7274c8b3581b726d7d5ab9aedd1fb76c3f8211c4
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256i          ewitab;
86     __m128i          ewitab_lo,ewitab_hi;
87     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
88     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
89     real             *ewtab;
90     __m256           dummy_mask,cutoff_mask;
91     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
92     __m256           one     = _mm256_set1_ps(1.0);
93     __m256           two     = _mm256_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
112     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
113     beta2            = _mm256_mul_ps(beta,beta);
114     beta3            = _mm256_mul_ps(beta,beta2);
115
116     ewtab            = fr->ic->tabq_coul_FDV0;
117     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
118     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
119
120     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
121     rcutoff_scalar   = fr->rcoulomb;
122     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
123     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
124
125     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
126     rvdw             = _mm256_set1_ps(fr->rvdw);
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134     j_coord_offsetE = 0;
135     j_coord_offsetF = 0;
136     j_coord_offsetG = 0;
137     j_coord_offsetH = 0;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     for(iidx=0;iidx<4*DIM;iidx++)
143     {
144         scratch[iidx] = 0.0;
145     }
146
147     /* Start outer loop over neighborlists */
148     for(iidx=0; iidx<nri; iidx++)
149     {
150         /* Load shift vector for this list */
151         i_shift_offset   = DIM*shiftidx[iidx];
152
153         /* Load limits for loop over neighbors */
154         j_index_start    = jindex[iidx];
155         j_index_end      = jindex[iidx+1];
156
157         /* Get outer coordinate index */
158         inr              = iinr[iidx];
159         i_coord_offset   = DIM*inr;
160
161         /* Load i particle coords and add shift vector */
162         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
163
164         fix0             = _mm256_setzero_ps();
165         fiy0             = _mm256_setzero_ps();
166         fiz0             = _mm256_setzero_ps();
167
168         /* Load parameters for i particles */
169         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
170         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_ps();
174         vvdwsum          = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
212
213             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
214
215             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
216
217             /* Load parameters for j particles */
218             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
219                                                                  charge+jnrC+0,charge+jnrD+0,
220                                                                  charge+jnrE+0,charge+jnrF+0,
221                                                                  charge+jnrG+0,charge+jnrH+0);
222             vdwjidx0A        = 2*vdwtype[jnrA+0];
223             vdwjidx0B        = 2*vdwtype[jnrB+0];
224             vdwjidx0C        = 2*vdwtype[jnrC+0];
225             vdwjidx0D        = 2*vdwtype[jnrD+0];
226             vdwjidx0E        = 2*vdwtype[jnrE+0];
227             vdwjidx0F        = 2*vdwtype[jnrF+0];
228             vdwjidx0G        = 2*vdwtype[jnrG+0];
229             vdwjidx0H        = 2*vdwtype[jnrH+0];
230
231             /**************************
232              * CALCULATE INTERACTIONS *
233              **************************/
234
235             if (gmx_mm256_any_lt(rsq00,rcutoff2))
236             {
237
238             r00              = _mm256_mul_ps(rsq00,rinv00);
239
240             /* Compute parameters for interactions between i and j atoms */
241             qq00             = _mm256_mul_ps(iq0,jq0);
242             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
243                                             vdwioffsetptr0+vdwjidx0B,
244                                             vdwioffsetptr0+vdwjidx0C,
245                                             vdwioffsetptr0+vdwjidx0D,
246                                             vdwioffsetptr0+vdwjidx0E,
247                                             vdwioffsetptr0+vdwjidx0F,
248                                             vdwioffsetptr0+vdwjidx0G,
249                                             vdwioffsetptr0+vdwjidx0H,
250                                             &c6_00,&c12_00);
251
252             /* EWALD ELECTROSTATICS */
253             
254             /* Analytical PME correction */
255             zeta2            = _mm256_mul_ps(beta2,rsq00);
256             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
257             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
258             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
259             felec            = _mm256_mul_ps(qq00,felec);
260             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
261             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
262             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
263             velec            = _mm256_mul_ps(qq00,velec);
264             
265             /* LENNARD-JONES DISPERSION/REPULSION */
266
267             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
268             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
269             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
270             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
271                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
272             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
273
274             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
275
276             /* Update potential sum for this i atom from the interaction with this j atom. */
277             velec            = _mm256_and_ps(velec,cutoff_mask);
278             velecsum         = _mm256_add_ps(velecsum,velec);
279             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
280             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
281
282             fscal            = _mm256_add_ps(felec,fvdw);
283
284             fscal            = _mm256_and_ps(fscal,cutoff_mask);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm256_mul_ps(fscal,dx00);
288             ty               = _mm256_mul_ps(fscal,dy00);
289             tz               = _mm256_mul_ps(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm256_add_ps(fix0,tx);
293             fiy0             = _mm256_add_ps(fiy0,ty);
294             fiz0             = _mm256_add_ps(fiz0,tz);
295
296             fjptrA             = f+j_coord_offsetA;
297             fjptrB             = f+j_coord_offsetB;
298             fjptrC             = f+j_coord_offsetC;
299             fjptrD             = f+j_coord_offsetD;
300             fjptrE             = f+j_coord_offsetE;
301             fjptrF             = f+j_coord_offsetF;
302             fjptrG             = f+j_coord_offsetG;
303             fjptrH             = f+j_coord_offsetH;
304             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
305
306             }
307
308             /* Inner loop uses 127 flops */
309         }
310
311         if(jidx<j_index_end)
312         {
313
314             /* Get j neighbor index, and coordinate index */
315             jnrlistA         = jjnr[jidx];
316             jnrlistB         = jjnr[jidx+1];
317             jnrlistC         = jjnr[jidx+2];
318             jnrlistD         = jjnr[jidx+3];
319             jnrlistE         = jjnr[jidx+4];
320             jnrlistF         = jjnr[jidx+5];
321             jnrlistG         = jjnr[jidx+6];
322             jnrlistH         = jjnr[jidx+7];
323             /* Sign of each element will be negative for non-real atoms.
324              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
325              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
326              */
327             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
328                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
329                                             
330             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
331             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
332             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
333             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
334             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
335             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
336             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
337             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
338             j_coord_offsetA  = DIM*jnrA;
339             j_coord_offsetB  = DIM*jnrB;
340             j_coord_offsetC  = DIM*jnrC;
341             j_coord_offsetD  = DIM*jnrD;
342             j_coord_offsetE  = DIM*jnrE;
343             j_coord_offsetF  = DIM*jnrF;
344             j_coord_offsetG  = DIM*jnrG;
345             j_coord_offsetH  = DIM*jnrH;
346
347             /* load j atom coordinates */
348             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
349                                                  x+j_coord_offsetC,x+j_coord_offsetD,
350                                                  x+j_coord_offsetE,x+j_coord_offsetF,
351                                                  x+j_coord_offsetG,x+j_coord_offsetH,
352                                                  &jx0,&jy0,&jz0);
353
354             /* Calculate displacement vector */
355             dx00             = _mm256_sub_ps(ix0,jx0);
356             dy00             = _mm256_sub_ps(iy0,jy0);
357             dz00             = _mm256_sub_ps(iz0,jz0);
358
359             /* Calculate squared distance and things based on it */
360             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
361
362             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
363
364             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
365
366             /* Load parameters for j particles */
367             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
368                                                                  charge+jnrC+0,charge+jnrD+0,
369                                                                  charge+jnrE+0,charge+jnrF+0,
370                                                                  charge+jnrG+0,charge+jnrH+0);
371             vdwjidx0A        = 2*vdwtype[jnrA+0];
372             vdwjidx0B        = 2*vdwtype[jnrB+0];
373             vdwjidx0C        = 2*vdwtype[jnrC+0];
374             vdwjidx0D        = 2*vdwtype[jnrD+0];
375             vdwjidx0E        = 2*vdwtype[jnrE+0];
376             vdwjidx0F        = 2*vdwtype[jnrF+0];
377             vdwjidx0G        = 2*vdwtype[jnrG+0];
378             vdwjidx0H        = 2*vdwtype[jnrH+0];
379
380             /**************************
381              * CALCULATE INTERACTIONS *
382              **************************/
383
384             if (gmx_mm256_any_lt(rsq00,rcutoff2))
385             {
386
387             r00              = _mm256_mul_ps(rsq00,rinv00);
388             r00              = _mm256_andnot_ps(dummy_mask,r00);
389
390             /* Compute parameters for interactions between i and j atoms */
391             qq00             = _mm256_mul_ps(iq0,jq0);
392             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
393                                             vdwioffsetptr0+vdwjidx0B,
394                                             vdwioffsetptr0+vdwjidx0C,
395                                             vdwioffsetptr0+vdwjidx0D,
396                                             vdwioffsetptr0+vdwjidx0E,
397                                             vdwioffsetptr0+vdwjidx0F,
398                                             vdwioffsetptr0+vdwjidx0G,
399                                             vdwioffsetptr0+vdwjidx0H,
400                                             &c6_00,&c12_00);
401
402             /* EWALD ELECTROSTATICS */
403             
404             /* Analytical PME correction */
405             zeta2            = _mm256_mul_ps(beta2,rsq00);
406             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
407             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
408             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
409             felec            = _mm256_mul_ps(qq00,felec);
410             pmecorrV         = gmx_mm256_pmecorrV_ps(zeta2);
411             pmecorrV         = _mm256_mul_ps(pmecorrV,beta);
412             velec            = _mm256_sub_ps(_mm256_sub_ps(rinv00,sh_ewald),pmecorrV);
413             velec            = _mm256_mul_ps(qq00,velec);
414             
415             /* LENNARD-JONES DISPERSION/REPULSION */
416
417             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
418             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
419             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
420             vvdw             = _mm256_sub_ps(_mm256_mul_ps( _mm256_sub_ps(vvdw12 , _mm256_mul_ps(c12_00,_mm256_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
421                                           _mm256_mul_ps( _mm256_sub_ps(vvdw6,_mm256_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
422             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
423
424             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
425
426             /* Update potential sum for this i atom from the interaction with this j atom. */
427             velec            = _mm256_and_ps(velec,cutoff_mask);
428             velec            = _mm256_andnot_ps(dummy_mask,velec);
429             velecsum         = _mm256_add_ps(velecsum,velec);
430             vvdw             = _mm256_and_ps(vvdw,cutoff_mask);
431             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
432             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
433
434             fscal            = _mm256_add_ps(felec,fvdw);
435
436             fscal            = _mm256_and_ps(fscal,cutoff_mask);
437
438             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
439
440             /* Calculate temporary vectorial force */
441             tx               = _mm256_mul_ps(fscal,dx00);
442             ty               = _mm256_mul_ps(fscal,dy00);
443             tz               = _mm256_mul_ps(fscal,dz00);
444
445             /* Update vectorial force */
446             fix0             = _mm256_add_ps(fix0,tx);
447             fiy0             = _mm256_add_ps(fiy0,ty);
448             fiz0             = _mm256_add_ps(fiz0,tz);
449
450             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
451             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
452             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
453             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
454             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
455             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
456             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
457             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
458             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
459
460             }
461
462             /* Inner loop uses 128 flops */
463         }
464
465         /* End of innermost loop */
466
467         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
468                                                  f+i_coord_offset,fshift+i_shift_offset);
469
470         ggid                        = gid[iidx];
471         /* Update potential energies */
472         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
473         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
474
475         /* Increment number of inner iterations */
476         inneriter                  += j_index_end - j_index_start;
477
478         /* Outer loop uses 9 flops */
479     }
480
481     /* Increment number of outer iterations */
482     outeriter        += nri;
483
484     /* Update outer/inner flops */
485
486     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*128);
487 }
488 /*
489  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
490  * Electrostatics interaction: Ewald
491  * VdW interaction:            LennardJones
492  * Geometry:                   Particle-Particle
493  * Calculate force/pot:        Force
494  */
495 void
496 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_avx_256_single
497                     (t_nblist * gmx_restrict                nlist,
498                      rvec * gmx_restrict                    xx,
499                      rvec * gmx_restrict                    ff,
500                      t_forcerec * gmx_restrict              fr,
501                      t_mdatoms * gmx_restrict               mdatoms,
502                      nb_kernel_data_t * gmx_restrict        kernel_data,
503                      t_nrnb * gmx_restrict                  nrnb)
504 {
505     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
506      * just 0 for non-waters.
507      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
508      * jnr indices corresponding to data put in the four positions in the SIMD register.
509      */
510     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
511     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
512     int              jnrA,jnrB,jnrC,jnrD;
513     int              jnrE,jnrF,jnrG,jnrH;
514     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
515     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
516     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
517     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
518     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
519     real             rcutoff_scalar;
520     real             *shiftvec,*fshift,*x,*f;
521     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
522     real             scratch[4*DIM];
523     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
524     real *           vdwioffsetptr0;
525     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
526     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
527     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
528     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
529     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
530     real             *charge;
531     int              nvdwtype;
532     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
533     int              *vdwtype;
534     real             *vdwparam;
535     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
536     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
537     __m256i          ewitab;
538     __m128i          ewitab_lo,ewitab_hi;
539     __m256           ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
540     __m256           beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
541     real             *ewtab;
542     __m256           dummy_mask,cutoff_mask;
543     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
544     __m256           one     = _mm256_set1_ps(1.0);
545     __m256           two     = _mm256_set1_ps(2.0);
546     x                = xx[0];
547     f                = ff[0];
548
549     nri              = nlist->nri;
550     iinr             = nlist->iinr;
551     jindex           = nlist->jindex;
552     jjnr             = nlist->jjnr;
553     shiftidx         = nlist->shift;
554     gid              = nlist->gid;
555     shiftvec         = fr->shift_vec[0];
556     fshift           = fr->fshift[0];
557     facel            = _mm256_set1_ps(fr->epsfac);
558     charge           = mdatoms->chargeA;
559     nvdwtype         = fr->ntype;
560     vdwparam         = fr->nbfp;
561     vdwtype          = mdatoms->typeA;
562
563     sh_ewald         = _mm256_set1_ps(fr->ic->sh_ewald);
564     beta             = _mm256_set1_ps(fr->ic->ewaldcoeff);
565     beta2            = _mm256_mul_ps(beta,beta);
566     beta3            = _mm256_mul_ps(beta,beta2);
567
568     ewtab            = fr->ic->tabq_coul_F;
569     ewtabscale       = _mm256_set1_ps(fr->ic->tabq_scale);
570     ewtabhalfspace   = _mm256_set1_ps(0.5/fr->ic->tabq_scale);
571
572     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
573     rcutoff_scalar   = fr->rcoulomb;
574     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
575     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
576
577     sh_vdw_invrcut6  = _mm256_set1_ps(fr->ic->sh_invrc6);
578     rvdw             = _mm256_set1_ps(fr->rvdw);
579
580     /* Avoid stupid compiler warnings */
581     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
582     j_coord_offsetA = 0;
583     j_coord_offsetB = 0;
584     j_coord_offsetC = 0;
585     j_coord_offsetD = 0;
586     j_coord_offsetE = 0;
587     j_coord_offsetF = 0;
588     j_coord_offsetG = 0;
589     j_coord_offsetH = 0;
590
591     outeriter        = 0;
592     inneriter        = 0;
593
594     for(iidx=0;iidx<4*DIM;iidx++)
595     {
596         scratch[iidx] = 0.0;
597     }
598
599     /* Start outer loop over neighborlists */
600     for(iidx=0; iidx<nri; iidx++)
601     {
602         /* Load shift vector for this list */
603         i_shift_offset   = DIM*shiftidx[iidx];
604
605         /* Load limits for loop over neighbors */
606         j_index_start    = jindex[iidx];
607         j_index_end      = jindex[iidx+1];
608
609         /* Get outer coordinate index */
610         inr              = iinr[iidx];
611         i_coord_offset   = DIM*inr;
612
613         /* Load i particle coords and add shift vector */
614         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
615
616         fix0             = _mm256_setzero_ps();
617         fiy0             = _mm256_setzero_ps();
618         fiz0             = _mm256_setzero_ps();
619
620         /* Load parameters for i particles */
621         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
622         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
623
624         /* Start inner kernel loop */
625         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
626         {
627
628             /* Get j neighbor index, and coordinate index */
629             jnrA             = jjnr[jidx];
630             jnrB             = jjnr[jidx+1];
631             jnrC             = jjnr[jidx+2];
632             jnrD             = jjnr[jidx+3];
633             jnrE             = jjnr[jidx+4];
634             jnrF             = jjnr[jidx+5];
635             jnrG             = jjnr[jidx+6];
636             jnrH             = jjnr[jidx+7];
637             j_coord_offsetA  = DIM*jnrA;
638             j_coord_offsetB  = DIM*jnrB;
639             j_coord_offsetC  = DIM*jnrC;
640             j_coord_offsetD  = DIM*jnrD;
641             j_coord_offsetE  = DIM*jnrE;
642             j_coord_offsetF  = DIM*jnrF;
643             j_coord_offsetG  = DIM*jnrG;
644             j_coord_offsetH  = DIM*jnrH;
645
646             /* load j atom coordinates */
647             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
648                                                  x+j_coord_offsetC,x+j_coord_offsetD,
649                                                  x+j_coord_offsetE,x+j_coord_offsetF,
650                                                  x+j_coord_offsetG,x+j_coord_offsetH,
651                                                  &jx0,&jy0,&jz0);
652
653             /* Calculate displacement vector */
654             dx00             = _mm256_sub_ps(ix0,jx0);
655             dy00             = _mm256_sub_ps(iy0,jy0);
656             dz00             = _mm256_sub_ps(iz0,jz0);
657
658             /* Calculate squared distance and things based on it */
659             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
660
661             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
662
663             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
664
665             /* Load parameters for j particles */
666             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
667                                                                  charge+jnrC+0,charge+jnrD+0,
668                                                                  charge+jnrE+0,charge+jnrF+0,
669                                                                  charge+jnrG+0,charge+jnrH+0);
670             vdwjidx0A        = 2*vdwtype[jnrA+0];
671             vdwjidx0B        = 2*vdwtype[jnrB+0];
672             vdwjidx0C        = 2*vdwtype[jnrC+0];
673             vdwjidx0D        = 2*vdwtype[jnrD+0];
674             vdwjidx0E        = 2*vdwtype[jnrE+0];
675             vdwjidx0F        = 2*vdwtype[jnrF+0];
676             vdwjidx0G        = 2*vdwtype[jnrG+0];
677             vdwjidx0H        = 2*vdwtype[jnrH+0];
678
679             /**************************
680              * CALCULATE INTERACTIONS *
681              **************************/
682
683             if (gmx_mm256_any_lt(rsq00,rcutoff2))
684             {
685
686             r00              = _mm256_mul_ps(rsq00,rinv00);
687
688             /* Compute parameters for interactions between i and j atoms */
689             qq00             = _mm256_mul_ps(iq0,jq0);
690             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
691                                             vdwioffsetptr0+vdwjidx0B,
692                                             vdwioffsetptr0+vdwjidx0C,
693                                             vdwioffsetptr0+vdwjidx0D,
694                                             vdwioffsetptr0+vdwjidx0E,
695                                             vdwioffsetptr0+vdwjidx0F,
696                                             vdwioffsetptr0+vdwjidx0G,
697                                             vdwioffsetptr0+vdwjidx0H,
698                                             &c6_00,&c12_00);
699
700             /* EWALD ELECTROSTATICS */
701             
702             /* Analytical PME correction */
703             zeta2            = _mm256_mul_ps(beta2,rsq00);
704             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
705             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
706             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
707             felec            = _mm256_mul_ps(qq00,felec);
708             
709             /* LENNARD-JONES DISPERSION/REPULSION */
710
711             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
712             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
713
714             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
715
716             fscal            = _mm256_add_ps(felec,fvdw);
717
718             fscal            = _mm256_and_ps(fscal,cutoff_mask);
719
720             /* Calculate temporary vectorial force */
721             tx               = _mm256_mul_ps(fscal,dx00);
722             ty               = _mm256_mul_ps(fscal,dy00);
723             tz               = _mm256_mul_ps(fscal,dz00);
724
725             /* Update vectorial force */
726             fix0             = _mm256_add_ps(fix0,tx);
727             fiy0             = _mm256_add_ps(fiy0,ty);
728             fiz0             = _mm256_add_ps(fiz0,tz);
729
730             fjptrA             = f+j_coord_offsetA;
731             fjptrB             = f+j_coord_offsetB;
732             fjptrC             = f+j_coord_offsetC;
733             fjptrD             = f+j_coord_offsetD;
734             fjptrE             = f+j_coord_offsetE;
735             fjptrF             = f+j_coord_offsetF;
736             fjptrG             = f+j_coord_offsetG;
737             fjptrH             = f+j_coord_offsetH;
738             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
739
740             }
741
742             /* Inner loop uses 66 flops */
743         }
744
745         if(jidx<j_index_end)
746         {
747
748             /* Get j neighbor index, and coordinate index */
749             jnrlistA         = jjnr[jidx];
750             jnrlistB         = jjnr[jidx+1];
751             jnrlistC         = jjnr[jidx+2];
752             jnrlistD         = jjnr[jidx+3];
753             jnrlistE         = jjnr[jidx+4];
754             jnrlistF         = jjnr[jidx+5];
755             jnrlistG         = jjnr[jidx+6];
756             jnrlistH         = jjnr[jidx+7];
757             /* Sign of each element will be negative for non-real atoms.
758              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
759              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
760              */
761             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
762                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
763                                             
764             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
765             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
766             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
767             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
768             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
769             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
770             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
771             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
772             j_coord_offsetA  = DIM*jnrA;
773             j_coord_offsetB  = DIM*jnrB;
774             j_coord_offsetC  = DIM*jnrC;
775             j_coord_offsetD  = DIM*jnrD;
776             j_coord_offsetE  = DIM*jnrE;
777             j_coord_offsetF  = DIM*jnrF;
778             j_coord_offsetG  = DIM*jnrG;
779             j_coord_offsetH  = DIM*jnrH;
780
781             /* load j atom coordinates */
782             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
783                                                  x+j_coord_offsetC,x+j_coord_offsetD,
784                                                  x+j_coord_offsetE,x+j_coord_offsetF,
785                                                  x+j_coord_offsetG,x+j_coord_offsetH,
786                                                  &jx0,&jy0,&jz0);
787
788             /* Calculate displacement vector */
789             dx00             = _mm256_sub_ps(ix0,jx0);
790             dy00             = _mm256_sub_ps(iy0,jy0);
791             dz00             = _mm256_sub_ps(iz0,jz0);
792
793             /* Calculate squared distance and things based on it */
794             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
795
796             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
797
798             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
799
800             /* Load parameters for j particles */
801             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
802                                                                  charge+jnrC+0,charge+jnrD+0,
803                                                                  charge+jnrE+0,charge+jnrF+0,
804                                                                  charge+jnrG+0,charge+jnrH+0);
805             vdwjidx0A        = 2*vdwtype[jnrA+0];
806             vdwjidx0B        = 2*vdwtype[jnrB+0];
807             vdwjidx0C        = 2*vdwtype[jnrC+0];
808             vdwjidx0D        = 2*vdwtype[jnrD+0];
809             vdwjidx0E        = 2*vdwtype[jnrE+0];
810             vdwjidx0F        = 2*vdwtype[jnrF+0];
811             vdwjidx0G        = 2*vdwtype[jnrG+0];
812             vdwjidx0H        = 2*vdwtype[jnrH+0];
813
814             /**************************
815              * CALCULATE INTERACTIONS *
816              **************************/
817
818             if (gmx_mm256_any_lt(rsq00,rcutoff2))
819             {
820
821             r00              = _mm256_mul_ps(rsq00,rinv00);
822             r00              = _mm256_andnot_ps(dummy_mask,r00);
823
824             /* Compute parameters for interactions between i and j atoms */
825             qq00             = _mm256_mul_ps(iq0,jq0);
826             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
827                                             vdwioffsetptr0+vdwjidx0B,
828                                             vdwioffsetptr0+vdwjidx0C,
829                                             vdwioffsetptr0+vdwjidx0D,
830                                             vdwioffsetptr0+vdwjidx0E,
831                                             vdwioffsetptr0+vdwjidx0F,
832                                             vdwioffsetptr0+vdwjidx0G,
833                                             vdwioffsetptr0+vdwjidx0H,
834                                             &c6_00,&c12_00);
835
836             /* EWALD ELECTROSTATICS */
837             
838             /* Analytical PME correction */
839             zeta2            = _mm256_mul_ps(beta2,rsq00);
840             rinv3            = _mm256_mul_ps(rinvsq00,rinv00);
841             pmecorrF         = gmx_mm256_pmecorrF_ps(zeta2);
842             felec            = _mm256_add_ps( _mm256_mul_ps(pmecorrF,beta3), rinv3);
843             felec            = _mm256_mul_ps(qq00,felec);
844             
845             /* LENNARD-JONES DISPERSION/REPULSION */
846
847             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
848             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
849
850             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
851
852             fscal            = _mm256_add_ps(felec,fvdw);
853
854             fscal            = _mm256_and_ps(fscal,cutoff_mask);
855
856             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
857
858             /* Calculate temporary vectorial force */
859             tx               = _mm256_mul_ps(fscal,dx00);
860             ty               = _mm256_mul_ps(fscal,dy00);
861             tz               = _mm256_mul_ps(fscal,dz00);
862
863             /* Update vectorial force */
864             fix0             = _mm256_add_ps(fix0,tx);
865             fiy0             = _mm256_add_ps(fiy0,ty);
866             fiz0             = _mm256_add_ps(fiz0,tz);
867
868             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
869             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
870             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
871             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
872             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
873             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
874             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
875             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
876             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
877
878             }
879
880             /* Inner loop uses 67 flops */
881         }
882
883         /* End of innermost loop */
884
885         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
886                                                  f+i_coord_offset,fshift+i_shift_offset);
887
888         /* Increment number of inner iterations */
889         inneriter                  += j_index_end - j_index_start;
890
891         /* Outer loop uses 7 flops */
892     }
893
894     /* Increment number of outer iterations */
895     outeriter        += nri;
896
897     /* Update outer/inner flops */
898
899     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*67);
900 }