c5d78652ae1d4ad42a732be0ecab79c0e1ff4ebc
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     real *           vdwioffsetptr3;
79     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
81     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
84     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
86     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
93     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
94     __m256i          ewitab;
95     __m128i          ewitab_lo,ewitab_hi;
96     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
97     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
98     real             *ewtab;
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
121     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
122     beta2            = _mm256_mul_ps(beta,beta);
123     beta3            = _mm256_mul_ps(beta,beta2);
124
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
127     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
132     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
133     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
134     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff_scalar   = fr->rcoulomb;
138     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
139     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
140
141     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
142     rvdw             = _mm256_set1_ps(fr->rvdw);
143
144     /* Avoid stupid compiler warnings */
145     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
146     j_coord_offsetA = 0;
147     j_coord_offsetB = 0;
148     j_coord_offsetC = 0;
149     j_coord_offsetD = 0;
150     j_coord_offsetE = 0;
151     j_coord_offsetF = 0;
152     j_coord_offsetG = 0;
153     j_coord_offsetH = 0;
154
155     outeriter        = 0;
156     inneriter        = 0;
157
158     for(iidx=0;iidx<4*DIM;iidx++)
159     {
160         scratch[iidx] = 0.0;
161     }
162
163     /* Start outer loop over neighborlists */
164     for(iidx=0; iidx<nri; iidx++)
165     {
166         /* Load shift vector for this list */
167         i_shift_offset   = DIM*shiftidx[iidx];
168
169         /* Load limits for loop over neighbors */
170         j_index_start    = jindex[iidx];
171         j_index_end      = jindex[iidx+1];
172
173         /* Get outer coordinate index */
174         inr              = iinr[iidx];
175         i_coord_offset   = DIM*inr;
176
177         /* Load i particle coords and add shift vector */
178         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
179                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
180
181         fix0             = _mm256_setzero_ps();
182         fiy0             = _mm256_setzero_ps();
183         fiz0             = _mm256_setzero_ps();
184         fix1             = _mm256_setzero_ps();
185         fiy1             = _mm256_setzero_ps();
186         fiz1             = _mm256_setzero_ps();
187         fix2             = _mm256_setzero_ps();
188         fiy2             = _mm256_setzero_ps();
189         fiz2             = _mm256_setzero_ps();
190         fix3             = _mm256_setzero_ps();
191         fiy3             = _mm256_setzero_ps();
192         fiz3             = _mm256_setzero_ps();
193
194         /* Reset potential sums */
195         velecsum         = _mm256_setzero_ps();
196         vvdwsum          = _mm256_setzero_ps();
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
200         {
201
202             /* Get j neighbor index, and coordinate index */
203             jnrA             = jjnr[jidx];
204             jnrB             = jjnr[jidx+1];
205             jnrC             = jjnr[jidx+2];
206             jnrD             = jjnr[jidx+3];
207             jnrE             = jjnr[jidx+4];
208             jnrF             = jjnr[jidx+5];
209             jnrG             = jjnr[jidx+6];
210             jnrH             = jjnr[jidx+7];
211             j_coord_offsetA  = DIM*jnrA;
212             j_coord_offsetB  = DIM*jnrB;
213             j_coord_offsetC  = DIM*jnrC;
214             j_coord_offsetD  = DIM*jnrD;
215             j_coord_offsetE  = DIM*jnrE;
216             j_coord_offsetF  = DIM*jnrF;
217             j_coord_offsetG  = DIM*jnrG;
218             j_coord_offsetH  = DIM*jnrH;
219
220             /* load j atom coordinates */
221             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222                                                  x+j_coord_offsetC,x+j_coord_offsetD,
223                                                  x+j_coord_offsetE,x+j_coord_offsetF,
224                                                  x+j_coord_offsetG,x+j_coord_offsetH,
225                                                  &jx0,&jy0,&jz0);
226
227             /* Calculate displacement vector */
228             dx00             = _mm256_sub_ps(ix0,jx0);
229             dy00             = _mm256_sub_ps(iy0,jy0);
230             dz00             = _mm256_sub_ps(iz0,jz0);
231             dx10             = _mm256_sub_ps(ix1,jx0);
232             dy10             = _mm256_sub_ps(iy1,jy0);
233             dz10             = _mm256_sub_ps(iz1,jz0);
234             dx20             = _mm256_sub_ps(ix2,jx0);
235             dy20             = _mm256_sub_ps(iy2,jy0);
236             dz20             = _mm256_sub_ps(iz2,jz0);
237             dx30             = _mm256_sub_ps(ix3,jx0);
238             dy30             = _mm256_sub_ps(iy3,jy0);
239             dz30             = _mm256_sub_ps(iz3,jz0);
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
243             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
244             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
245             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
246
247             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
248             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
249             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
250
251             rinvsq00         = gmx_mm256_inv_ps(rsq00);
252             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
253             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
254             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
255
256             /* Load parameters for j particles */
257             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
258                                                                  charge+jnrC+0,charge+jnrD+0,
259                                                                  charge+jnrE+0,charge+jnrF+0,
260                                                                  charge+jnrG+0,charge+jnrH+0);
261             vdwjidx0A        = 2*vdwtype[jnrA+0];
262             vdwjidx0B        = 2*vdwtype[jnrB+0];
263             vdwjidx0C        = 2*vdwtype[jnrC+0];
264             vdwjidx0D        = 2*vdwtype[jnrD+0];
265             vdwjidx0E        = 2*vdwtype[jnrE+0];
266             vdwjidx0F        = 2*vdwtype[jnrF+0];
267             vdwjidx0G        = 2*vdwtype[jnrG+0];
268             vdwjidx0H        = 2*vdwtype[jnrH+0];
269
270             fjx0             = _mm256_setzero_ps();
271             fjy0             = _mm256_setzero_ps();
272             fjz0             = _mm256_setzero_ps();
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             if (gmx_mm256_any_lt(rsq00,rcutoff2))
279             {
280
281             /* Compute parameters for interactions between i and j atoms */
282             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
283                                             vdwioffsetptr0+vdwjidx0B,
284                                             vdwioffsetptr0+vdwjidx0C,
285                                             vdwioffsetptr0+vdwjidx0D,
286                                             vdwioffsetptr0+vdwjidx0E,
287                                             vdwioffsetptr0+vdwjidx0F,
288                                             vdwioffsetptr0+vdwjidx0G,
289                                             vdwioffsetptr0+vdwjidx0H,
290                                             &c6_00,&c12_00);
291
292             /* LENNARD-JONES DISPERSION/REPULSION */
293
294             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
295             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
296             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
297             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
298                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
299             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
300
301             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
302
303             /* Update potential sum for this i atom from the interaction with this j atom. */
304             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
305             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
306
307             fscal            = fvdw;
308
309             fscal            = _mm256_and_ps(fscal,cutoff_mask);
310
311             /* Calculate temporary vectorial force */
312             tx               = _mm256_mul_ps(fscal,dx00);
313             ty               = _mm256_mul_ps(fscal,dy00);
314             tz               = _mm256_mul_ps(fscal,dz00);
315
316             /* Update vectorial force */
317             fix0             = _mm256_add_ps(fix0,tx);
318             fiy0             = _mm256_add_ps(fiy0,ty);
319             fiz0             = _mm256_add_ps(fiz0,tz);
320
321             fjx0             = _mm256_add_ps(fjx0,tx);
322             fjy0             = _mm256_add_ps(fjy0,ty);
323             fjz0             = _mm256_add_ps(fjz0,tz);
324
325             }
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (gmx_mm256_any_lt(rsq10,rcutoff2))
332             {
333
334             r10              = _mm256_mul_ps(rsq10,rinv10);
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq10             = _mm256_mul_ps(iq1,jq0);
338
339             /* EWALD ELECTROSTATICS */
340             
341             /* Analytical PME correction */
342             zeta2            = _mm256_mul_ps(beta2,rsq10);
343             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
344             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
345             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
346             felec            = _mm256_mul_ps(qq10,felec);
347             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
348             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
349             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
350             velec            = _mm256_mul_ps(qq10,velec);
351             
352             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm256_and_ps(velec,cutoff_mask);
356             velecsum         = _mm256_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             fscal            = _mm256_and_ps(fscal,cutoff_mask);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm256_mul_ps(fscal,dx10);
364             ty               = _mm256_mul_ps(fscal,dy10);
365             tz               = _mm256_mul_ps(fscal,dz10);
366
367             /* Update vectorial force */
368             fix1             = _mm256_add_ps(fix1,tx);
369             fiy1             = _mm256_add_ps(fiy1,ty);
370             fiz1             = _mm256_add_ps(fiz1,tz);
371
372             fjx0             = _mm256_add_ps(fjx0,tx);
373             fjy0             = _mm256_add_ps(fjy0,ty);
374             fjz0             = _mm256_add_ps(fjz0,tz);
375
376             }
377
378             /**************************
379              * CALCULATE INTERACTIONS *
380              **************************/
381
382             if (gmx_mm256_any_lt(rsq20,rcutoff2))
383             {
384
385             r20              = _mm256_mul_ps(rsq20,rinv20);
386
387             /* Compute parameters for interactions between i and j atoms */
388             qq20             = _mm256_mul_ps(iq2,jq0);
389
390             /* EWALD ELECTROSTATICS */
391             
392             /* Analytical PME correction */
393             zeta2            = _mm256_mul_ps(beta2,rsq20);
394             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
395             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
396             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
397             felec            = _mm256_mul_ps(qq20,felec);
398             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
399             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
400             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
401             velec            = _mm256_mul_ps(qq20,velec);
402             
403             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
404
405             /* Update potential sum for this i atom from the interaction with this j atom. */
406             velec            = _mm256_and_ps(velec,cutoff_mask);
407             velecsum         = _mm256_add_ps(velecsum,velec);
408
409             fscal            = felec;
410
411             fscal            = _mm256_and_ps(fscal,cutoff_mask);
412
413             /* Calculate temporary vectorial force */
414             tx               = _mm256_mul_ps(fscal,dx20);
415             ty               = _mm256_mul_ps(fscal,dy20);
416             tz               = _mm256_mul_ps(fscal,dz20);
417
418             /* Update vectorial force */
419             fix2             = _mm256_add_ps(fix2,tx);
420             fiy2             = _mm256_add_ps(fiy2,ty);
421             fiz2             = _mm256_add_ps(fiz2,tz);
422
423             fjx0             = _mm256_add_ps(fjx0,tx);
424             fjy0             = _mm256_add_ps(fjy0,ty);
425             fjz0             = _mm256_add_ps(fjz0,tz);
426
427             }
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             if (gmx_mm256_any_lt(rsq30,rcutoff2))
434             {
435
436             r30              = _mm256_mul_ps(rsq30,rinv30);
437
438             /* Compute parameters for interactions between i and j atoms */
439             qq30             = _mm256_mul_ps(iq3,jq0);
440
441             /* EWALD ELECTROSTATICS */
442             
443             /* Analytical PME correction */
444             zeta2            = _mm256_mul_ps(beta2,rsq30);
445             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
446             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
447             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
448             felec            = _mm256_mul_ps(qq30,felec);
449             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
450             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
451             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
452             velec            = _mm256_mul_ps(qq30,velec);
453             
454             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm256_and_ps(velec,cutoff_mask);
458             velecsum         = _mm256_add_ps(velecsum,velec);
459
460             fscal            = felec;
461
462             fscal            = _mm256_and_ps(fscal,cutoff_mask);
463
464             /* Calculate temporary vectorial force */
465             tx               = _mm256_mul_ps(fscal,dx30);
466             ty               = _mm256_mul_ps(fscal,dy30);
467             tz               = _mm256_mul_ps(fscal,dz30);
468
469             /* Update vectorial force */
470             fix3             = _mm256_add_ps(fix3,tx);
471             fiy3             = _mm256_add_ps(fiy3,ty);
472             fiz3             = _mm256_add_ps(fiz3,tz);
473
474             fjx0             = _mm256_add_ps(fjx0,tx);
475             fjy0             = _mm256_add_ps(fjy0,ty);
476             fjz0             = _mm256_add_ps(fjz0,tz);
477
478             }
479
480             fjptrA             = f+j_coord_offsetA;
481             fjptrB             = f+j_coord_offsetB;
482             fjptrC             = f+j_coord_offsetC;
483             fjptrD             = f+j_coord_offsetD;
484             fjptrE             = f+j_coord_offsetE;
485             fjptrF             = f+j_coord_offsetF;
486             fjptrG             = f+j_coord_offsetG;
487             fjptrH             = f+j_coord_offsetH;
488
489             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
490
491             /* Inner loop uses 371 flops */
492         }
493
494         if(jidx<j_index_end)
495         {
496
497             /* Get j neighbor index, and coordinate index */
498             jnrlistA         = jjnr[jidx];
499             jnrlistB         = jjnr[jidx+1];
500             jnrlistC         = jjnr[jidx+2];
501             jnrlistD         = jjnr[jidx+3];
502             jnrlistE         = jjnr[jidx+4];
503             jnrlistF         = jjnr[jidx+5];
504             jnrlistG         = jjnr[jidx+6];
505             jnrlistH         = jjnr[jidx+7];
506             /* Sign of each element will be negative for non-real atoms.
507              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
508              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
509              */
510             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
511                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
512                                             
513             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
514             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
515             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
516             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
517             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
518             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
519             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
520             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
521             j_coord_offsetA  = DIM*jnrA;
522             j_coord_offsetB  = DIM*jnrB;
523             j_coord_offsetC  = DIM*jnrC;
524             j_coord_offsetD  = DIM*jnrD;
525             j_coord_offsetE  = DIM*jnrE;
526             j_coord_offsetF  = DIM*jnrF;
527             j_coord_offsetG  = DIM*jnrG;
528             j_coord_offsetH  = DIM*jnrH;
529
530             /* load j atom coordinates */
531             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
532                                                  x+j_coord_offsetC,x+j_coord_offsetD,
533                                                  x+j_coord_offsetE,x+j_coord_offsetF,
534                                                  x+j_coord_offsetG,x+j_coord_offsetH,
535                                                  &jx0,&jy0,&jz0);
536
537             /* Calculate displacement vector */
538             dx00             = _mm256_sub_ps(ix0,jx0);
539             dy00             = _mm256_sub_ps(iy0,jy0);
540             dz00             = _mm256_sub_ps(iz0,jz0);
541             dx10             = _mm256_sub_ps(ix1,jx0);
542             dy10             = _mm256_sub_ps(iy1,jy0);
543             dz10             = _mm256_sub_ps(iz1,jz0);
544             dx20             = _mm256_sub_ps(ix2,jx0);
545             dy20             = _mm256_sub_ps(iy2,jy0);
546             dz20             = _mm256_sub_ps(iz2,jz0);
547             dx30             = _mm256_sub_ps(ix3,jx0);
548             dy30             = _mm256_sub_ps(iy3,jy0);
549             dz30             = _mm256_sub_ps(iz3,jz0);
550
551             /* Calculate squared distance and things based on it */
552             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
553             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
554             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
555             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
556
557             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
558             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
559             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
560
561             rinvsq00         = gmx_mm256_inv_ps(rsq00);
562             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
563             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
564             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
565
566             /* Load parameters for j particles */
567             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
568                                                                  charge+jnrC+0,charge+jnrD+0,
569                                                                  charge+jnrE+0,charge+jnrF+0,
570                                                                  charge+jnrG+0,charge+jnrH+0);
571             vdwjidx0A        = 2*vdwtype[jnrA+0];
572             vdwjidx0B        = 2*vdwtype[jnrB+0];
573             vdwjidx0C        = 2*vdwtype[jnrC+0];
574             vdwjidx0D        = 2*vdwtype[jnrD+0];
575             vdwjidx0E        = 2*vdwtype[jnrE+0];
576             vdwjidx0F        = 2*vdwtype[jnrF+0];
577             vdwjidx0G        = 2*vdwtype[jnrG+0];
578             vdwjidx0H        = 2*vdwtype[jnrH+0];
579
580             fjx0             = _mm256_setzero_ps();
581             fjy0             = _mm256_setzero_ps();
582             fjz0             = _mm256_setzero_ps();
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             if (gmx_mm256_any_lt(rsq00,rcutoff2))
589             {
590
591             /* Compute parameters for interactions between i and j atoms */
592             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
593                                             vdwioffsetptr0+vdwjidx0B,
594                                             vdwioffsetptr0+vdwjidx0C,
595                                             vdwioffsetptr0+vdwjidx0D,
596                                             vdwioffsetptr0+vdwjidx0E,
597                                             vdwioffsetptr0+vdwjidx0F,
598                                             vdwioffsetptr0+vdwjidx0G,
599                                             vdwioffsetptr0+vdwjidx0H,
600                                             &c6_00,&c12_00);
601
602             /* LENNARD-JONES DISPERSION/REPULSION */
603
604             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
605             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
606             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
607             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
608                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
609             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
610
611             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
612
613             /* Update potential sum for this i atom from the interaction with this j atom. */
614             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
615             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
616             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
617
618             fscal            = fvdw;
619
620             fscal            = _mm256_and_ps(fscal,cutoff_mask);
621
622             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm256_mul_ps(fscal,dx00);
626             ty               = _mm256_mul_ps(fscal,dy00);
627             tz               = _mm256_mul_ps(fscal,dz00);
628
629             /* Update vectorial force */
630             fix0             = _mm256_add_ps(fix0,tx);
631             fiy0             = _mm256_add_ps(fiy0,ty);
632             fiz0             = _mm256_add_ps(fiz0,tz);
633
634             fjx0             = _mm256_add_ps(fjx0,tx);
635             fjy0             = _mm256_add_ps(fjy0,ty);
636             fjz0             = _mm256_add_ps(fjz0,tz);
637
638             }
639
640             /**************************
641              * CALCULATE INTERACTIONS *
642              **************************/
643
644             if (gmx_mm256_any_lt(rsq10,rcutoff2))
645             {
646
647             r10              = _mm256_mul_ps(rsq10,rinv10);
648             r10              = _mm256_andnot_ps(dummy_mask,r10);
649
650             /* Compute parameters for interactions between i and j atoms */
651             qq10             = _mm256_mul_ps(iq1,jq0);
652
653             /* EWALD ELECTROSTATICS */
654             
655             /* Analytical PME correction */
656             zeta2            = _mm256_mul_ps(beta2,rsq10);
657             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
658             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
659             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
660             felec            = _mm256_mul_ps(qq10,felec);
661             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
662             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
663             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv10,sh_ewald),pmecorrV);
664             velec            = _mm256_mul_ps(qq10,velec);
665             
666             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
667
668             /* Update potential sum for this i atom from the interaction with this j atom. */
669             velec            = _mm256_and_ps(velec,cutoff_mask);
670             velec            = _mm256_andnot_ps(dummy_mask,velec);
671             velecsum         = _mm256_add_ps(velecsum,velec);
672
673             fscal            = felec;
674
675             fscal            = _mm256_and_ps(fscal,cutoff_mask);
676
677             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
678
679             /* Calculate temporary vectorial force */
680             tx               = _mm256_mul_ps(fscal,dx10);
681             ty               = _mm256_mul_ps(fscal,dy10);
682             tz               = _mm256_mul_ps(fscal,dz10);
683
684             /* Update vectorial force */
685             fix1             = _mm256_add_ps(fix1,tx);
686             fiy1             = _mm256_add_ps(fiy1,ty);
687             fiz1             = _mm256_add_ps(fiz1,tz);
688
689             fjx0             = _mm256_add_ps(fjx0,tx);
690             fjy0             = _mm256_add_ps(fjy0,ty);
691             fjz0             = _mm256_add_ps(fjz0,tz);
692
693             }
694
695             /**************************
696              * CALCULATE INTERACTIONS *
697              **************************/
698
699             if (gmx_mm256_any_lt(rsq20,rcutoff2))
700             {
701
702             r20              = _mm256_mul_ps(rsq20,rinv20);
703             r20              = _mm256_andnot_ps(dummy_mask,r20);
704
705             /* Compute parameters for interactions between i and j atoms */
706             qq20             = _mm256_mul_ps(iq2,jq0);
707
708             /* EWALD ELECTROSTATICS */
709             
710             /* Analytical PME correction */
711             zeta2            = _mm256_mul_ps(beta2,rsq20);
712             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
713             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
714             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
715             felec            = _mm256_mul_ps(qq20,felec);
716             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
717             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
718             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv20,sh_ewald),pmecorrV);
719             velec            = _mm256_mul_ps(qq20,velec);
720             
721             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
722
723             /* Update potential sum for this i atom from the interaction with this j atom. */
724             velec            = _mm256_and_ps(velec,cutoff_mask);
725             velec            = _mm256_andnot_ps(dummy_mask,velec);
726             velecsum         = _mm256_add_ps(velecsum,velec);
727
728             fscal            = felec;
729
730             fscal            = _mm256_and_ps(fscal,cutoff_mask);
731
732             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
733
734             /* Calculate temporary vectorial force */
735             tx               = _mm256_mul_ps(fscal,dx20);
736             ty               = _mm256_mul_ps(fscal,dy20);
737             tz               = _mm256_mul_ps(fscal,dz20);
738
739             /* Update vectorial force */
740             fix2             = _mm256_add_ps(fix2,tx);
741             fiy2             = _mm256_add_ps(fiy2,ty);
742             fiz2             = _mm256_add_ps(fiz2,tz);
743
744             fjx0             = _mm256_add_ps(fjx0,tx);
745             fjy0             = _mm256_add_ps(fjy0,ty);
746             fjz0             = _mm256_add_ps(fjz0,tz);
747
748             }
749
750             /**************************
751              * CALCULATE INTERACTIONS *
752              **************************/
753
754             if (gmx_mm256_any_lt(rsq30,rcutoff2))
755             {
756
757             r30              = _mm256_mul_ps(rsq30,rinv30);
758             r30              = _mm256_andnot_ps(dummy_mask,r30);
759
760             /* Compute parameters for interactions between i and j atoms */
761             qq30             = _mm256_mul_ps(iq3,jq0);
762
763             /* EWALD ELECTROSTATICS */
764             
765             /* Analytical PME correction */
766             zeta2            = _mm256_mul_ps(beta2,rsq30);
767             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
768             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
769             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
770             felec            = _mm256_mul_ps(qq30,felec);
771             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
772             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
773             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv30,sh_ewald),pmecorrV);
774             velec            = _mm256_mul_ps(qq30,velec);
775             
776             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
777
778             /* Update potential sum for this i atom from the interaction with this j atom. */
779             velec            = _mm256_and_ps(velec,cutoff_mask);
780             velec            = _mm256_andnot_ps(dummy_mask,velec);
781             velecsum         = _mm256_add_ps(velecsum,velec);
782
783             fscal            = felec;
784
785             fscal            = _mm256_and_ps(fscal,cutoff_mask);
786
787             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
788
789             /* Calculate temporary vectorial force */
790             tx               = _mm256_mul_ps(fscal,dx30);
791             ty               = _mm256_mul_ps(fscal,dy30);
792             tz               = _mm256_mul_ps(fscal,dz30);
793
794             /* Update vectorial force */
795             fix3             = _mm256_add_ps(fix3,tx);
796             fiy3             = _mm256_add_ps(fiy3,ty);
797             fiz3             = _mm256_add_ps(fiz3,tz);
798
799             fjx0             = _mm256_add_ps(fjx0,tx);
800             fjy0             = _mm256_add_ps(fjy0,ty);
801             fjz0             = _mm256_add_ps(fjz0,tz);
802
803             }
804
805             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
806             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
807             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
808             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
809             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
810             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
811             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
812             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
813
814             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
815
816             /* Inner loop uses 374 flops */
817         }
818
819         /* End of innermost loop */
820
821         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
822                                                  f+i_coord_offset,fshift+i_shift_offset);
823
824         ggid                        = gid[iidx];
825         /* Update potential energies */
826         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
827         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
828
829         /* Increment number of inner iterations */
830         inneriter                  += j_index_end - j_index_start;
831
832         /* Outer loop uses 26 flops */
833     }
834
835     /* Increment number of outer iterations */
836     outeriter        += nri;
837
838     /* Update outer/inner flops */
839
840     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*374);
841 }
842 /*
843  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_single
844  * Electrostatics interaction: Ewald
845  * VdW interaction:            LennardJones
846  * Geometry:                   Water4-Particle
847  * Calculate force/pot:        Force
848  */
849 void
850 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_single
851                     (t_nblist * gmx_restrict                nlist,
852                      rvec * gmx_restrict                    xx,
853                      rvec * gmx_restrict                    ff,
854                      t_forcerec * gmx_restrict              fr,
855                      t_mdatoms * gmx_restrict               mdatoms,
856                      nb_kernel_data_t * gmx_restrict        kernel_data,
857                      t_nrnb * gmx_restrict                  nrnb)
858 {
859     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
860      * just 0 for non-waters.
861      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
862      * jnr indices corresponding to data put in the four positions in the SIMD register.
863      */
864     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
865     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
866     int              jnrA,jnrB,jnrC,jnrD;
867     int              jnrE,jnrF,jnrG,jnrH;
868     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
869     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
870     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
871     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
872     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
873     real             rcutoff_scalar;
874     real             *shiftvec,*fshift,*x,*f;
875     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
876     real             scratch[4*DIM];
877     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
878     real *           vdwioffsetptr0;
879     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
880     real *           vdwioffsetptr1;
881     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
882     real *           vdwioffsetptr2;
883     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
884     real *           vdwioffsetptr3;
885     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
886     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
887     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
888     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
889     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
890     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
891     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
892     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
893     real             *charge;
894     int              nvdwtype;
895     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
896     int              *vdwtype;
897     real             *vdwparam;
898     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
899     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
900     __m256i          ewitab;
901     __m128i          ewitab_lo,ewitab_hi;
902     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
903     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
904     real             *ewtab;
905     __m256           dummy_mask,cutoff_mask;
906     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
907     __m256           one     = _mm256_set1_ps(1.0);
908     __m256           two     = _mm256_set1_ps(2.0);
909     x                = xx[0];
910     f                = ff[0];
911
912     nri              = nlist->nri;
913     iinr             = nlist->iinr;
914     jindex           = nlist->jindex;
915     jjnr             = nlist->jjnr;
916     shiftidx         = nlist->shift;
917     gid              = nlist->gid;
918     shiftvec         = fr->shift_vec[0];
919     fshift           = fr->fshift[0];
920     facel            = _mm256_set1_ps(fr->epsfac);
921     charge           = mdatoms->chargeA;
922     nvdwtype         = fr->ntype;
923     vdwparam         = fr->nbfp;
924     vdwtype          = mdatoms->typeA;
925
926     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
927     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
928     beta2            = _mm256_mul_ps(beta,beta);
929     beta3            = _mm256_mul_ps(beta,beta2);
930
931     ewtab            = fr->ic->tabq_coul_F;
932     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
933     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
934
935     /* Setup water-specific parameters */
936     inr              = nlist->iinr[0];
937     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
938     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
939     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
940     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
941
942     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
943     rcutoff_scalar   = fr->rcoulomb;
944     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
945     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
946
947     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
948     rvdw             = _mm256_set1_ps(fr->rvdw);
949
950     /* Avoid stupid compiler warnings */
951     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
952     j_coord_offsetA = 0;
953     j_coord_offsetB = 0;
954     j_coord_offsetC = 0;
955     j_coord_offsetD = 0;
956     j_coord_offsetE = 0;
957     j_coord_offsetF = 0;
958     j_coord_offsetG = 0;
959     j_coord_offsetH = 0;
960
961     outeriter        = 0;
962     inneriter        = 0;
963
964     for(iidx=0;iidx<4*DIM;iidx++)
965     {
966         scratch[iidx] = 0.0;
967     }
968
969     /* Start outer loop over neighborlists */
970     for(iidx=0; iidx<nri; iidx++)
971     {
972         /* Load shift vector for this list */
973         i_shift_offset   = DIM*shiftidx[iidx];
974
975         /* Load limits for loop over neighbors */
976         j_index_start    = jindex[iidx];
977         j_index_end      = jindex[iidx+1];
978
979         /* Get outer coordinate index */
980         inr              = iinr[iidx];
981         i_coord_offset   = DIM*inr;
982
983         /* Load i particle coords and add shift vector */
984         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
985                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
986
987         fix0             = _mm256_setzero_ps();
988         fiy0             = _mm256_setzero_ps();
989         fiz0             = _mm256_setzero_ps();
990         fix1             = _mm256_setzero_ps();
991         fiy1             = _mm256_setzero_ps();
992         fiz1             = _mm256_setzero_ps();
993         fix2             = _mm256_setzero_ps();
994         fiy2             = _mm256_setzero_ps();
995         fiz2             = _mm256_setzero_ps();
996         fix3             = _mm256_setzero_ps();
997         fiy3             = _mm256_setzero_ps();
998         fiz3             = _mm256_setzero_ps();
999
1000         /* Start inner kernel loop */
1001         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
1002         {
1003
1004             /* Get j neighbor index, and coordinate index */
1005             jnrA             = jjnr[jidx];
1006             jnrB             = jjnr[jidx+1];
1007             jnrC             = jjnr[jidx+2];
1008             jnrD             = jjnr[jidx+3];
1009             jnrE             = jjnr[jidx+4];
1010             jnrF             = jjnr[jidx+5];
1011             jnrG             = jjnr[jidx+6];
1012             jnrH             = jjnr[jidx+7];
1013             j_coord_offsetA  = DIM*jnrA;
1014             j_coord_offsetB  = DIM*jnrB;
1015             j_coord_offsetC  = DIM*jnrC;
1016             j_coord_offsetD  = DIM*jnrD;
1017             j_coord_offsetE  = DIM*jnrE;
1018             j_coord_offsetF  = DIM*jnrF;
1019             j_coord_offsetG  = DIM*jnrG;
1020             j_coord_offsetH  = DIM*jnrH;
1021
1022             /* load j atom coordinates */
1023             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1024                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1025                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1026                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1027                                                  &jx0,&jy0,&jz0);
1028
1029             /* Calculate displacement vector */
1030             dx00             = _mm256_sub_ps(ix0,jx0);
1031             dy00             = _mm256_sub_ps(iy0,jy0);
1032             dz00             = _mm256_sub_ps(iz0,jz0);
1033             dx10             = _mm256_sub_ps(ix1,jx0);
1034             dy10             = _mm256_sub_ps(iy1,jy0);
1035             dz10             = _mm256_sub_ps(iz1,jz0);
1036             dx20             = _mm256_sub_ps(ix2,jx0);
1037             dy20             = _mm256_sub_ps(iy2,jy0);
1038             dz20             = _mm256_sub_ps(iz2,jz0);
1039             dx30             = _mm256_sub_ps(ix3,jx0);
1040             dy30             = _mm256_sub_ps(iy3,jy0);
1041             dz30             = _mm256_sub_ps(iz3,jz0);
1042
1043             /* Calculate squared distance and things based on it */
1044             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1045             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1046             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1047             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1048
1049             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1050             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1051             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1052
1053             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1054             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1055             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1056             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1057
1058             /* Load parameters for j particles */
1059             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1060                                                                  charge+jnrC+0,charge+jnrD+0,
1061                                                                  charge+jnrE+0,charge+jnrF+0,
1062                                                                  charge+jnrG+0,charge+jnrH+0);
1063             vdwjidx0A        = 2*vdwtype[jnrA+0];
1064             vdwjidx0B        = 2*vdwtype[jnrB+0];
1065             vdwjidx0C        = 2*vdwtype[jnrC+0];
1066             vdwjidx0D        = 2*vdwtype[jnrD+0];
1067             vdwjidx0E        = 2*vdwtype[jnrE+0];
1068             vdwjidx0F        = 2*vdwtype[jnrF+0];
1069             vdwjidx0G        = 2*vdwtype[jnrG+0];
1070             vdwjidx0H        = 2*vdwtype[jnrH+0];
1071
1072             fjx0             = _mm256_setzero_ps();
1073             fjy0             = _mm256_setzero_ps();
1074             fjz0             = _mm256_setzero_ps();
1075
1076             /**************************
1077              * CALCULATE INTERACTIONS *
1078              **************************/
1079
1080             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1081             {
1082
1083             /* Compute parameters for interactions between i and j atoms */
1084             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1085                                             vdwioffsetptr0+vdwjidx0B,
1086                                             vdwioffsetptr0+vdwjidx0C,
1087                                             vdwioffsetptr0+vdwjidx0D,
1088                                             vdwioffsetptr0+vdwjidx0E,
1089                                             vdwioffsetptr0+vdwjidx0F,
1090                                             vdwioffsetptr0+vdwjidx0G,
1091                                             vdwioffsetptr0+vdwjidx0H,
1092                                             &c6_00,&c12_00);
1093
1094             /* LENNARD-JONES DISPERSION/REPULSION */
1095
1096             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1097             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1098
1099             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1100
1101             fscal            = fvdw;
1102
1103             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1104
1105             /* Calculate temporary vectorial force */
1106             tx               = _mm256_mul_ps(fscal,dx00);
1107             ty               = _mm256_mul_ps(fscal,dy00);
1108             tz               = _mm256_mul_ps(fscal,dz00);
1109
1110             /* Update vectorial force */
1111             fix0             = _mm256_add_ps(fix0,tx);
1112             fiy0             = _mm256_add_ps(fiy0,ty);
1113             fiz0             = _mm256_add_ps(fiz0,tz);
1114
1115             fjx0             = _mm256_add_ps(fjx0,tx);
1116             fjy0             = _mm256_add_ps(fjy0,ty);
1117             fjz0             = _mm256_add_ps(fjz0,tz);
1118
1119             }
1120
1121             /**************************
1122              * CALCULATE INTERACTIONS *
1123              **************************/
1124
1125             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1126             {
1127
1128             r10              = _mm256_mul_ps(rsq10,rinv10);
1129
1130             /* Compute parameters for interactions between i and j atoms */
1131             qq10             = _mm256_mul_ps(iq1,jq0);
1132
1133             /* EWALD ELECTROSTATICS */
1134             
1135             /* Analytical PME correction */
1136             zeta2            = _mm256_mul_ps(beta2,rsq10);
1137             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1138             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1139             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1140             felec            = _mm256_mul_ps(qq10,felec);
1141             
1142             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1143
1144             fscal            = felec;
1145
1146             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1147
1148             /* Calculate temporary vectorial force */
1149             tx               = _mm256_mul_ps(fscal,dx10);
1150             ty               = _mm256_mul_ps(fscal,dy10);
1151             tz               = _mm256_mul_ps(fscal,dz10);
1152
1153             /* Update vectorial force */
1154             fix1             = _mm256_add_ps(fix1,tx);
1155             fiy1             = _mm256_add_ps(fiy1,ty);
1156             fiz1             = _mm256_add_ps(fiz1,tz);
1157
1158             fjx0             = _mm256_add_ps(fjx0,tx);
1159             fjy0             = _mm256_add_ps(fjy0,ty);
1160             fjz0             = _mm256_add_ps(fjz0,tz);
1161
1162             }
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1169             {
1170
1171             r20              = _mm256_mul_ps(rsq20,rinv20);
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq20             = _mm256_mul_ps(iq2,jq0);
1175
1176             /* EWALD ELECTROSTATICS */
1177             
1178             /* Analytical PME correction */
1179             zeta2            = _mm256_mul_ps(beta2,rsq20);
1180             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1181             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1182             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1183             felec            = _mm256_mul_ps(qq20,felec);
1184             
1185             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1186
1187             fscal            = felec;
1188
1189             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1190
1191             /* Calculate temporary vectorial force */
1192             tx               = _mm256_mul_ps(fscal,dx20);
1193             ty               = _mm256_mul_ps(fscal,dy20);
1194             tz               = _mm256_mul_ps(fscal,dz20);
1195
1196             /* Update vectorial force */
1197             fix2             = _mm256_add_ps(fix2,tx);
1198             fiy2             = _mm256_add_ps(fiy2,ty);
1199             fiz2             = _mm256_add_ps(fiz2,tz);
1200
1201             fjx0             = _mm256_add_ps(fjx0,tx);
1202             fjy0             = _mm256_add_ps(fjy0,ty);
1203             fjz0             = _mm256_add_ps(fjz0,tz);
1204
1205             }
1206
1207             /**************************
1208              * CALCULATE INTERACTIONS *
1209              **************************/
1210
1211             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1212             {
1213
1214             r30              = _mm256_mul_ps(rsq30,rinv30);
1215
1216             /* Compute parameters for interactions between i and j atoms */
1217             qq30             = _mm256_mul_ps(iq3,jq0);
1218
1219             /* EWALD ELECTROSTATICS */
1220             
1221             /* Analytical PME correction */
1222             zeta2            = _mm256_mul_ps(beta2,rsq30);
1223             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1224             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1225             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1226             felec            = _mm256_mul_ps(qq30,felec);
1227             
1228             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1229
1230             fscal            = felec;
1231
1232             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1233
1234             /* Calculate temporary vectorial force */
1235             tx               = _mm256_mul_ps(fscal,dx30);
1236             ty               = _mm256_mul_ps(fscal,dy30);
1237             tz               = _mm256_mul_ps(fscal,dz30);
1238
1239             /* Update vectorial force */
1240             fix3             = _mm256_add_ps(fix3,tx);
1241             fiy3             = _mm256_add_ps(fiy3,ty);
1242             fiz3             = _mm256_add_ps(fiz3,tz);
1243
1244             fjx0             = _mm256_add_ps(fjx0,tx);
1245             fjy0             = _mm256_add_ps(fjy0,ty);
1246             fjz0             = _mm256_add_ps(fjz0,tz);
1247
1248             }
1249
1250             fjptrA             = f+j_coord_offsetA;
1251             fjptrB             = f+j_coord_offsetB;
1252             fjptrC             = f+j_coord_offsetC;
1253             fjptrD             = f+j_coord_offsetD;
1254             fjptrE             = f+j_coord_offsetE;
1255             fjptrF             = f+j_coord_offsetF;
1256             fjptrG             = f+j_coord_offsetG;
1257             fjptrH             = f+j_coord_offsetH;
1258
1259             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1260
1261             /* Inner loop uses 210 flops */
1262         }
1263
1264         if(jidx<j_index_end)
1265         {
1266
1267             /* Get j neighbor index, and coordinate index */
1268             jnrlistA         = jjnr[jidx];
1269             jnrlistB         = jjnr[jidx+1];
1270             jnrlistC         = jjnr[jidx+2];
1271             jnrlistD         = jjnr[jidx+3];
1272             jnrlistE         = jjnr[jidx+4];
1273             jnrlistF         = jjnr[jidx+5];
1274             jnrlistG         = jjnr[jidx+6];
1275             jnrlistH         = jjnr[jidx+7];
1276             /* Sign of each element will be negative for non-real atoms.
1277              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1278              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1279              */
1280             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1281                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1282                                             
1283             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1284             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1285             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1286             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1287             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1288             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1289             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1290             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1291             j_coord_offsetA  = DIM*jnrA;
1292             j_coord_offsetB  = DIM*jnrB;
1293             j_coord_offsetC  = DIM*jnrC;
1294             j_coord_offsetD  = DIM*jnrD;
1295             j_coord_offsetE  = DIM*jnrE;
1296             j_coord_offsetF  = DIM*jnrF;
1297             j_coord_offsetG  = DIM*jnrG;
1298             j_coord_offsetH  = DIM*jnrH;
1299
1300             /* load j atom coordinates */
1301             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1302                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1303                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1304                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1305                                                  &jx0,&jy0,&jz0);
1306
1307             /* Calculate displacement vector */
1308             dx00             = _mm256_sub_ps(ix0,jx0);
1309             dy00             = _mm256_sub_ps(iy0,jy0);
1310             dz00             = _mm256_sub_ps(iz0,jz0);
1311             dx10             = _mm256_sub_ps(ix1,jx0);
1312             dy10             = _mm256_sub_ps(iy1,jy0);
1313             dz10             = _mm256_sub_ps(iz1,jz0);
1314             dx20             = _mm256_sub_ps(ix2,jx0);
1315             dy20             = _mm256_sub_ps(iy2,jy0);
1316             dz20             = _mm256_sub_ps(iz2,jz0);
1317             dx30             = _mm256_sub_ps(ix3,jx0);
1318             dy30             = _mm256_sub_ps(iy3,jy0);
1319             dz30             = _mm256_sub_ps(iz3,jz0);
1320
1321             /* Calculate squared distance and things based on it */
1322             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1323             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1324             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1325             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1326
1327             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1328             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1329             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1330
1331             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1332             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1333             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1334             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1335
1336             /* Load parameters for j particles */
1337             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1338                                                                  charge+jnrC+0,charge+jnrD+0,
1339                                                                  charge+jnrE+0,charge+jnrF+0,
1340                                                                  charge+jnrG+0,charge+jnrH+0);
1341             vdwjidx0A        = 2*vdwtype[jnrA+0];
1342             vdwjidx0B        = 2*vdwtype[jnrB+0];
1343             vdwjidx0C        = 2*vdwtype[jnrC+0];
1344             vdwjidx0D        = 2*vdwtype[jnrD+0];
1345             vdwjidx0E        = 2*vdwtype[jnrE+0];
1346             vdwjidx0F        = 2*vdwtype[jnrF+0];
1347             vdwjidx0G        = 2*vdwtype[jnrG+0];
1348             vdwjidx0H        = 2*vdwtype[jnrH+0];
1349
1350             fjx0             = _mm256_setzero_ps();
1351             fjy0             = _mm256_setzero_ps();
1352             fjz0             = _mm256_setzero_ps();
1353
1354             /**************************
1355              * CALCULATE INTERACTIONS *
1356              **************************/
1357
1358             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1359             {
1360
1361             /* Compute parameters for interactions between i and j atoms */
1362             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1363                                             vdwioffsetptr0+vdwjidx0B,
1364                                             vdwioffsetptr0+vdwjidx0C,
1365                                             vdwioffsetptr0+vdwjidx0D,
1366                                             vdwioffsetptr0+vdwjidx0E,
1367                                             vdwioffsetptr0+vdwjidx0F,
1368                                             vdwioffsetptr0+vdwjidx0G,
1369                                             vdwioffsetptr0+vdwjidx0H,
1370                                             &c6_00,&c12_00);
1371
1372             /* LENNARD-JONES DISPERSION/REPULSION */
1373
1374             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1375             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1376
1377             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
1378
1379             fscal            = fvdw;
1380
1381             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1382
1383             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1384
1385             /* Calculate temporary vectorial force */
1386             tx               = _mm256_mul_ps(fscal,dx00);
1387             ty               = _mm256_mul_ps(fscal,dy00);
1388             tz               = _mm256_mul_ps(fscal,dz00);
1389
1390             /* Update vectorial force */
1391             fix0             = _mm256_add_ps(fix0,tx);
1392             fiy0             = _mm256_add_ps(fiy0,ty);
1393             fiz0             = _mm256_add_ps(fiz0,tz);
1394
1395             fjx0             = _mm256_add_ps(fjx0,tx);
1396             fjy0             = _mm256_add_ps(fjy0,ty);
1397             fjz0             = _mm256_add_ps(fjz0,tz);
1398
1399             }
1400
1401             /**************************
1402              * CALCULATE INTERACTIONS *
1403              **************************/
1404
1405             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1406             {
1407
1408             r10              = _mm256_mul_ps(rsq10,rinv10);
1409             r10              = _mm256_andnot_ps(dummy_mask,r10);
1410
1411             /* Compute parameters for interactions between i and j atoms */
1412             qq10             = _mm256_mul_ps(iq1,jq0);
1413
1414             /* EWALD ELECTROSTATICS */
1415             
1416             /* Analytical PME correction */
1417             zeta2            = _mm256_mul_ps(beta2,rsq10);
1418             rinv3            = _mm256_mul_ps(rinvsq10,rinv10);
1419             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1420             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1421             felec            = _mm256_mul_ps(qq10,felec);
1422             
1423             cutoff_mask      = _mm256_cmp_ps(rsq10,rcutoff2,_CMP_LT_OQ);
1424
1425             fscal            = felec;
1426
1427             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1428
1429             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1430
1431             /* Calculate temporary vectorial force */
1432             tx               = _mm256_mul_ps(fscal,dx10);
1433             ty               = _mm256_mul_ps(fscal,dy10);
1434             tz               = _mm256_mul_ps(fscal,dz10);
1435
1436             /* Update vectorial force */
1437             fix1             = _mm256_add_ps(fix1,tx);
1438             fiy1             = _mm256_add_ps(fiy1,ty);
1439             fiz1             = _mm256_add_ps(fiz1,tz);
1440
1441             fjx0             = _mm256_add_ps(fjx0,tx);
1442             fjy0             = _mm256_add_ps(fjy0,ty);
1443             fjz0             = _mm256_add_ps(fjz0,tz);
1444
1445             }
1446
1447             /**************************
1448              * CALCULATE INTERACTIONS *
1449              **************************/
1450
1451             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1452             {
1453
1454             r20              = _mm256_mul_ps(rsq20,rinv20);
1455             r20              = _mm256_andnot_ps(dummy_mask,r20);
1456
1457             /* Compute parameters for interactions between i and j atoms */
1458             qq20             = _mm256_mul_ps(iq2,jq0);
1459
1460             /* EWALD ELECTROSTATICS */
1461             
1462             /* Analytical PME correction */
1463             zeta2            = _mm256_mul_ps(beta2,rsq20);
1464             rinv3            = _mm256_mul_ps(rinvsq20,rinv20);
1465             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1466             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1467             felec            = _mm256_mul_ps(qq20,felec);
1468             
1469             cutoff_mask      = _mm256_cmp_ps(rsq20,rcutoff2,_CMP_LT_OQ);
1470
1471             fscal            = felec;
1472
1473             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1474
1475             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1476
1477             /* Calculate temporary vectorial force */
1478             tx               = _mm256_mul_ps(fscal,dx20);
1479             ty               = _mm256_mul_ps(fscal,dy20);
1480             tz               = _mm256_mul_ps(fscal,dz20);
1481
1482             /* Update vectorial force */
1483             fix2             = _mm256_add_ps(fix2,tx);
1484             fiy2             = _mm256_add_ps(fiy2,ty);
1485             fiz2             = _mm256_add_ps(fiz2,tz);
1486
1487             fjx0             = _mm256_add_ps(fjx0,tx);
1488             fjy0             = _mm256_add_ps(fjy0,ty);
1489             fjz0             = _mm256_add_ps(fjz0,tz);
1490
1491             }
1492
1493             /**************************
1494              * CALCULATE INTERACTIONS *
1495              **************************/
1496
1497             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1498             {
1499
1500             r30              = _mm256_mul_ps(rsq30,rinv30);
1501             r30              = _mm256_andnot_ps(dummy_mask,r30);
1502
1503             /* Compute parameters for interactions between i and j atoms */
1504             qq30             = _mm256_mul_ps(iq3,jq0);
1505
1506             /* EWALD ELECTROSTATICS */
1507             
1508             /* Analytical PME correction */
1509             zeta2            = _mm256_mul_ps(beta2,rsq30);
1510             rinv3            = _mm256_mul_ps(rinvsq30,rinv30);
1511             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
1512             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
1513             felec            = _mm256_mul_ps(qq30,felec);
1514             
1515             cutoff_mask      = _mm256_cmp_ps(rsq30,rcutoff2,_CMP_LT_OQ);
1516
1517             fscal            = felec;
1518
1519             fscal            = _mm256_and_ps(fscal,cutoff_mask);
1520
1521             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1522
1523             /* Calculate temporary vectorial force */
1524             tx               = _mm256_mul_ps(fscal,dx30);
1525             ty               = _mm256_mul_ps(fscal,dy30);
1526             tz               = _mm256_mul_ps(fscal,dz30);
1527
1528             /* Update vectorial force */
1529             fix3             = _mm256_add_ps(fix3,tx);
1530             fiy3             = _mm256_add_ps(fiy3,ty);
1531             fiz3             = _mm256_add_ps(fiz3,tz);
1532
1533             fjx0             = _mm256_add_ps(fjx0,tx);
1534             fjy0             = _mm256_add_ps(fjy0,ty);
1535             fjz0             = _mm256_add_ps(fjz0,tz);
1536
1537             }
1538
1539             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1540             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1541             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1542             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1543             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1544             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1545             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1546             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1547
1548             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1549
1550             /* Inner loop uses 213 flops */
1551         }
1552
1553         /* End of innermost loop */
1554
1555         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1556                                                  f+i_coord_offset,fshift+i_shift_offset);
1557
1558         /* Increment number of inner iterations */
1559         inneriter                  += j_index_end - j_index_start;
1560
1561         /* Outer loop uses 24 flops */
1562     }
1563
1564     /* Increment number of outer iterations */
1565     outeriter        += nri;
1566
1567     /* Update outer/inner flops */
1568
1569     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*213);
1570 }