834             jnrE             = jjnr[jidx+4];
835             jnrF             = jjnr[jidx+5];
836             jnrG             = jjnr[jidx+6];
837             jnrH             = jjnr[jidx+7];
838             j_coord_offsetA  = DIM*jnrA;
839             j_coord_offsetB  = DIM*jnrB;
840             j_coord_offsetC  = DIM*jnrC;
841             j_coord_offsetD  = DIM*jnrD;
842             j_coord_offsetE  = DIM*jnrE;
843             j_coord_offsetF  = DIM*jnrF;
844             j_coord_offsetG  = DIM*jnrG;
845             j_coord_offsetH  = DIM*jnrH;
846
847             /* load j atom coordinates */
848             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
849                                                  x+j_coord_offsetC,x+j_coord_offsetD,
850                                                  x+j_coord_offsetE,x+j_coord_offsetF,
851                                                  x+j_coord_offsetG,x+j_coord_offsetH,
852                                                  &jx0,&jy0,&jz0);
853
854             /* Calculate displacement vector */
855             dx00             = _mm256_sub_ps(ix0,jx0);
856             dy00             = _mm256_sub_ps(iy0,jy0);
857             dz00             = _mm256_sub_ps(iz0,jz0);
858             dx10             = _mm256_sub_ps(ix1,jx0);
859             dy10             = _mm256_sub_ps(iy1,jy0);
860             dz10             = _mm256_sub_ps(iz1,jz0);
861             dx20             = _mm256_sub_ps(ix2,jx0);
862             dy20             = _mm256_sub_ps(iy2,jy0);
863             dz20             = _mm256_sub_ps(iz2,jz0);
864
865             /* Calculate squared distance and things based on it */
866             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
867             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
868             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
869
870             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
871             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
872             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
873
874             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
875             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
876             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
877
878             /* Load parameters for j particles */
879             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
880                                                                  charge+jnrC+0,charge+jnrD+0,
881                                                                  charge+jnrE+0,charge+jnrF+0,
882                                                                  charge+jnrG+0,charge+jnrH+0);
883
884             fjx0             = _mm256_setzero_ps();
885             fjy0             = _mm256_setzero_ps();
886             fjz0             = _mm256_setzero_ps();
887
888             /**************************
889              * CALCULATE INTERACTIONS *
890              **************************/
891
892             if (gmx_mm256_any_lt(rsq00,rcutoff2))
893             {
894
895             r00              = _mm256_mul_ps(rsq00,rinv00);
896
897             /* Compute parameters for interactions between i and j atoms */
898             qq00             = _mm256_mul_ps(iq0,jq0);
899
900             /* EWALD ELECTROSTATICS */
901             
902             /* Analytical PME correction */
903             zeta2            = _mm256_mul_ps(beta2,rsq00);
904             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
905             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
906             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
907             felec            = _mm256_mul_ps(qq00,felec);
908             
909             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
910
911             fscal            = felec;
912
913             fscal            = _mm256_and_ps(fscal,cutoff_mask);
914
915             /* Calculate temporary vectorial force */
916             tx               = _mm256_mul_ps(fscal,dx00);
917             ty               = _mm256_mul_ps(fscal,dy00);
918             tz               = _mm256_mul_ps(fscal,dz00);
919
920             /* Update vectorial force */
921             fix0             = _mm256_add_ps(fix0,tx);
922             fiy0             = _mm256_add_ps(fiy0,ty);
923             fiz0             = _mm256_add_ps(fiz0,tz);
924
925             fjx0             = _mm256_add_ps(fjx0,tx);
926             fjy0             = _mm256_add_ps(fjy0,ty);
927             fjz0             = _mm256_add_ps(fjz0,tz);
928
929             }
930
931             /**************************
932              * CALCULATE INTERACTIONS *
933              **************************/
934
935             if (gmx_mm256_any_lt(rsq10,rcutoff2))
936             {
937
938             r10              = _mm256_mul_ps(rsq10,rinv10);
939
940             /* Compute parameters for interactions between i and j atoms */
941             qq10             = _mm256_mul_ps(iq1,jq0);
942
943             /* EWALD ELECTROSTATICS */
944             
945             /* Analytical PME correction */
946             zeta2            = _mm256_mul_ps(beta2,rsq10);
947             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
948             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
949             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
950             felec            = _mm256_mul_ps(qq10,felec);
951             
952             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
953
954             fscal            = felec;
955
956             fscal            = _mm256_and_ps(fscal,cutoff_mask);
957
958             /* Calculate temporary vectorial force */
959             tx               = _mm256_mul_ps(fscal,dx10);
960             ty               = _mm256_mul_ps(fscal,dy10);
961             tz               = _mm256_mul_ps(fscal,dz10);
962
963             /* Update vectorial force */
964             fix1             = _mm256_add_ps(fix1,tx);
965             fiy1             = _mm256_add_ps(fiy1,ty);
966             fiz1             = _mm256_add_ps(fiz1,tz);
967
968             fjx0             = _mm256_add_ps(fjx0,tx);
969             fjy0             = _mm256_add_ps(fjy0,ty);
970             fjz0             = _mm256_add_ps(fjz0,tz);
971
972             }
973
974             /**************************
975              * CALCULATE INTERACTIONS *
976              **************************/
977
978             if (gmx_mm256_any_lt(rsq20,rcutoff2))
979             {
980
981             r20              = _mm256_mul_ps(rsq20,rinv20);
982
983             /* Compute parameters for interactions between i and j atoms */
984             qq20             = _mm256_mul_ps(iq2,jq0);
985
986             /* EWALD ELECTROSTATICS */
987             
988             /* Analytical PME correction */
989             zeta2            = _mm256_mul_ps(beta2,rsq20);
990             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
991             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
992             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
993             felec            = _mm256_mul_ps(qq20,felec);
994             
995             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
996
997             fscal            = felec;
998
999             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1000
1001             /* Calculate temporary vectorial force */
1002             tx               = _mm256_mul_ps(fscal,dx20);
1003             ty               = _mm256_mul_ps(fscal,dy20);
1004             tz               = _mm256_mul_ps(fscal,dz20);
1005
1006             /* Update vectorial force */
1007             fix2             = _mm256_add_ps(fix2,tx);
1008             fiy2             = _mm256_add_ps(fiy2,ty);
1009             fiz2             = _mm256_add_ps(fiz2,tz);
1010
1011             fjx0             = _mm256_add_ps(fjx0,tx);
1012             fjy0             = _mm256_add_ps(fjy0,ty);
1013             fjz0             = _mm256_add_ps(fjz0,tz);
1014
1015             }
1016
1017             fjptrA             = f+j_coord_offsetA;
1018             fjptrB             = f+j_coord_offsetB;
1019             fjptrC             = f+j_coord_offsetC;
1020             fjptrD             = f+j_coord_offsetD;
1021             fjptrE             = f+j_coord_offsetE;
1022             fjptrF             = f+j_coord_offsetF;
1023             fjptrG             = f+j_coord_offsetG;
1024             fjptrH             = f+j_coord_offsetH;
1025
1026             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1027
1028             /* Inner loop uses 180 flops */
1029         }
1030
1031         if(jidx<j_index_end)
1032         {
1033
1034             /* Get j neighbor index, and coordinate index */
1035             jnrlistA         = jjnr[jidx];
1036             jnrlistB         = jjnr[jidx+1];
1037             jnrlistC         = jjnr[jidx+2];
1038             jnrlistD         = jjnr[jidx+3];
1039             jnrlistE         = jjnr[jidx+4];
1040             jnrlistF         = jjnr[jidx+5];
1041             jnrlistG         = jjnr[jidx+6];
1042             jnrlistH         = jjnr[jidx+7];
1043             /* Sign of each element will be negative for non-real atoms.
1044              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1045              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1046              */
1047             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1048                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1049                                             
1050             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1051             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1052             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1053             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1054             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1055             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1056             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1057             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1058             j_coord_offsetA  = DIM*jnrA;
1059             j_coord_offsetB  = DIM*jnrB;
1060             j_coord_offsetC  = DIM*jnrC;
1061             j_coord_offsetD  = DIM*jnrD;
1062             j_coord_offsetE  = DIM*jnrE;
1063             j_coord_offsetF  = DIM*jnrF;
1064             j_coord_offsetG  = DIM*jnrG;
1065             j_coord_offsetH  = DIM*jnrH;
1066
1067             /* load j atom coordinates */
1068             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1069                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1070                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1071                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1072                                                  &jx0,&jy0,&jz0);
1073
1074             /* Calculate displacement vector */
1075             dx00             = _mm256_sub_ps(ix0,jx0);
1076             dy00             = _mm256_sub_ps(iy0,jy0);
1077             dz00             = _mm256_sub_ps(iz0,jz0);
1078             dx10             = _mm256_sub_ps(ix1,jx0);
1079             dy10             = _mm256_sub_ps(iy1,jy0);
1080             dz10             = _mm256_sub_ps(iz1,jz0);
1081             dx20             = _mm256_sub_ps(ix2,jx0);
1082             dy20             = _mm256_sub_ps(iy2,jy0);
1083             dz20             = _mm256_sub_ps(iz2,jz0);
1084
1085             /* Calculate squared distance and things based on it */
1086             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1087             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1088             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1089
1090             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1091             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1092             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1093
1094             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1095             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1096             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1097
1098             /* Load parameters for j particles */
1099             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1100                                                                  charge+jnrC+0,charge+jnrD+0,
1101                                                                  charge+jnrE+0,charge+jnrF+0,
1102                                                                  charge+jnrG+0,charge+jnrH+0);
1103
1104             fjx0             = _mm256_setzero_ps();
1105             fjy0             = _mm256_setzero_ps();
1106             fjz0             = _mm256_setzero_ps();
1107
1108             /**************************
1109              * CALCULATE INTERACTIONS *
1110              **************************/
1111
1112             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1113             {
1114
1115             r00              = _mm256_mul_ps(rsq00,rinv00);
1116             r00              = _mm256_andnot_ps(dummy_mask,r00);
1117
1118             /* Compute parameters for interactions between i and j atoms */
1119             qq00             = _mm256_mul_ps(iq0,jq0);
1120
1121             /* EWALD ELECTROSTATICS */
1122             
1123             /* Analytical PME correction */
1124             zeta2            = _mm256_mul_ps(beta2,rsq00);
1125             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
1126             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1127             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1128             felec            = _mm256_mul_ps(qq00,felec);
1129             
1130             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1131
1132             fscal            = felec;
1133
1134             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1135
1136             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1137
1138             /* Calculate temporary vectorial force */
1139             tx               = _mm256_mul_ps(fscal,dx00);
1140             ty               = _mm256_mul_ps(fscal,dy00);
1141             tz               = _mm256_mul_ps(fscal,dz00);
1142
1143             /* Update vectorial force */
1144             fix0             = _mm256_add_ps(fix0,tx);
1145             fiy0             = _mm256_add_ps(fiy0,ty);
1146             fiz0             = _mm256_add_ps(fiz0,tz);
1147
1148             fjx0             = _mm256_add_ps(fjx0,tx);
1149             fjy0             = _mm256_add_ps(fjy0,ty);
1150             fjz0             = _mm256_add_ps(fjz0,tz);
1151
1152             }
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1159             {
1160
1161             r10              = _mm256_mul_ps(rsq10,rinv10);
1162             r10              = _mm256_andnot_ps(dummy_mask,r10);
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq10             = _mm256_mul_ps(iq1,jq0);
1166
1167             /* EWALD ELECTROSTATICS */
1168             
1169             /* Analytical PME correction */
1170             zeta2            = _mm256_mul_ps(beta2,rsq10);
1171             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1172             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1173             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1174             felec            = _mm256_mul_ps(qq10,felec);
1175             
1176             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1177
1178             fscal            = felec;
1179
1180             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1181
1182             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm256_mul_ps(fscal,dx10);
1186             ty               = _mm256_mul_ps(fscal,dy10);
1187             tz               = _mm256_mul_ps(fscal,dz10);
1188
1189             /* Update vectorial force */
1190             fix1             = _mm256_add_ps(fix1,tx);
1191             fiy1             = _mm256_add_ps(fiy1,ty);
1192             fiz1             = _mm256_add_ps(fiz1,tz);
1193
1194             fjx0             = _mm256_add_ps(fjx0,tx);
1195             fjy0             = _mm256_add_ps(fjy0,ty);
1196             fjz0             = _mm256_add_ps(fjz0,tz);
1197
1198             }
1199
1200             /**************************
1201              * CALCULATE INTERACTIONS *
1202              **************************/
1203
1204             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1205             {
1206
1207             r20              = _mm256_mul_ps(rsq20,rinv20);
1208             r20              = _mm256_andnot_ps(dummy_mask,r20);
1209
1210             /* Compute parameters for interactions between i and j atoms */
1211             qq20             = _mm256_mul_ps(iq2,jq0);
1212
1213             /* EWALD ELECTROSTATICS */
1214             
1215             /* Analytical PME correction */
1216             zeta2            = _mm256_mul_ps(beta2,rsq20);
1217             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1218             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1219             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1220             felec            = _mm256_mul_ps(qq20,felec);
1221             
1222             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1223
1224             fscal            = felec;
1225
1226             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1227
1228             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1229
1230             /* Calculate temporary vectorial force */
1231             tx               = _mm256_mul_ps(fscal,dx20);
1232             ty               = _mm256_mul_ps(fscal,dy20);
1233             tz               = _mm256_mul_ps(fscal,dz20);
1234
1235             /* Update vectorial force */
1236             fix2             = _mm256_add_ps(fix2,tx);
1237             fiy2             = _mm256_add_ps(fiy2,ty);
1238             fiz2             = _mm256_add_ps(fiz2,tz);
1239
1240             fjx0             = _mm256_add_ps(fjx0,tx);
1241             fjy0             = _mm256_add_ps(fjy0,ty);
1242             fjz0             = _mm256_add_ps(fjz0,tz);
1243
1244             }
1245
1246             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1247             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1248             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1249             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1250             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1251             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1252             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1253             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1254
1255             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1256
1257             /* Inner loop uses 183 flops */
1258         }
1259
1260         /* End of innermost loop */
1261
1262         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1263                                                  f+i_coord_offset,fshift+i_shift_offset);
1264
1265         /* Increment number of inner iterations */
1266         inneriter                  += j_index_end - j_index_start;
1267
1268         /* Outer loop uses 18 flops */
1269     }
1270
1271     /* Increment number of outer iterations */
1272     outeriter        += nri;
1273
1274     /* Update outer/inner flops */
1275
1276     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*183);
1277 }