made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwNone_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwNone_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     __m256           dummy_mask,cutoff_mask;
86     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
87     __m256           one     = _mm256_set1_ps(1.0);
88     __m256           two     = _mm256_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm256_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102
103     /* Setup water-specific parameters */
104     inr              = nlist->iinr[0];
105     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
106     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
107     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
108
109     /* Avoid stupid compiler warnings */
110     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
111     j_coord_offsetA = 0;
112     j_coord_offsetB = 0;
113     j_coord_offsetC = 0;
114     j_coord_offsetD = 0;
115     j_coord_offsetE = 0;
116     j_coord_offsetF = 0;
117     j_coord_offsetG = 0;
118     j_coord_offsetH = 0;
119
120     outeriter        = 0;
121     inneriter        = 0;
122
123     for(iidx=0;iidx<4*DIM;iidx++)
124     {
125         scratch[iidx] = 0.0;
126     }
127
128     /* Start outer loop over neighborlists */
129     for(iidx=0; iidx<nri; iidx++)
130     {
131         /* Load shift vector for this list */
132         i_shift_offset   = DIM*shiftidx[iidx];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
144                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
145
146         fix0             = _mm256_setzero_ps();
147         fiy0             = _mm256_setzero_ps();
148         fiz0             = _mm256_setzero_ps();
149         fix1             = _mm256_setzero_ps();
150         fiy1             = _mm256_setzero_ps();
151         fiz1             = _mm256_setzero_ps();
152         fix2             = _mm256_setzero_ps();
153         fiy2             = _mm256_setzero_ps();
154         fiz2             = _mm256_setzero_ps();
155
156         /* Reset potential sums */
157         velecsum         = _mm256_setzero_ps();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168             jnrE             = jjnr[jidx+4];
169             jnrF             = jjnr[jidx+5];
170             jnrG             = jjnr[jidx+6];
171             jnrH             = jjnr[jidx+7];
172             j_coord_offsetA  = DIM*jnrA;
173             j_coord_offsetB  = DIM*jnrB;
174             j_coord_offsetC  = DIM*jnrC;
175             j_coord_offsetD  = DIM*jnrD;
176             j_coord_offsetE  = DIM*jnrE;
177             j_coord_offsetF  = DIM*jnrF;
178             j_coord_offsetG  = DIM*jnrG;
179             j_coord_offsetH  = DIM*jnrH;
180
181             /* load j atom coordinates */
182             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
183                                                  x+j_coord_offsetC,x+j_coord_offsetD,
184                                                  x+j_coord_offsetE,x+j_coord_offsetF,
185                                                  x+j_coord_offsetG,x+j_coord_offsetH,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_ps(ix0,jx0);
190             dy00             = _mm256_sub_ps(iy0,jy0);
191             dz00             = _mm256_sub_ps(iz0,jz0);
192             dx10             = _mm256_sub_ps(ix1,jx0);
193             dy10             = _mm256_sub_ps(iy1,jy0);
194             dz10             = _mm256_sub_ps(iz1,jz0);
195             dx20             = _mm256_sub_ps(ix2,jx0);
196             dy20             = _mm256_sub_ps(iy2,jy0);
197             dz20             = _mm256_sub_ps(iz2,jz0);
198
199             /* Calculate squared distance and things based on it */
200             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
201             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
202             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
203
204             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
205             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
206             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
207
208             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
209             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
210             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
211
212             /* Load parameters for j particles */
213             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
214                                                                  charge+jnrC+0,charge+jnrD+0,
215                                                                  charge+jnrE+0,charge+jnrF+0,
216                                                                  charge+jnrG+0,charge+jnrH+0);
217
218             fjx0             = _mm256_setzero_ps();
219             fjy0             = _mm256_setzero_ps();
220             fjz0             = _mm256_setzero_ps();
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             /* Compute parameters for interactions between i and j atoms */
227             qq00             = _mm256_mul_ps(iq0,jq0);
228
229             /* COULOMB ELECTROSTATICS */
230             velec            = _mm256_mul_ps(qq00,rinv00);
231             felec            = _mm256_mul_ps(velec,rinvsq00);
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             velecsum         = _mm256_add_ps(velecsum,velec);
235
236             fscal            = felec;
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm256_mul_ps(fscal,dx00);
240             ty               = _mm256_mul_ps(fscal,dy00);
241             tz               = _mm256_mul_ps(fscal,dz00);
242
243             /* Update vectorial force */
244             fix0             = _mm256_add_ps(fix0,tx);
245             fiy0             = _mm256_add_ps(fiy0,ty);
246             fiz0             = _mm256_add_ps(fiz0,tz);
247
248             fjx0             = _mm256_add_ps(fjx0,tx);
249             fjy0             = _mm256_add_ps(fjy0,ty);
250             fjz0             = _mm256_add_ps(fjz0,tz);
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             /* Compute parameters for interactions between i and j atoms */
257             qq10             = _mm256_mul_ps(iq1,jq0);
258
259             /* COULOMB ELECTROSTATICS */
260             velec            = _mm256_mul_ps(qq10,rinv10);
261             felec            = _mm256_mul_ps(velec,rinvsq10);
262
263             /* Update potential sum for this i atom from the interaction with this j atom. */
264             velecsum         = _mm256_add_ps(velecsum,velec);
265
266             fscal            = felec;
267
268             /* Calculate temporary vectorial force */
269             tx               = _mm256_mul_ps(fscal,dx10);
270             ty               = _mm256_mul_ps(fscal,dy10);
271             tz               = _mm256_mul_ps(fscal,dz10);
272
273             /* Update vectorial force */
274             fix1             = _mm256_add_ps(fix1,tx);
275             fiy1             = _mm256_add_ps(fiy1,ty);
276             fiz1             = _mm256_add_ps(fiz1,tz);
277
278             fjx0             = _mm256_add_ps(fjx0,tx);
279             fjy0             = _mm256_add_ps(fjy0,ty);
280             fjz0             = _mm256_add_ps(fjz0,tz);
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             /* Compute parameters for interactions between i and j atoms */
287             qq20             = _mm256_mul_ps(iq2,jq0);
288
289             /* COULOMB ELECTROSTATICS */
290             velec            = _mm256_mul_ps(qq20,rinv20);
291             felec            = _mm256_mul_ps(velec,rinvsq20);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velecsum         = _mm256_add_ps(velecsum,velec);
295
296             fscal            = felec;
297
298             /* Calculate temporary vectorial force */
299             tx               = _mm256_mul_ps(fscal,dx20);
300             ty               = _mm256_mul_ps(fscal,dy20);
301             tz               = _mm256_mul_ps(fscal,dz20);
302
303             /* Update vectorial force */
304             fix2             = _mm256_add_ps(fix2,tx);
305             fiy2             = _mm256_add_ps(fiy2,ty);
306             fiz2             = _mm256_add_ps(fiz2,tz);
307
308             fjx0             = _mm256_add_ps(fjx0,tx);
309             fjy0             = _mm256_add_ps(fjy0,ty);
310             fjz0             = _mm256_add_ps(fjz0,tz);
311
312             fjptrA             = f+j_coord_offsetA;
313             fjptrB             = f+j_coord_offsetB;
314             fjptrC             = f+j_coord_offsetC;
315             fjptrD             = f+j_coord_offsetD;
316             fjptrE             = f+j_coord_offsetE;
317             fjptrF             = f+j_coord_offsetF;
318             fjptrG             = f+j_coord_offsetG;
319             fjptrH             = f+j_coord_offsetH;
320
321             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
322
323             /* Inner loop uses 84 flops */
324         }
325
326         if(jidx<j_index_end)
327         {
328
329             /* Get j neighbor index, and coordinate index */
330             jnrlistA         = jjnr[jidx];
331             jnrlistB         = jjnr[jidx+1];
332             jnrlistC         = jjnr[jidx+2];
333             jnrlistD         = jjnr[jidx+3];
334             jnrlistE         = jjnr[jidx+4];
335             jnrlistF         = jjnr[jidx+5];
336             jnrlistG         = jjnr[jidx+6];
337             jnrlistH         = jjnr[jidx+7];
338             /* Sign of each element will be negative for non-real atoms.
339              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
340              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
341              */
342             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
343                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
344                                             
345             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
346             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
347             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
348             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
349             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
350             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
351             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
352             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
353             j_coord_offsetA  = DIM*jnrA;
354             j_coord_offsetB  = DIM*jnrB;
355             j_coord_offsetC  = DIM*jnrC;
356             j_coord_offsetD  = DIM*jnrD;
357             j_coord_offsetE  = DIM*jnrE;
358             j_coord_offsetF  = DIM*jnrF;
359             j_coord_offsetG  = DIM*jnrG;
360             j_coord_offsetH  = DIM*jnrH;
361
362             /* load j atom coordinates */
363             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
364                                                  x+j_coord_offsetC,x+j_coord_offsetD,
365                                                  x+j_coord_offsetE,x+j_coord_offsetF,
366                                                  x+j_coord_offsetG,x+j_coord_offsetH,
367                                                  &jx0,&jy0,&jz0);
368
369             /* Calculate displacement vector */
370             dx00             = _mm256_sub_ps(ix0,jx0);
371             dy00             = _mm256_sub_ps(iy0,jy0);
372             dz00             = _mm256_sub_ps(iz0,jz0);
373             dx10             = _mm256_sub_ps(ix1,jx0);
374             dy10             = _mm256_sub_ps(iy1,jy0);
375             dz10             = _mm256_sub_ps(iz1,jz0);
376             dx20             = _mm256_sub_ps(ix2,jx0);
377             dy20             = _mm256_sub_ps(iy2,jy0);
378             dz20             = _mm256_sub_ps(iz2,jz0);
379
380             /* Calculate squared distance and things based on it */
381             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
382             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
383             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
384
385             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
386             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
387             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
388
389             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
390             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
391             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
392
393             /* Load parameters for j particles */
394             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
395                                                                  charge+jnrC+0,charge+jnrD+0,
396                                                                  charge+jnrE+0,charge+jnrF+0,
397                                                                  charge+jnrG+0,charge+jnrH+0);
398
399             fjx0             = _mm256_setzero_ps();
400             fjy0             = _mm256_setzero_ps();
401             fjz0             = _mm256_setzero_ps();
402
403             /**************************
404              * CALCULATE INTERACTIONS *
405              **************************/
406
407             /* Compute parameters for interactions between i and j atoms */
408             qq00             = _mm256_mul_ps(iq0,jq0);
409
410             /* COULOMB ELECTROSTATICS */
411             velec            = _mm256_mul_ps(qq00,rinv00);
412             felec            = _mm256_mul_ps(velec,rinvsq00);
413
414             /* Update potential sum for this i atom from the interaction with this j atom. */
415             velec            = _mm256_andnot_ps(dummy_mask,velec);
416             velecsum         = _mm256_add_ps(velecsum,velec);
417
418             fscal            = felec;
419
420             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
421
422             /* Calculate temporary vectorial force */
423             tx               = _mm256_mul_ps(fscal,dx00);
424             ty               = _mm256_mul_ps(fscal,dy00);
425             tz               = _mm256_mul_ps(fscal,dz00);
426
427             /* Update vectorial force */
428             fix0             = _mm256_add_ps(fix0,tx);
429             fiy0             = _mm256_add_ps(fiy0,ty);
430             fiz0             = _mm256_add_ps(fiz0,tz);
431
432             fjx0             = _mm256_add_ps(fjx0,tx);
433             fjy0             = _mm256_add_ps(fjy0,ty);
434             fjz0             = _mm256_add_ps(fjz0,tz);
435
436             /**************************
437              * CALCULATE INTERACTIONS *
438              **************************/
439
440             /* Compute parameters for interactions between i and j atoms */
441             qq10             = _mm256_mul_ps(iq1,jq0);
442
443             /* COULOMB ELECTROSTATICS */
444             velec            = _mm256_mul_ps(qq10,rinv10);
445             felec            = _mm256_mul_ps(velec,rinvsq10);
446
447             /* Update potential sum for this i atom from the interaction with this j atom. */
448             velec            = _mm256_andnot_ps(dummy_mask,velec);
449             velecsum         = _mm256_add_ps(velecsum,velec);
450
451             fscal            = felec;
452
453             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
454
455             /* Calculate temporary vectorial force */
456             tx               = _mm256_mul_ps(fscal,dx10);
457             ty               = _mm256_mul_ps(fscal,dy10);
458             tz               = _mm256_mul_ps(fscal,dz10);
459
460             /* Update vectorial force */
461             fix1             = _mm256_add_ps(fix1,tx);
462             fiy1             = _mm256_add_ps(fiy1,ty);
463             fiz1             = _mm256_add_ps(fiz1,tz);
464
465             fjx0             = _mm256_add_ps(fjx0,tx);
466             fjy0             = _mm256_add_ps(fjy0,ty);
467             fjz0             = _mm256_add_ps(fjz0,tz);
468
469             /**************************
470              * CALCULATE INTERACTIONS *
471              **************************/
472
473             /* Compute parameters for interactions between i and j atoms */
474             qq20             = _mm256_mul_ps(iq2,jq0);
475
476             /* COULOMB ELECTROSTATICS */
477             velec            = _mm256_mul_ps(qq20,rinv20);
478             felec            = _mm256_mul_ps(velec,rinvsq20);
479
480             /* Update potential sum for this i atom from the interaction with this j atom. */
481             velec            = _mm256_andnot_ps(dummy_mask,velec);
482             velecsum         = _mm256_add_ps(velecsum,velec);
483
484             fscal            = felec;
485
486             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
487
488             /* Calculate temporary vectorial force */
489             tx               = _mm256_mul_ps(fscal,dx20);
490             ty               = _mm256_mul_ps(fscal,dy20);
491             tz               = _mm256_mul_ps(fscal,dz20);
492
493             /* Update vectorial force */
494             fix2             = _mm256_add_ps(fix2,tx);
495             fiy2             = _mm256_add_ps(fiy2,ty);
496             fiz2             = _mm256_add_ps(fiz2,tz);
497
498             fjx0             = _mm256_add_ps(fjx0,tx);
499             fjy0             = _mm256_add_ps(fjy0,ty);
500             fjz0             = _mm256_add_ps(fjz0,tz);
501
502             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
503             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
504             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
505             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
506             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
507             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
508             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
509             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
510
511             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
512
513             /* Inner loop uses 84 flops */
514         }
515
516         /* End of innermost loop */
517
518         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
519                                                  f+i_coord_offset,fshift+i_shift_offset);
520
521         ggid                        = gid[iidx];
522         /* Update potential energies */
523         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
524
525         /* Increment number of inner iterations */
526         inneriter                  += j_index_end - j_index_start;
527
528         /* Outer loop uses 19 flops */
529     }
530
531     /* Increment number of outer iterations */
532     outeriter        += nri;
533
534     /* Update outer/inner flops */
535
536     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*84);
537 }
538 /*
539  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_avx_256_single
540  * Electrostatics interaction: Coulomb
541  * VdW interaction:            None
542  * Geometry:                   Water3-Particle
543  * Calculate force/pot:        Force
544  */
545 void
546 nb_kernel_ElecCoul_VdwNone_GeomW3P1_F_avx_256_single
547                     (t_nblist * gmx_restrict                nlist,
548                      rvec * gmx_restrict                    xx,
549                      rvec * gmx_restrict                    ff,
550                      t_forcerec * gmx_restrict              fr,
551                      t_mdatoms * gmx_restrict               mdatoms,
552                      nb_kernel_data_t * gmx_restrict        kernel_data,
553                      t_nrnb * gmx_restrict                  nrnb)
554 {
555     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
556      * just 0 for non-waters.
557      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
558      * jnr indices corresponding to data put in the four positions in the SIMD register.
559      */
560     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
561     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
562     int              jnrA,jnrB,jnrC,jnrD;
563     int              jnrE,jnrF,jnrG,jnrH;
564     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
565     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
566     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
567     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
568     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
569     real             rcutoff_scalar;
570     real             *shiftvec,*fshift,*x,*f;
571     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
572     real             scratch[4*DIM];
573     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
574     real *           vdwioffsetptr0;
575     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
576     real *           vdwioffsetptr1;
577     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
578     real *           vdwioffsetptr2;
579     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
580     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
581     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
582     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
583     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
584     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
585     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
586     real             *charge;
587     __m256           dummy_mask,cutoff_mask;
588     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
589     __m256           one     = _mm256_set1_ps(1.0);
590     __m256           two     = _mm256_set1_ps(2.0);
591     x                = xx[0];
592     f                = ff[0];
593
594     nri              = nlist->nri;
595     iinr             = nlist->iinr;
596     jindex           = nlist->jindex;
597     jjnr             = nlist->jjnr;
598     shiftidx         = nlist->shift;
599     gid              = nlist->gid;
600     shiftvec         = fr->shift_vec[0];
601     fshift           = fr->fshift[0];
602     facel            = _mm256_set1_ps(fr->epsfac);
603     charge           = mdatoms->chargeA;
604
605     /* Setup water-specific parameters */
606     inr              = nlist->iinr[0];
607     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
608     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
609     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
610
611     /* Avoid stupid compiler warnings */
612     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
613     j_coord_offsetA = 0;
614     j_coord_offsetB = 0;
615     j_coord_offsetC = 0;
616     j_coord_offsetD = 0;
617     j_coord_offsetE = 0;
618     j_coord_offsetF = 0;
619     j_coord_offsetG = 0;
620     j_coord_offsetH = 0;
621
622     outeriter        = 0;
623     inneriter        = 0;
624
625     for(iidx=0;iidx<4*DIM;iidx++)
626     {
627         scratch[iidx] = 0.0;
628     }
629
630     /* Start outer loop over neighborlists */
631     for(iidx=0; iidx<nri; iidx++)
632     {
633         /* Load shift vector for this list */
634         i_shift_offset   = DIM*shiftidx[iidx];
635
636         /* Load limits for loop over neighbors */
637         j_index_start    = jindex[iidx];
638         j_index_end      = jindex[iidx+1];
639
640         /* Get outer coordinate index */
641         inr              = iinr[iidx];
642         i_coord_offset   = DIM*inr;
643
644         /* Load i particle coords and add shift vector */
645         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
646                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
647
648         fix0             = _mm256_setzero_ps();
649         fiy0             = _mm256_setzero_ps();
650         fiz0             = _mm256_setzero_ps();
651         fix1             = _mm256_setzero_ps();
652         fiy1             = _mm256_setzero_ps();
653         fiz1             = _mm256_setzero_ps();
654         fix2             = _mm256_setzero_ps();
655         fiy2             = _mm256_setzero_ps();
656         fiz2             = _mm256_setzero_ps();
657
658         /* Start inner kernel loop */
659         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
660         {
661
662             /* Get j neighbor index, and coordinate index */
663             jnrA             = jjnr[jidx];
664             jnrB             = jjnr[jidx+1];
665             jnrC             = jjnr[jidx+2];
666             jnrD             = jjnr[jidx+3];
667             jnrE             = jjnr[jidx+4];
668             jnrF             = jjnr[jidx+5];
669             jnrG             = jjnr[jidx+6];
670             jnrH             = jjnr[jidx+7];
671             j_coord_offsetA  = DIM*jnrA;
672             j_coord_offsetB  = DIM*jnrB;
673             j_coord_offsetC  = DIM*jnrC;
674             j_coord_offsetD  = DIM*jnrD;
675             j_coord_offsetE  = DIM*jnrE;
676             j_coord_offsetF  = DIM*jnrF;
677             j_coord_offsetG  = DIM*jnrG;
678             j_coord_offsetH  = DIM*jnrH;
679
680             /* load j atom coordinates */
681             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
682                                                  x+j_coord_offsetC,x+j_coord_offsetD,
683                                                  x+j_coord_offsetE,x+j_coord_offsetF,
684                                                  x+j_coord_offsetG,x+j_coord_offsetH,
685                                                  &jx0,&jy0,&jz0);
686
687             /* Calculate displacement vector */
688             dx00             = _mm256_sub_ps(ix0,jx0);
689             dy00             = _mm256_sub_ps(iy0,jy0);
690             dz00             = _mm256_sub_ps(iz0,jz0);
691             dx10             = _mm256_sub_ps(ix1,jx0);
692             dy10             = _mm256_sub_ps(iy1,jy0);
693             dz10             = _mm256_sub_ps(iz1,jz0);
694             dx20             = _mm256_sub_ps(ix2,jx0);
695             dy20             = _mm256_sub_ps(iy2,jy0);
696             dz20             = _mm256_sub_ps(iz2,jz0);
697
698             /* Calculate squared distance and things based on it */
699             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
700             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
701             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
702
703             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
704             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
705             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
706
707             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
708             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
709             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
710
711             /* Load parameters for j particles */
712             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
713                                                                  charge+jnrC+0,charge+jnrD+0,
714                                                                  charge+jnrE+0,charge+jnrF+0,
715                                                                  charge+jnrG+0,charge+jnrH+0);
716
717             fjx0             = _mm256_setzero_ps();
718             fjy0             = _mm256_setzero_ps();
719             fjz0             = _mm256_setzero_ps();
720
721             /**************************
722              * CALCULATE INTERACTIONS *
723              **************************/
724
725             /* Compute parameters for interactions between i and j atoms */
726             qq00             = _mm256_mul_ps(iq0,jq0);
727
728             /* COULOMB ELECTROSTATICS */
729             velec            = _mm256_mul_ps(qq00,rinv00);
730             felec            = _mm256_mul_ps(velec,rinvsq00);
731
732             fscal            = felec;
733
734             /* Calculate temporary vectorial force */
735             tx               = _mm256_mul_ps(fscal,dx00);
736             ty               = _mm256_mul_ps(fscal,dy00);
737             tz               = _mm256_mul_ps(fscal,dz00);
738
739             /* Update vectorial force */
740             fix0             = _mm256_add_ps(fix0,tx);
741             fiy0             = _mm256_add_ps(fiy0,ty);
742             fiz0             = _mm256_add_ps(fiz0,tz);
743
744             fjx0             = _mm256_add_ps(fjx0,tx);
745             fjy0             = _mm256_add_ps(fjy0,ty);
746             fjz0             = _mm256_add_ps(fjz0,tz);
747
748             /**************************
749              * CALCULATE INTERACTIONS *
750              **************************/
751
752             /* Compute parameters for interactions between i and j atoms */
753             qq10             = _mm256_mul_ps(iq1,jq0);
754
755             /* COULOMB ELECTROSTATICS */
756             velec            = _mm256_mul_ps(qq10,rinv10);
757             felec            = _mm256_mul_ps(velec,rinvsq10);
758
759             fscal            = felec;
760
761             /* Calculate temporary vectorial force */
762             tx               = _mm256_mul_ps(fscal,dx10);
763             ty               = _mm256_mul_ps(fscal,dy10);
764             tz               = _mm256_mul_ps(fscal,dz10);
765
766             /* Update vectorial force */
767             fix1             = _mm256_add_ps(fix1,tx);
768             fiy1             = _mm256_add_ps(fiy1,ty);
769             fiz1             = _mm256_add_ps(fiz1,tz);
770
771             fjx0             = _mm256_add_ps(fjx0,tx);
772             fjy0             = _mm256_add_ps(fjy0,ty);
773             fjz0             = _mm256_add_ps(fjz0,tz);
774
775             /**************************
776              * CALCULATE INTERACTIONS *
777              **************************/
778
779             /* Compute parameters for interactions between i and j atoms */
780             qq20             = _mm256_mul_ps(iq2,jq0);
781
782             /* COULOMB ELECTROSTATICS */
783             velec            = _mm256_mul_ps(qq20,rinv20);
784             felec            = _mm256_mul_ps(velec,rinvsq20);
785
786             fscal            = felec;
787
788             /* Calculate temporary vectorial force */
789             tx               = _mm256_mul_ps(fscal,dx20);
790             ty               = _mm256_mul_ps(fscal,dy20);
791             tz               = _mm256_mul_ps(fscal,dz20);
792
793             /* Update vectorial force */
794             fix2             = _mm256_add_ps(fix2,tx);
795             fiy2             = _mm256_add_ps(fiy2,ty);
796             fiz2             = _mm256_add_ps(fiz2,tz);
797
798             fjx0             = _mm256_add_ps(fjx0,tx);
799             fjy0             = _mm256_add_ps(fjy0,ty);
800             fjz0             = _mm256_add_ps(fjz0,tz);
801
802             fjptrA             = f+j_coord_offsetA;
803             fjptrB             = f+j_coord_offsetB;
804             fjptrC             = f+j_coord_offsetC;
805             fjptrD             = f+j_coord_offsetD;
806             fjptrE             = f+j_coord_offsetE;
807             fjptrF             = f+j_coord_offsetF;
808             fjptrG             = f+j_coord_offsetG;
809             fjptrH             = f+j_coord_offsetH;
810
811             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
812
813             /* Inner loop uses 81 flops */
814         }
815
816         if(jidx<j_index_end)
817         {
818
819             /* Get j neighbor index, and coordinate index */
820             jnrlistA         = jjnr[jidx];
821             jnrlistB         = jjnr[jidx+1];
822             jnrlistC         = jjnr[jidx+2];
823             jnrlistD         = jjnr[jidx+3];
824             jnrlistE         = jjnr[jidx+4];
825             jnrlistF         = jjnr[jidx+5];
826             jnrlistG         = jjnr[jidx+6];
827             jnrlistH         = jjnr[jidx+7];
828             /* Sign of each element will be negative for non-real atoms.
829              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
830              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
831              */
832             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
833                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
834                                             
835             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
836             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
837             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
838             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
839             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
840             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
841             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
842             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
843             j_coord_offsetA  = DIM*jnrA;
844             j_coord_offsetB  = DIM*jnrB;
845             j_coord_offsetC  = DIM*jnrC;
846             j_coord_offsetD  = DIM*jnrD;
847             j_coord_offsetE  = DIM*jnrE;
848             j_coord_offsetF  = DIM*jnrF;
849             j_coord_offsetG  = DIM*jnrG;
850             j_coord_offsetH  = DIM*jnrH;
851
852             /* load j atom coordinates */
853             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
854                                                  x+j_coord_offsetC,x+j_coord_offsetD,
855                                                  x+j_coord_offsetE,x+j_coord_offsetF,
856                                                  x+j_coord_offsetG,x+j_coord_offsetH,
857                                                  &jx0,&jy0,&jz0);
858
859             /* Calculate displacement vector */
860             dx00             = _mm256_sub_ps(ix0,jx0);
861             dy00             = _mm256_sub_ps(iy0,jy0);
862             dz00             = _mm256_sub_ps(iz0,jz0);
863             dx10             = _mm256_sub_ps(ix1,jx0);
864             dy10             = _mm256_sub_ps(iy1,jy0);
865             dz10             = _mm256_sub_ps(iz1,jz0);
866             dx20             = _mm256_sub_ps(ix2,jx0);
867             dy20             = _mm256_sub_ps(iy2,jy0);
868             dz20             = _mm256_sub_ps(iz2,jz0);
869
870             /* Calculate squared distance and things based on it */
871             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
872             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
873             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
874
875             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
876             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
877             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
878
879             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
880             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
881             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
882
883             /* Load parameters for j particles */
884             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
885                                                                  charge+jnrC+0,charge+jnrD+0,
886                                                                  charge+jnrE+0,charge+jnrF+0,
887                                                                  charge+jnrG+0,charge+jnrH+0);
888
889             fjx0             = _mm256_setzero_ps();
890             fjy0             = _mm256_setzero_ps();
891             fjz0             = _mm256_setzero_ps();
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             /* Compute parameters for interactions between i and j atoms */
898             qq00             = _mm256_mul_ps(iq0,jq0);
899
900             /* COULOMB ELECTROSTATICS */
901             velec            = _mm256_mul_ps(qq00,rinv00);
902             felec            = _mm256_mul_ps(velec,rinvsq00);
903
904             fscal            = felec;
905
906             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
907
908             /* Calculate temporary vectorial force */
909             tx               = _mm256_mul_ps(fscal,dx00);
910             ty               = _mm256_mul_ps(fscal,dy00);
911             tz               = _mm256_mul_ps(fscal,dz00);
912
913             /* Update vectorial force */
914             fix0             = _mm256_add_ps(fix0,tx);
915             fiy0             = _mm256_add_ps(fiy0,ty);
916             fiz0             = _mm256_add_ps(fiz0,tz);
917
918             fjx0             = _mm256_add_ps(fjx0,tx);
919             fjy0             = _mm256_add_ps(fjy0,ty);
920             fjz0             = _mm256_add_ps(fjz0,tz);
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             /* Compute parameters for interactions between i and j atoms */
927             qq10             = _mm256_mul_ps(iq1,jq0);
928
929             /* COULOMB ELECTROSTATICS */
930             velec            = _mm256_mul_ps(qq10,rinv10);
931             felec            = _mm256_mul_ps(velec,rinvsq10);
932
933             fscal            = felec;
934
935             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
936
937             /* Calculate temporary vectorial force */
938             tx               = _mm256_mul_ps(fscal,dx10);
939             ty               = _mm256_mul_ps(fscal,dy10);
940             tz               = _mm256_mul_ps(fscal,dz10);
941
942             /* Update vectorial force */
943             fix1             = _mm256_add_ps(fix1,tx);
944             fiy1             = _mm256_add_ps(fiy1,ty);
945             fiz1             = _mm256_add_ps(fiz1,tz);
946
947             fjx0             = _mm256_add_ps(fjx0,tx);
948             fjy0             = _mm256_add_ps(fjy0,ty);
949             fjz0             = _mm256_add_ps(fjz0,tz);
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             /* Compute parameters for interactions between i and j atoms */
956             qq20             = _mm256_mul_ps(iq2,jq0);
957
958             /* COULOMB ELECTROSTATICS */
959             velec            = _mm256_mul_ps(qq20,rinv20);
960             felec            = _mm256_mul_ps(velec,rinvsq20);
961
962             fscal            = felec;
963
964             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
965
966             /* Calculate temporary vectorial force */
967             tx               = _mm256_mul_ps(fscal,dx20);
968             ty               = _mm256_mul_ps(fscal,dy20);
969             tz               = _mm256_mul_ps(fscal,dz20);
970
971             /* Update vectorial force */
972             fix2             = _mm256_add_ps(fix2,tx);
973             fiy2             = _mm256_add_ps(fiy2,ty);
974             fiz2             = _mm256_add_ps(fiz2,tz);
975
976             fjx0             = _mm256_add_ps(fjx0,tx);
977             fjy0             = _mm256_add_ps(fjy0,ty);
978             fjz0             = _mm256_add_ps(fjz0,tz);
979
980             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
981             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
982             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
983             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
984             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
985             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
986             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
987             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
988
989             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
990
991             /* Inner loop uses 81 flops */
992         }
993
994         /* End of innermost loop */
995
996         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
997                                                  f+i_coord_offset,fshift+i_shift_offset);
998
999         /* Increment number of inner iterations */
1000         inneriter                  += j_index_end - j_index_start;
1001
1002         /* Outer loop uses 18 flops */
1003     }
1004
1005     /* Increment number of outer iterations */
1006     outeriter        += nri;
1007
1008     /* Update outer/inner flops */
1009
1010     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*81);
1011 }