made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m256i          ewitab;
80     __m128i          ewitab_lo,ewitab_hi;
81     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
82     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
83     real             *ewtab;
84     __m256           dummy_mask,cutoff_mask;
85     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
86     __m256           one     = _mm256_set1_ps(1.0);
87     __m256           two     = _mm256_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_ps(fr->epsfac);
100     charge           = mdatoms->chargeA;
101
102     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
103     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
104     beta2            = _mm256_mul_ps(beta,beta);
105     beta3            = _mm256_mul_ps(beta,beta2);
106
107     ewtab            = fr->ic->tabq_coul_FDV0;
108     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
109     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
114     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122     j_coord_offsetE = 0;
123     j_coord_offsetF = 0;
124     j_coord_offsetG = 0;
125     j_coord_offsetH = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm256_setzero_ps();
153         fiy0             = _mm256_setzero_ps();
154         fiz0             = _mm256_setzero_ps();
155
156         /* Load parameters for i particles */
157         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
158
159         /* Reset potential sums */
160         velecsum         = _mm256_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             jnrE             = jjnr[jidx+4];
172             jnrF             = jjnr[jidx+5];
173             jnrG             = jjnr[jidx+6];
174             jnrH             = jjnr[jidx+7];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179             j_coord_offsetE  = DIM*jnrE;
180             j_coord_offsetF  = DIM*jnrF;
181             j_coord_offsetG  = DIM*jnrG;
182             j_coord_offsetH  = DIM*jnrH;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  x+j_coord_offsetE,x+j_coord_offsetF,
188                                                  x+j_coord_offsetG,x+j_coord_offsetH,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_ps(ix0,jx0);
193             dy00             = _mm256_sub_ps(iy0,jy0);
194             dz00             = _mm256_sub_ps(iz0,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
198
199             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
200
201             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                                  charge+jnrC+0,charge+jnrD+0,
206                                                                  charge+jnrE+0,charge+jnrF+0,
207                                                                  charge+jnrG+0,charge+jnrH+0);
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             if (gmx_mm256_any_lt(rsq00,rcutoff2))
214             {
215
216             r00              = _mm256_mul_ps(rsq00,rinv00);
217
218             /* Compute parameters for interactions between i and j atoms */
219             qq00             = _mm256_mul_ps(iq0,jq0);
220
221             /* EWALD ELECTROSTATICS */
222             
223             /* Analytical PME correction */
224             zeta2            = _mm256_mul_ps(beta2,rsq00);
225             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
226             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
227             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
228             felec            = _mm256_mul_ps(qq00,felec);
229             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
230             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
231             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
232             velec            = _mm256_mul_ps(qq00,velec);
233             
234             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
235
236             /* Update potential sum for this i atom from the interaction with this j atom. */
237             velec            = _mm256_and_ps(velec,cutoff_mask);
238             velecsum         = _mm256_add_ps(velecsum,velec);
239
240             fscal            = felec;
241
242             fscal            = _mm256_and_ps(fscal,cutoff_mask);
243
244             /* Calculate temporary vectorial force */
245             tx               = _mm256_mul_ps(fscal,dx00);
246             ty               = _mm256_mul_ps(fscal,dy00);
247             tz               = _mm256_mul_ps(fscal,dz00);
248
249             /* Update vectorial force */
250             fix0             = _mm256_add_ps(fix0,tx);
251             fiy0             = _mm256_add_ps(fiy0,ty);
252             fiz0             = _mm256_add_ps(fiz0,tz);
253
254             fjptrA             = f+j_coord_offsetA;
255             fjptrB             = f+j_coord_offsetB;
256             fjptrC             = f+j_coord_offsetC;
257             fjptrD             = f+j_coord_offsetD;
258             fjptrE             = f+j_coord_offsetE;
259             fjptrF             = f+j_coord_offsetF;
260             fjptrG             = f+j_coord_offsetG;
261             fjptrH             = f+j_coord_offsetH;
262             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
263
264             }
265
266             /* Inner loop uses 109 flops */
267         }
268
269         if(jidx<j_index_end)
270         {
271
272             /* Get j neighbor index, and coordinate index */
273             jnrlistA         = jjnr[jidx];
274             jnrlistB         = jjnr[jidx+1];
275             jnrlistC         = jjnr[jidx+2];
276             jnrlistD         = jjnr[jidx+3];
277             jnrlistE         = jjnr[jidx+4];
278             jnrlistF         = jjnr[jidx+5];
279             jnrlistG         = jjnr[jidx+6];
280             jnrlistH         = jjnr[jidx+7];
281             /* Sign of each element will be negative for non-real atoms.
282              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
283              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
284              */
285             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
286                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
287                                             
288             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
289             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
290             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
291             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
292             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
293             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
294             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
295             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
296             j_coord_offsetA  = DIM*jnrA;
297             j_coord_offsetB  = DIM*jnrB;
298             j_coord_offsetC  = DIM*jnrC;
299             j_coord_offsetD  = DIM*jnrD;
300             j_coord_offsetE  = DIM*jnrE;
301             j_coord_offsetF  = DIM*jnrF;
302             j_coord_offsetG  = DIM*jnrG;
303             j_coord_offsetH  = DIM*jnrH;
304
305             /* load j atom coordinates */
306             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
307                                                  x+j_coord_offsetC,x+j_coord_offsetD,
308                                                  x+j_coord_offsetE,x+j_coord_offsetF,
309                                                  x+j_coord_offsetG,x+j_coord_offsetH,
310                                                  &jx0,&jy0,&jz0);
311
312             /* Calculate displacement vector */
313             dx00             = _mm256_sub_ps(ix0,jx0);
314             dy00             = _mm256_sub_ps(iy0,jy0);
315             dz00             = _mm256_sub_ps(iz0,jz0);
316
317             /* Calculate squared distance and things based on it */
318             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
319
320             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
321
322             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
323
324             /* Load parameters for j particles */
325             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
326                                                                  charge+jnrC+0,charge+jnrD+0,
327                                                                  charge+jnrE+0,charge+jnrF+0,
328                                                                  charge+jnrG+0,charge+jnrH+0);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             if (gmx_mm256_any_lt(rsq00,rcutoff2))
335             {
336
337             r00              = _mm256_mul_ps(rsq00,rinv00);
338             r00              = _mm256_andnot_ps(dummy_mask,r00);
339
340             /* Compute parameters for interactions between i and j atoms */
341             qq00             = _mm256_mul_ps(iq0,jq0);
342
343             /* EWALD ELECTROSTATICS */
344             
345             /* Analytical PME correction */
346             zeta2            = _mm256_mul_ps(beta2,rsq00);
347             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
348             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
349             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
350             felec            = _mm256_mul_ps(qq00,felec);
351             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
352             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
353             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
354             velec            = _mm256_mul_ps(qq00,velec);
355             
356             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
357
358             /* Update potential sum for this i atom from the interaction with this j atom. */
359             velec            = _mm256_and_ps(velec,cutoff_mask);
360             velec            = _mm256_andnot_ps(dummy_mask,velec);
361             velecsum         = _mm256_add_ps(velecsum,velec);
362
363             fscal            = felec;
364
365             fscal            = _mm256_and_ps(fscal,cutoff_mask);
366
367             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
368
369             /* Calculate temporary vectorial force */
370             tx               = _mm256_mul_ps(fscal,dx00);
371             ty               = _mm256_mul_ps(fscal,dy00);
372             tz               = _mm256_mul_ps(fscal,dz00);
373
374             /* Update vectorial force */
375             fix0             = _mm256_add_ps(fix0,tx);
376             fiy0             = _mm256_add_ps(fiy0,ty);
377             fiz0             = _mm256_add_ps(fiz0,tz);
378
379             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
380             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
381             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
382             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
383             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
384             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
385             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
386             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
387             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
388
389             }
390
391             /* Inner loop uses 110 flops */
392         }
393
394         /* End of innermost loop */
395
396         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
397                                                  f+i_coord_offset,fshift+i_shift_offset);
398
399         ggid                        = gid[iidx];
400         /* Update potential energies */
401         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
402
403         /* Increment number of inner iterations */
404         inneriter                  += j_index_end - j_index_start;
405
406         /* Outer loop uses 8 flops */
407     }
408
409     /* Increment number of outer iterations */
410     outeriter        += nri;
411
412     /* Update outer/inner flops */
413
414     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*110);
415 }
416 /*
417  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
418  * Electrostatics interaction: Ewald
419  * VdW interaction:            None
420  * Geometry:                   Particle-Particle
421  * Calculate force/pot:        Force
422  */
423 void
424 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_single
425                     (t_nblist * gmx_restrict                nlist,
426                      rvec * gmx_restrict                    xx,
427                      rvec * gmx_restrict                    ff,
428                      t_forcerec * gmx_restrict              fr,
429                      t_mdatoms * gmx_restrict               mdatoms,
430                      nb_kernel_data_t * gmx_restrict        kernel_data,
431                      t_nrnb * gmx_restrict                  nrnb)
432 {
433     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
434      * just 0 for non-waters.
435      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
436      * jnr indices corresponding to data put in the four positions in the SIMD register.
437      */
438     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
439     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
440     int              jnrA,jnrB,jnrC,jnrD;
441     int              jnrE,jnrF,jnrG,jnrH;
442     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
443     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
444     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
445     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
446     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
447     real             rcutoff_scalar;
448     real             *shiftvec,*fshift,*x,*f;
449     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
450     real             scratch[4*DIM];
451     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
452     real *           vdwioffsetptr0;
453     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
454     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
455     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
456     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
457     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
458     real             *charge;
459     __m256i          ewitab;
460     __m128i          ewitab_lo,ewitab_hi;
461     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
462     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
463     real             *ewtab;
464     __m256           dummy_mask,cutoff_mask;
465     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
466     __m256           one     = _mm256_set1_ps(1.0);
467     __m256           two     = _mm256_set1_ps(2.0);
468     x                = xx[0];
469     f                = ff[0];
470
471     nri              = nlist->nri;
472     iinr             = nlist->iinr;
473     jindex           = nlist->jindex;
474     jjnr             = nlist->jjnr;
475     shiftidx         = nlist->shift;
476     gid              = nlist->gid;
477     shiftvec         = fr->shift_vec[0];
478     fshift           = fr->fshift[0];
479     facel            = _mm256_set1_ps(fr->epsfac);
480     charge           = mdatoms->chargeA;
481
482     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
483     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
484     beta2            = _mm256_mul_ps(beta,beta);
485     beta3            = _mm256_mul_ps(beta,beta2);
486
487     ewtab            = fr->ic->tabq_coul_F;
488     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
489     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
490
491     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
492     rcutoff_scalar   = fr->rcoulomb;
493     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
494     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
495
496     /* Avoid stupid compiler warnings */
497     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
498     j_coord_offsetA = 0;
499     j_coord_offsetB = 0;
500     j_coord_offsetC = 0;
501     j_coord_offsetD = 0;
502     j_coord_offsetE = 0;
503     j_coord_offsetF = 0;
504     j_coord_offsetG = 0;
505     j_coord_offsetH = 0;
506
507     outeriter        = 0;
508     inneriter        = 0;
509
510     for(iidx=0;iidx<4*DIM;iidx++)
511     {
512         scratch[iidx] = 0.0;
513     }
514
515     /* Start outer loop over neighborlists */
516     for(iidx=0; iidx<nri; iidx++)
517     {
518         /* Load shift vector for this list */
519         i_shift_offset   = DIM*shiftidx[iidx];
520
521         /* Load limits for loop over neighbors */
522         j_index_start    = jindex[iidx];
523         j_index_end      = jindex[iidx+1];
524
525         /* Get outer coordinate index */
526         inr              = iinr[iidx];
527         i_coord_offset   = DIM*inr;
528
529         /* Load i particle coords and add shift vector */
530         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
531
532         fix0             = _mm256_setzero_ps();
533         fiy0             = _mm256_setzero_ps();
534         fiz0             = _mm256_setzero_ps();
535
536         /* Load parameters for i particles */
537         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
538
539         /* Start inner kernel loop */
540         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
541         {
542
543             /* Get j neighbor index, and coordinate index */
544             jnrA             = jjnr[jidx];
545             jnrB             = jjnr[jidx+1];
546             jnrC             = jjnr[jidx+2];
547             jnrD             = jjnr[jidx+3];
548             jnrE             = jjnr[jidx+4];
549             jnrF             = jjnr[jidx+5];
550             jnrG             = jjnr[jidx+6];
551             jnrH             = jjnr[jidx+7];
552             j_coord_offsetA  = DIM*jnrA;
553             j_coord_offsetB  = DIM*jnrB;
554             j_coord_offsetC  = DIM*jnrC;
555             j_coord_offsetD  = DIM*jnrD;
556             j_coord_offsetE  = DIM*jnrE;
557             j_coord_offsetF  = DIM*jnrF;
558             j_coord_offsetG  = DIM*jnrG;
559             j_coord_offsetH  = DIM*jnrH;
560
561             /* load j atom coordinates */
562             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
563                                                  x+j_coord_offsetC,x+j_coord_offsetD,
564                                                  x+j_coord_offsetE,x+j_coord_offsetF,
565                                                  x+j_coord_offsetG,x+j_coord_offsetH,
566                                                  &jx0,&jy0,&jz0);
567
568             /* Calculate displacement vector */
569             dx00             = _mm256_sub_ps(ix0,jx0);
570             dy00             = _mm256_sub_ps(iy0,jy0);
571             dz00             = _mm256_sub_ps(iz0,jz0);
572
573             /* Calculate squared distance and things based on it */
574             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
575
576             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
577
578             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
579
580             /* Load parameters for j particles */
581             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
582                                                                  charge+jnrC+0,charge+jnrD+0,
583                                                                  charge+jnrE+0,charge+jnrF+0,
584                                                                  charge+jnrG+0,charge+jnrH+0);
585
586             /**************************
587              * CALCULATE INTERACTIONS *
588              **************************/
589
590             if (gmx_mm256_any_lt(rsq00,rcutoff2))
591             {
592
593             r00              = _mm256_mul_ps(rsq00,rinv00);
594
595             /* Compute parameters for interactions between i and j atoms */
596             qq00             = _mm256_mul_ps(iq0,jq0);
597
598             /* EWALD ELECTROSTATICS */
599             
600             /* Analytical PME correction */
601             zeta2            = _mm256_mul_ps(beta2,rsq00);
602             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
603             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
604             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
605             felec            = _mm256_mul_ps(qq00,felec);
606             
607             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
608
609             fscal            = felec;
610
611             fscal            = _mm256_and_ps(fscal,cutoff_mask);
612
613             /* Calculate temporary vectorial force */
614             tx               = _mm256_mul_ps(fscal,dx00);
615             ty               = _mm256_mul_ps(fscal,dy00);
616             tz               = _mm256_mul_ps(fscal,dz00);
617
618             /* Update vectorial force */
619             fix0             = _mm256_add_ps(fix0,tx);
620             fiy0             = _mm256_add_ps(fiy0,ty);
621             fiz0             = _mm256_add_ps(fiz0,tz);
622
623             fjptrA             = f+j_coord_offsetA;
624             fjptrB             = f+j_coord_offsetB;
625             fjptrC             = f+j_coord_offsetC;
626             fjptrD             = f+j_coord_offsetD;
627             fjptrE             = f+j_coord_offsetE;
628             fjptrF             = f+j_coord_offsetF;
629             fjptrG             = f+j_coord_offsetG;
630             fjptrH             = f+j_coord_offsetH;
631             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
632
633             }
634
635             /* Inner loop uses 59 flops */
636         }
637
638         if(jidx<j_index_end)
639         {
640
641             /* Get j neighbor index, and coordinate index */
642             jnrlistA         = jjnr[jidx];
643             jnrlistB         = jjnr[jidx+1];
644             jnrlistC         = jjnr[jidx+2];
645             jnrlistD         = jjnr[jidx+3];
646             jnrlistE         = jjnr[jidx+4];
647             jnrlistF         = jjnr[jidx+5];
648             jnrlistG         = jjnr[jidx+6];
649             jnrlistH         = jjnr[jidx+7];
650             /* Sign of each element will be negative for non-real atoms.
651              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
652              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
653              */
654             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
655                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
656                                             
657             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
658             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
659             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
660             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
661             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
662             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
663             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
664             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
665             j_coord_offsetA  = DIM*jnrA;
666             j_coord_offsetB  = DIM*jnrB;
667             j_coord_offsetC  = DIM*jnrC;
668             j_coord_offsetD  = DIM*jnrD;
669             j_coord_offsetE  = DIM*jnrE;
670             j_coord_offsetF  = DIM*jnrF;
671             j_coord_offsetG  = DIM*jnrG;
672             j_coord_offsetH  = DIM*jnrH;
673
674             /* load j atom coordinates */
675             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
676                                                  x+j_coord_offsetC,x+j_coord_offsetD,
677                                                  x+j_coord_offsetE,x+j_coord_offsetF,
678                                                  x+j_coord_offsetG,x+j_coord_offsetH,
679                                                  &jx0,&jy0,&jz0);
680
681             /* Calculate displacement vector */
682             dx00             = _mm256_sub_ps(ix0,jx0);
683             dy00             = _mm256_sub_ps(iy0,jy0);
684             dz00             = _mm256_sub_ps(iz0,jz0);
685
686             /* Calculate squared distance and things based on it */
687             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
688
689             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
690
691             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
692
693             /* Load parameters for j particles */
694             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
695                                                                  charge+jnrC+0,charge+jnrD+0,
696                                                                  charge+jnrE+0,charge+jnrF+0,
697                                                                  charge+jnrG+0,charge+jnrH+0);
698
699             /**************************
700              * CALCULATE INTERACTIONS *
701              **************************/
702
703             if (gmx_mm256_any_lt(rsq00,rcutoff2))
704             {
705
706             r00              = _mm256_mul_ps(rsq00,rinv00);
707             r00              = _mm256_andnot_ps(dummy_mask,r00);
708
709             /* Compute parameters for interactions between i and j atoms */
710             qq00             = _mm256_mul_ps(iq0,jq0);
711
712             /* EWALD ELECTROSTATICS */
713             
714             /* Analytical PME correction */
715             zeta2            = _mm256_mul_ps(beta2,rsq00);
716             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
717             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
718             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
719             felec            = _mm256_mul_ps(qq00,felec);
720             
721             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
722
723             fscal            = felec;
724
725             fscal            = _mm256_and_ps(fscal,cutoff_mask);
726
727             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
728
729             /* Calculate temporary vectorial force */
730             tx               = _mm256_mul_ps(fscal,dx00);
731             ty               = _mm256_mul_ps(fscal,dy00);
732             tz               = _mm256_mul_ps(fscal,dz00);
733
734             /* Update vectorial force */
735             fix0             = _mm256_add_ps(fix0,tx);
736             fiy0             = _mm256_add_ps(fiy0,ty);
737             fiz0             = _mm256_add_ps(fiz0,tz);
738
739             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
740             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
741             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
742             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
743             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
744             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
745             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
746             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
747             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
748
749             }
750
751             /* Inner loop uses 60 flops */
752         }
753
754         /* End of innermost loop */
755
756         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
757                                                  f+i_coord_offset,fshift+i_shift_offset);
758
759         /* Increment number of inner iterations */
760         inneriter                  += j_index_end - j_index_start;
761
762         /* Outer loop uses 7 flops */
763     }
764
765     /* Increment number of outer iterations */
766     outeriter        += nri;
767
768     /* Update outer/inner flops */
769
770     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*60);
771 }