805e999fc1d189e3fd69d61d4744942a0cbe4ec3
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     real *           vdwioffsetptr3;
79     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
81     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
84     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
86     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
93     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
94     __m256           dummy_mask,cutoff_mask;
95     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
96     __m256           one     = _mm256_set1_ps(1.0);
97     __m256           two     = _mm256_set1_ps(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_ps(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
118     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
119     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
120     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128     j_coord_offsetE = 0;
129     j_coord_offsetF = 0;
130     j_coord_offsetG = 0;
131     j_coord_offsetH = 0;
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     for(iidx=0;iidx<4*DIM;iidx++)
137     {
138         scratch[iidx] = 0.0;
139     }
140
141     /* Start outer loop over neighborlists */
142     for(iidx=0; iidx<nri; iidx++)
143     {
144         /* Load shift vector for this list */
145         i_shift_offset   = DIM*shiftidx[iidx];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
157                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
158
159         fix0             = _mm256_setzero_ps();
160         fiy0             = _mm256_setzero_ps();
161         fiz0             = _mm256_setzero_ps();
162         fix1             = _mm256_setzero_ps();
163         fiy1             = _mm256_setzero_ps();
164         fiz1             = _mm256_setzero_ps();
165         fix2             = _mm256_setzero_ps();
166         fiy2             = _mm256_setzero_ps();
167         fiz2             = _mm256_setzero_ps();
168         fix3             = _mm256_setzero_ps();
169         fiy3             = _mm256_setzero_ps();
170         fiz3             = _mm256_setzero_ps();
171
172         /* Reset potential sums */
173         velecsum         = _mm256_setzero_ps();
174         vvdwsum          = _mm256_setzero_ps();
175
176         /* Start inner kernel loop */
177         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
178         {
179
180             /* Get j neighbor index, and coordinate index */
181             jnrA             = jjnr[jidx];
182             jnrB             = jjnr[jidx+1];
183             jnrC             = jjnr[jidx+2];
184             jnrD             = jjnr[jidx+3];
185             jnrE             = jjnr[jidx+4];
186             jnrF             = jjnr[jidx+5];
187             jnrG             = jjnr[jidx+6];
188             jnrH             = jjnr[jidx+7];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193             j_coord_offsetE  = DIM*jnrE;
194             j_coord_offsetF  = DIM*jnrF;
195             j_coord_offsetG  = DIM*jnrG;
196             j_coord_offsetH  = DIM*jnrH;
197
198             /* load j atom coordinates */
199             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
200                                                  x+j_coord_offsetC,x+j_coord_offsetD,
201                                                  x+j_coord_offsetE,x+j_coord_offsetF,
202                                                  x+j_coord_offsetG,x+j_coord_offsetH,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_ps(ix0,jx0);
207             dy00             = _mm256_sub_ps(iy0,jy0);
208             dz00             = _mm256_sub_ps(iz0,jz0);
209             dx10             = _mm256_sub_ps(ix1,jx0);
210             dy10             = _mm256_sub_ps(iy1,jy0);
211             dz10             = _mm256_sub_ps(iz1,jz0);
212             dx20             = _mm256_sub_ps(ix2,jx0);
213             dy20             = _mm256_sub_ps(iy2,jy0);
214             dz20             = _mm256_sub_ps(iz2,jz0);
215             dx30             = _mm256_sub_ps(ix3,jx0);
216             dy30             = _mm256_sub_ps(iy3,jy0);
217             dz30             = _mm256_sub_ps(iz3,jz0);
218
219             /* Calculate squared distance and things based on it */
220             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
221             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
222             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
223             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
224
225             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
226             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
227             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
228
229             rinvsq00         = gmx_mm256_inv_ps(rsq00);
230             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
231             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
232             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
233
234             /* Load parameters for j particles */
235             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
236                                                                  charge+jnrC+0,charge+jnrD+0,
237                                                                  charge+jnrE+0,charge+jnrF+0,
238                                                                  charge+jnrG+0,charge+jnrH+0);
239             vdwjidx0A        = 2*vdwtype[jnrA+0];
240             vdwjidx0B        = 2*vdwtype[jnrB+0];
241             vdwjidx0C        = 2*vdwtype[jnrC+0];
242             vdwjidx0D        = 2*vdwtype[jnrD+0];
243             vdwjidx0E        = 2*vdwtype[jnrE+0];
244             vdwjidx0F        = 2*vdwtype[jnrF+0];
245             vdwjidx0G        = 2*vdwtype[jnrG+0];
246             vdwjidx0H        = 2*vdwtype[jnrH+0];
247
248             fjx0             = _mm256_setzero_ps();
249             fjy0             = _mm256_setzero_ps();
250             fjz0             = _mm256_setzero_ps();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             /* Compute parameters for interactions between i and j atoms */
257             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
258                                             vdwioffsetptr0+vdwjidx0B,
259                                             vdwioffsetptr0+vdwjidx0C,
260                                             vdwioffsetptr0+vdwjidx0D,
261                                             vdwioffsetptr0+vdwjidx0E,
262                                             vdwioffsetptr0+vdwjidx0F,
263                                             vdwioffsetptr0+vdwjidx0G,
264                                             vdwioffsetptr0+vdwjidx0H,
265                                             &c6_00,&c12_00);
266
267             /* LENNARD-JONES DISPERSION/REPULSION */
268
269             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
270             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
271             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
272             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
273             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
274
275             /* Update potential sum for this i atom from the interaction with this j atom. */
276             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
277
278             fscal            = fvdw;
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm256_mul_ps(fscal,dx00);
282             ty               = _mm256_mul_ps(fscal,dy00);
283             tz               = _mm256_mul_ps(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm256_add_ps(fix0,tx);
287             fiy0             = _mm256_add_ps(fiy0,ty);
288             fiz0             = _mm256_add_ps(fiz0,tz);
289
290             fjx0             = _mm256_add_ps(fjx0,tx);
291             fjy0             = _mm256_add_ps(fjy0,ty);
292             fjz0             = _mm256_add_ps(fjz0,tz);
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             /* Compute parameters for interactions between i and j atoms */
299             qq10             = _mm256_mul_ps(iq1,jq0);
300
301             /* COULOMB ELECTROSTATICS */
302             velec            = _mm256_mul_ps(qq10,rinv10);
303             felec            = _mm256_mul_ps(velec,rinvsq10);
304
305             /* Update potential sum for this i atom from the interaction with this j atom. */
306             velecsum         = _mm256_add_ps(velecsum,velec);
307
308             fscal            = felec;
309
310             /* Calculate temporary vectorial force */
311             tx               = _mm256_mul_ps(fscal,dx10);
312             ty               = _mm256_mul_ps(fscal,dy10);
313             tz               = _mm256_mul_ps(fscal,dz10);
314
315             /* Update vectorial force */
316             fix1             = _mm256_add_ps(fix1,tx);
317             fiy1             = _mm256_add_ps(fiy1,ty);
318             fiz1             = _mm256_add_ps(fiz1,tz);
319
320             fjx0             = _mm256_add_ps(fjx0,tx);
321             fjy0             = _mm256_add_ps(fjy0,ty);
322             fjz0             = _mm256_add_ps(fjz0,tz);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             /* Compute parameters for interactions between i and j atoms */
329             qq20             = _mm256_mul_ps(iq2,jq0);
330
331             /* COULOMB ELECTROSTATICS */
332             velec            = _mm256_mul_ps(qq20,rinv20);
333             felec            = _mm256_mul_ps(velec,rinvsq20);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velecsum         = _mm256_add_ps(velecsum,velec);
337
338             fscal            = felec;
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm256_mul_ps(fscal,dx20);
342             ty               = _mm256_mul_ps(fscal,dy20);
343             tz               = _mm256_mul_ps(fscal,dz20);
344
345             /* Update vectorial force */
346             fix2             = _mm256_add_ps(fix2,tx);
347             fiy2             = _mm256_add_ps(fiy2,ty);
348             fiz2             = _mm256_add_ps(fiz2,tz);
349
350             fjx0             = _mm256_add_ps(fjx0,tx);
351             fjy0             = _mm256_add_ps(fjy0,ty);
352             fjz0             = _mm256_add_ps(fjz0,tz);
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq30             = _mm256_mul_ps(iq3,jq0);
360
361             /* COULOMB ELECTROSTATICS */
362             velec            = _mm256_mul_ps(qq30,rinv30);
363             felec            = _mm256_mul_ps(velec,rinvsq30);
364
365             /* Update potential sum for this i atom from the interaction with this j atom. */
366             velecsum         = _mm256_add_ps(velecsum,velec);
367
368             fscal            = felec;
369
370             /* Calculate temporary vectorial force */
371             tx               = _mm256_mul_ps(fscal,dx30);
372             ty               = _mm256_mul_ps(fscal,dy30);
373             tz               = _mm256_mul_ps(fscal,dz30);
374
375             /* Update vectorial force */
376             fix3             = _mm256_add_ps(fix3,tx);
377             fiy3             = _mm256_add_ps(fiy3,ty);
378             fiz3             = _mm256_add_ps(fiz3,tz);
379
380             fjx0             = _mm256_add_ps(fjx0,tx);
381             fjy0             = _mm256_add_ps(fjy0,ty);
382             fjz0             = _mm256_add_ps(fjz0,tz);
383
384             fjptrA             = f+j_coord_offsetA;
385             fjptrB             = f+j_coord_offsetB;
386             fjptrC             = f+j_coord_offsetC;
387             fjptrD             = f+j_coord_offsetD;
388             fjptrE             = f+j_coord_offsetE;
389             fjptrF             = f+j_coord_offsetF;
390             fjptrG             = f+j_coord_offsetG;
391             fjptrH             = f+j_coord_offsetH;
392
393             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
394
395             /* Inner loop uses 116 flops */
396         }
397
398         if(jidx<j_index_end)
399         {
400
401             /* Get j neighbor index, and coordinate index */
402             jnrlistA         = jjnr[jidx];
403             jnrlistB         = jjnr[jidx+1];
404             jnrlistC         = jjnr[jidx+2];
405             jnrlistD         = jjnr[jidx+3];
406             jnrlistE         = jjnr[jidx+4];
407             jnrlistF         = jjnr[jidx+5];
408             jnrlistG         = jjnr[jidx+6];
409             jnrlistH         = jjnr[jidx+7];
410             /* Sign of each element will be negative for non-real atoms.
411              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
412              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
413              */
414             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
415                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
416                                             
417             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
418             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
419             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
420             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
421             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
422             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
423             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
424             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
425             j_coord_offsetA  = DIM*jnrA;
426             j_coord_offsetB  = DIM*jnrB;
427             j_coord_offsetC  = DIM*jnrC;
428             j_coord_offsetD  = DIM*jnrD;
429             j_coord_offsetE  = DIM*jnrE;
430             j_coord_offsetF  = DIM*jnrF;
431             j_coord_offsetG  = DIM*jnrG;
432             j_coord_offsetH  = DIM*jnrH;
433
434             /* load j atom coordinates */
435             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
436                                                  x+j_coord_offsetC,x+j_coord_offsetD,
437                                                  x+j_coord_offsetE,x+j_coord_offsetF,
438                                                  x+j_coord_offsetG,x+j_coord_offsetH,
439                                                  &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm256_sub_ps(ix0,jx0);
443             dy00             = _mm256_sub_ps(iy0,jy0);
444             dz00             = _mm256_sub_ps(iz0,jz0);
445             dx10             = _mm256_sub_ps(ix1,jx0);
446             dy10             = _mm256_sub_ps(iy1,jy0);
447             dz10             = _mm256_sub_ps(iz1,jz0);
448             dx20             = _mm256_sub_ps(ix2,jx0);
449             dy20             = _mm256_sub_ps(iy2,jy0);
450             dz20             = _mm256_sub_ps(iz2,jz0);
451             dx30             = _mm256_sub_ps(ix3,jx0);
452             dy30             = _mm256_sub_ps(iy3,jy0);
453             dz30             = _mm256_sub_ps(iz3,jz0);
454
455             /* Calculate squared distance and things based on it */
456             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
457             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
458             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
459             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
460
461             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
462             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
463             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
464
465             rinvsq00         = gmx_mm256_inv_ps(rsq00);
466             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
467             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
468             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
469
470             /* Load parameters for j particles */
471             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
472                                                                  charge+jnrC+0,charge+jnrD+0,
473                                                                  charge+jnrE+0,charge+jnrF+0,
474                                                                  charge+jnrG+0,charge+jnrH+0);
475             vdwjidx0A        = 2*vdwtype[jnrA+0];
476             vdwjidx0B        = 2*vdwtype[jnrB+0];
477             vdwjidx0C        = 2*vdwtype[jnrC+0];
478             vdwjidx0D        = 2*vdwtype[jnrD+0];
479             vdwjidx0E        = 2*vdwtype[jnrE+0];
480             vdwjidx0F        = 2*vdwtype[jnrF+0];
481             vdwjidx0G        = 2*vdwtype[jnrG+0];
482             vdwjidx0H        = 2*vdwtype[jnrH+0];
483
484             fjx0             = _mm256_setzero_ps();
485             fjy0             = _mm256_setzero_ps();
486             fjz0             = _mm256_setzero_ps();
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             /* Compute parameters for interactions between i and j atoms */
493             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
494                                             vdwioffsetptr0+vdwjidx0B,
495                                             vdwioffsetptr0+vdwjidx0C,
496                                             vdwioffsetptr0+vdwjidx0D,
497                                             vdwioffsetptr0+vdwjidx0E,
498                                             vdwioffsetptr0+vdwjidx0F,
499                                             vdwioffsetptr0+vdwjidx0G,
500                                             vdwioffsetptr0+vdwjidx0H,
501                                             &c6_00,&c12_00);
502
503             /* LENNARD-JONES DISPERSION/REPULSION */
504
505             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
506             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
507             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
508             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
509             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
513             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
514
515             fscal            = fvdw;
516
517             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
518
519             /* Calculate temporary vectorial force */
520             tx               = _mm256_mul_ps(fscal,dx00);
521             ty               = _mm256_mul_ps(fscal,dy00);
522             tz               = _mm256_mul_ps(fscal,dz00);
523
524             /* Update vectorial force */
525             fix0             = _mm256_add_ps(fix0,tx);
526             fiy0             = _mm256_add_ps(fiy0,ty);
527             fiz0             = _mm256_add_ps(fiz0,tz);
528
529             fjx0             = _mm256_add_ps(fjx0,tx);
530             fjy0             = _mm256_add_ps(fjy0,ty);
531             fjz0             = _mm256_add_ps(fjz0,tz);
532
533             /**************************
534              * CALCULATE INTERACTIONS *
535              **************************/
536
537             /* Compute parameters for interactions between i and j atoms */
538             qq10             = _mm256_mul_ps(iq1,jq0);
539
540             /* COULOMB ELECTROSTATICS */
541             velec            = _mm256_mul_ps(qq10,rinv10);
542             felec            = _mm256_mul_ps(velec,rinvsq10);
543
544             /* Update potential sum for this i atom from the interaction with this j atom. */
545             velec            = _mm256_andnot_ps(dummy_mask,velec);
546             velecsum         = _mm256_add_ps(velecsum,velec);
547
548             fscal            = felec;
549
550             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
551
552             /* Calculate temporary vectorial force */
553             tx               = _mm256_mul_ps(fscal,dx10);
554             ty               = _mm256_mul_ps(fscal,dy10);
555             tz               = _mm256_mul_ps(fscal,dz10);
556
557             /* Update vectorial force */
558             fix1             = _mm256_add_ps(fix1,tx);
559             fiy1             = _mm256_add_ps(fiy1,ty);
560             fiz1             = _mm256_add_ps(fiz1,tz);
561
562             fjx0             = _mm256_add_ps(fjx0,tx);
563             fjy0             = _mm256_add_ps(fjy0,ty);
564             fjz0             = _mm256_add_ps(fjz0,tz);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             /* Compute parameters for interactions between i and j atoms */
571             qq20             = _mm256_mul_ps(iq2,jq0);
572
573             /* COULOMB ELECTROSTATICS */
574             velec            = _mm256_mul_ps(qq20,rinv20);
575             felec            = _mm256_mul_ps(velec,rinvsq20);
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velec            = _mm256_andnot_ps(dummy_mask,velec);
579             velecsum         = _mm256_add_ps(velecsum,velec);
580
581             fscal            = felec;
582
583             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm256_mul_ps(fscal,dx20);
587             ty               = _mm256_mul_ps(fscal,dy20);
588             tz               = _mm256_mul_ps(fscal,dz20);
589
590             /* Update vectorial force */
591             fix2             = _mm256_add_ps(fix2,tx);
592             fiy2             = _mm256_add_ps(fiy2,ty);
593             fiz2             = _mm256_add_ps(fiz2,tz);
594
595             fjx0             = _mm256_add_ps(fjx0,tx);
596             fjy0             = _mm256_add_ps(fjy0,ty);
597             fjz0             = _mm256_add_ps(fjz0,tz);
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             /* Compute parameters for interactions between i and j atoms */
604             qq30             = _mm256_mul_ps(iq3,jq0);
605
606             /* COULOMB ELECTROSTATICS */
607             velec            = _mm256_mul_ps(qq30,rinv30);
608             felec            = _mm256_mul_ps(velec,rinvsq30);
609
610             /* Update potential sum for this i atom from the interaction with this j atom. */
611             velec            = _mm256_andnot_ps(dummy_mask,velec);
612             velecsum         = _mm256_add_ps(velecsum,velec);
613
614             fscal            = felec;
615
616             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
617
618             /* Calculate temporary vectorial force */
619             tx               = _mm256_mul_ps(fscal,dx30);
620             ty               = _mm256_mul_ps(fscal,dy30);
621             tz               = _mm256_mul_ps(fscal,dz30);
622
623             /* Update vectorial force */
624             fix3             = _mm256_add_ps(fix3,tx);
625             fiy3             = _mm256_add_ps(fiy3,ty);
626             fiz3             = _mm256_add_ps(fiz3,tz);
627
628             fjx0             = _mm256_add_ps(fjx0,tx);
629             fjy0             = _mm256_add_ps(fjy0,ty);
630             fjz0             = _mm256_add_ps(fjz0,tz);
631
632             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
633             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
634             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
635             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
636             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
637             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
638             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
639             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
640
641             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
642
643             /* Inner loop uses 116 flops */
644         }
645
646         /* End of innermost loop */
647
648         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
649                                                  f+i_coord_offset,fshift+i_shift_offset);
650
651         ggid                        = gid[iidx];
652         /* Update potential energies */
653         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
654         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 26 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*116);
668 }
669 /*
670  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
671  * Electrostatics interaction: Coulomb
672  * VdW interaction:            LennardJones
673  * Geometry:                   Water4-Particle
674  * Calculate force/pot:        Force
675  */
676 void
677 nb_kernel_ElecCoul_VdwLJ_GeomW4P1_F_avx_256_single
678                     (t_nblist * gmx_restrict                nlist,
679                      rvec * gmx_restrict                    xx,
680                      rvec * gmx_restrict                    ff,
681                      t_forcerec * gmx_restrict              fr,
682                      t_mdatoms * gmx_restrict               mdatoms,
683                      nb_kernel_data_t * gmx_restrict        kernel_data,
684                      t_nrnb * gmx_restrict                  nrnb)
685 {
686     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
687      * just 0 for non-waters.
688      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
689      * jnr indices corresponding to data put in the four positions in the SIMD register.
690      */
691     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
692     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
693     int              jnrA,jnrB,jnrC,jnrD;
694     int              jnrE,jnrF,jnrG,jnrH;
695     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
696     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
697     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
698     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
699     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
700     real             rcutoff_scalar;
701     real             *shiftvec,*fshift,*x,*f;
702     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
703     real             scratch[4*DIM];
704     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
705     real *           vdwioffsetptr0;
706     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
707     real *           vdwioffsetptr1;
708     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
709     real *           vdwioffsetptr2;
710     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
711     real *           vdwioffsetptr3;
712     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
713     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
714     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
715     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
716     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
717     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
718     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
719     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
720     real             *charge;
721     int              nvdwtype;
722     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
723     int              *vdwtype;
724     real             *vdwparam;
725     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
726     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
727     __m256           dummy_mask,cutoff_mask;
728     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
729     __m256           one     = _mm256_set1_ps(1.0);
730     __m256           two     = _mm256_set1_ps(2.0);
731     x                = xx[0];
732     f                = ff[0];
733
734     nri              = nlist->nri;
735     iinr             = nlist->iinr;
736     jindex           = nlist->jindex;
737     jjnr             = nlist->jjnr;
738     shiftidx         = nlist->shift;
739     gid              = nlist->gid;
740     shiftvec         = fr->shift_vec[0];
741     fshift           = fr->fshift[0];
742     facel            = _mm256_set1_ps(fr->epsfac);
743     charge           = mdatoms->chargeA;
744     nvdwtype         = fr->ntype;
745     vdwparam         = fr->nbfp;
746     vdwtype          = mdatoms->typeA;
747
748     /* Setup water-specific parameters */
749     inr              = nlist->iinr[0];
750     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
751     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
752     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
753     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
754
755     /* Avoid stupid compiler warnings */
756     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
757     j_coord_offsetA = 0;
758     j_coord_offsetB = 0;
759     j_coord_offsetC = 0;
760     j_coord_offsetD = 0;
761     j_coord_offsetE = 0;
762     j_coord_offsetF = 0;
763     j_coord_offsetG = 0;
764     j_coord_offsetH = 0;
765
766     outeriter        = 0;
767     inneriter        = 0;
768
769     for(iidx=0;iidx<4*DIM;iidx++)
770     {
771         scratch[iidx] = 0.0;
772     }
773
774     /* Start outer loop over neighborlists */
775     for(iidx=0; iidx<nri; iidx++)
776     {
777         /* Load shift vector for this list */
778         i_shift_offset   = DIM*shiftidx[iidx];
779
780         /* Load limits for loop over neighbors */
781         j_index_start    = jindex[iidx];
782         j_index_end      = jindex[iidx+1];
783
784         /* Get outer coordinate index */
785         inr              = iinr[iidx];
786         i_coord_offset   = DIM*inr;
787
788         /* Load i particle coords and add shift vector */
789         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
790                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
791
792         fix0             = _mm256_setzero_ps();
793         fiy0             = _mm256_setzero_ps();
794         fiz0             = _mm256_setzero_ps();
795         fix1             = _mm256_setzero_ps();
796         fiy1             = _mm256_setzero_ps();
797         fiz1             = _mm256_setzero_ps();
798         fix2             = _mm256_setzero_ps();
799         fiy2             = _mm256_setzero_ps();
800         fiz2             = _mm256_setzero_ps();
801         fix3             = _mm256_setzero_ps();
802         fiy3             = _mm256_setzero_ps();
803         fiz3             = _mm256_setzero_ps();
804
805         /* Start inner kernel loop */
806         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
807         {
808
809             /* Get j neighbor index, and coordinate index */
810             jnrA             = jjnr[jidx];
811             jnrB             = jjnr[jidx+1];
812             jnrC             = jjnr[jidx+2];
813             jnrD             = jjnr[jidx+3];
814             jnrE             = jjnr[jidx+4];
815             jnrF             = jjnr[jidx+5];
816             jnrG             = jjnr[jidx+6];
817             jnrH             = jjnr[jidx+7];
818             j_coord_offsetA  = DIM*jnrA;
819             j_coord_offsetB  = DIM*jnrB;
820             j_coord_offsetC  = DIM*jnrC;
821             j_coord_offsetD  = DIM*jnrD;
822             j_coord_offsetE  = DIM*jnrE;
823             j_coord_offsetF  = DIM*jnrF;
824             j_coord_offsetG  = DIM*jnrG;
825             j_coord_offsetH  = DIM*jnrH;
826
827             /* load j atom coordinates */
828             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
829                                                  x+j_coord_offsetC,x+j_coord_offsetD,
830                                                  x+j_coord_offsetE,x+j_coord_offsetF,
831                                                  x+j_coord_offsetG,x+j_coord_offsetH,
832                                                  &jx0,&jy0,&jz0);
833
834             /* Calculate displacement vector */
835             dx00             = _mm256_sub_ps(ix0,jx0);
836             dy00             = _mm256_sub_ps(iy0,jy0);
837             dz00             = _mm256_sub_ps(iz0,jz0);
838             dx10             = _mm256_sub_ps(ix1,jx0);
839             dy10             = _mm256_sub_ps(iy1,jy0);
840             dz10             = _mm256_sub_ps(iz1,jz0);
841             dx20             = _mm256_sub_ps(ix2,jx0);
842             dy20             = _mm256_sub_ps(iy2,jy0);
843             dz20             = _mm256_sub_ps(iz2,jz0);
844             dx30             = _mm256_sub_ps(ix3,jx0);
845             dy30             = _mm256_sub_ps(iy3,jy0);
846             dz30             = _mm256_sub_ps(iz3,jz0);
847
848             /* Calculate squared distance and things based on it */
849             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
850             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
851             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
852             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
853
854             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
855             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
856             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
857
858             rinvsq00         = gmx_mm256_inv_ps(rsq00);
859             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
860             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
861             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
862
863             /* Load parameters for j particles */
864             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
865                                                                  charge+jnrC+0,charge+jnrD+0,
866                                                                  charge+jnrE+0,charge+jnrF+0,
867                                                                  charge+jnrG+0,charge+jnrH+0);
868             vdwjidx0A        = 2*vdwtype[jnrA+0];
869             vdwjidx0B        = 2*vdwtype[jnrB+0];
870             vdwjidx0C        = 2*vdwtype[jnrC+0];
871             vdwjidx0D        = 2*vdwtype[jnrD+0];
872             vdwjidx0E        = 2*vdwtype[jnrE+0];
873             vdwjidx0F        = 2*vdwtype[jnrF+0];
874             vdwjidx0G        = 2*vdwtype[jnrG+0];
875             vdwjidx0H        = 2*vdwtype[jnrH+0];
876
877             fjx0             = _mm256_setzero_ps();
878             fjy0             = _mm256_setzero_ps();
879             fjz0             = _mm256_setzero_ps();
880
881             /**************************
882              * CALCULATE INTERACTIONS *
883              **************************/
884
885             /* Compute parameters for interactions between i and j atoms */
886             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
887                                             vdwioffsetptr0+vdwjidx0B,
888                                             vdwioffsetptr0+vdwjidx0C,
889                                             vdwioffsetptr0+vdwjidx0D,
890                                             vdwioffsetptr0+vdwjidx0E,
891                                             vdwioffsetptr0+vdwjidx0F,
892                                             vdwioffsetptr0+vdwjidx0G,
893                                             vdwioffsetptr0+vdwjidx0H,
894                                             &c6_00,&c12_00);
895
896             /* LENNARD-JONES DISPERSION/REPULSION */
897
898             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
899             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
900
901             fscal            = fvdw;
902
903             /* Calculate temporary vectorial force */
904             tx               = _mm256_mul_ps(fscal,dx00);
905             ty               = _mm256_mul_ps(fscal,dy00);
906             tz               = _mm256_mul_ps(fscal,dz00);
907
908             /* Update vectorial force */
909             fix0             = _mm256_add_ps(fix0,tx);
910             fiy0             = _mm256_add_ps(fiy0,ty);
911             fiz0             = _mm256_add_ps(fiz0,tz);
912
913             fjx0             = _mm256_add_ps(fjx0,tx);
914             fjy0             = _mm256_add_ps(fjy0,ty);
915             fjz0             = _mm256_add_ps(fjz0,tz);
916
917             /**************************
918              * CALCULATE INTERACTIONS *
919              **************************/
920
921             /* Compute parameters for interactions between i and j atoms */
922             qq10             = _mm256_mul_ps(iq1,jq0);
923
924             /* COULOMB ELECTROSTATICS */
925             velec            = _mm256_mul_ps(qq10,rinv10);
926             felec            = _mm256_mul_ps(velec,rinvsq10);
927
928             fscal            = felec;
929
930             /* Calculate temporary vectorial force */
931             tx               = _mm256_mul_ps(fscal,dx10);
932             ty               = _mm256_mul_ps(fscal,dy10);
933             tz               = _mm256_mul_ps(fscal,dz10);
934
935             /* Update vectorial force */
936             fix1             = _mm256_add_ps(fix1,tx);
937             fiy1             = _mm256_add_ps(fiy1,ty);
938             fiz1             = _mm256_add_ps(fiz1,tz);
939
940             fjx0             = _mm256_add_ps(fjx0,tx);
941             fjy0             = _mm256_add_ps(fjy0,ty);
942             fjz0             = _mm256_add_ps(fjz0,tz);
943
944             /**************************
945              * CALCULATE INTERACTIONS *
946              **************************/
947
948             /* Compute parameters for interactions between i and j atoms */
949             qq20             = _mm256_mul_ps(iq2,jq0);
950
951             /* COULOMB ELECTROSTATICS */
952             velec            = _mm256_mul_ps(qq20,rinv20);
953             felec            = _mm256_mul_ps(velec,rinvsq20);
954
955             fscal            = felec;
956
957             /* Calculate temporary vectorial force */
958             tx               = _mm256_mul_ps(fscal,dx20);
959             ty               = _mm256_mul_ps(fscal,dy20);
960             tz               = _mm256_mul_ps(fscal,dz20);
961
962             /* Update vectorial force */
963             fix2             = _mm256_add_ps(fix2,tx);
964             fiy2             = _mm256_add_ps(fiy2,ty);
965             fiz2             = _mm256_add_ps(fiz2,tz);
966
967             fjx0             = _mm256_add_ps(fjx0,tx);
968             fjy0             = _mm256_add_ps(fjy0,ty);
969             fjz0             = _mm256_add_ps(fjz0,tz);
970
971             /**************************
972              * CALCULATE INTERACTIONS *
973              **************************/
974
975             /* Compute parameters for interactions between i and j atoms */
976             qq30             = _mm256_mul_ps(iq3,jq0);
977
978             /* COULOMB ELECTROSTATICS */
979             velec            = _mm256_mul_ps(qq30,rinv30);
980             felec            = _mm256_mul_ps(velec,rinvsq30);
981
982             fscal            = felec;
983
984             /* Calculate temporary vectorial force */
985             tx               = _mm256_mul_ps(fscal,dx30);
986             ty               = _mm256_mul_ps(fscal,dy30);
987             tz               = _mm256_mul_ps(fscal,dz30);
988
989             /* Update vectorial force */
990             fix3             = _mm256_add_ps(fix3,tx);
991             fiy3             = _mm256_add_ps(fiy3,ty);
992             fiz3             = _mm256_add_ps(fiz3,tz);
993
994             fjx0             = _mm256_add_ps(fjx0,tx);
995             fjy0             = _mm256_add_ps(fjy0,ty);
996             fjz0             = _mm256_add_ps(fjz0,tz);
997
998             fjptrA             = f+j_coord_offsetA;
999             fjptrB             = f+j_coord_offsetB;
1000             fjptrC             = f+j_coord_offsetC;
1001             fjptrD             = f+j_coord_offsetD;
1002             fjptrE             = f+j_coord_offsetE;
1003             fjptrF             = f+j_coord_offsetF;
1004             fjptrG             = f+j_coord_offsetG;
1005             fjptrH             = f+j_coord_offsetH;
1006
1007             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1008
1009             /* Inner loop uses 108 flops */
1010         }
1011
1012         if(jidx<j_index_end)
1013         {
1014
1015             /* Get j neighbor index, and coordinate index */
1016             jnrlistA         = jjnr[jidx];
1017             jnrlistB         = jjnr[jidx+1];
1018             jnrlistC         = jjnr[jidx+2];
1019             jnrlistD         = jjnr[jidx+3];
1020             jnrlistE         = jjnr[jidx+4];
1021             jnrlistF         = jjnr[jidx+5];
1022             jnrlistG         = jjnr[jidx+6];
1023             jnrlistH         = jjnr[jidx+7];
1024             /* Sign of each element will be negative for non-real atoms.
1025              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1026              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1027              */
1028             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1029                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1030                                             
1031             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1032             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1033             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1034             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1035             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1036             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1037             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1038             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1039             j_coord_offsetA  = DIM*jnrA;
1040             j_coord_offsetB  = DIM*jnrB;
1041             j_coord_offsetC  = DIM*jnrC;
1042             j_coord_offsetD  = DIM*jnrD;
1043             j_coord_offsetE  = DIM*jnrE;
1044             j_coord_offsetF  = DIM*jnrF;
1045             j_coord_offsetG  = DIM*jnrG;
1046             j_coord_offsetH  = DIM*jnrH;
1047
1048             /* load j atom coordinates */
1049             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1050                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1051                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1052                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1053                                                  &jx0,&jy0,&jz0);
1054
1055             /* Calculate displacement vector */
1056             dx00             = _mm256_sub_ps(ix0,jx0);
1057             dy00             = _mm256_sub_ps(iy0,jy0);
1058             dz00             = _mm256_sub_ps(iz0,jz0);
1059             dx10             = _mm256_sub_ps(ix1,jx0);
1060             dy10             = _mm256_sub_ps(iy1,jy0);
1061             dz10             = _mm256_sub_ps(iz1,jz0);
1062             dx20             = _mm256_sub_ps(ix2,jx0);
1063             dy20             = _mm256_sub_ps(iy2,jy0);
1064             dz20             = _mm256_sub_ps(iz2,jz0);
1065             dx30             = _mm256_sub_ps(ix3,jx0);
1066             dy30             = _mm256_sub_ps(iy3,jy0);
1067             dz30             = _mm256_sub_ps(iz3,jz0);
1068
1069             /* Calculate squared distance and things based on it */
1070             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1071             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1072             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1073             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1074
1075             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1076             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1077             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1078
1079             rinvsq00         = gmx_mm256_inv_ps(rsq00);
1080             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1081             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1082             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1083
1084             /* Load parameters for j particles */
1085             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1086                                                                  charge+jnrC+0,charge+jnrD+0,
1087                                                                  charge+jnrE+0,charge+jnrF+0,
1088                                                                  charge+jnrG+0,charge+jnrH+0);
1089             vdwjidx0A        = 2*vdwtype[jnrA+0];
1090             vdwjidx0B        = 2*vdwtype[jnrB+0];
1091             vdwjidx0C        = 2*vdwtype[jnrC+0];
1092             vdwjidx0D        = 2*vdwtype[jnrD+0];
1093             vdwjidx0E        = 2*vdwtype[jnrE+0];
1094             vdwjidx0F        = 2*vdwtype[jnrF+0];
1095             vdwjidx0G        = 2*vdwtype[jnrG+0];
1096             vdwjidx0H        = 2*vdwtype[jnrH+0];
1097
1098             fjx0             = _mm256_setzero_ps();
1099             fjy0             = _mm256_setzero_ps();
1100             fjz0             = _mm256_setzero_ps();
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             /* Compute parameters for interactions between i and j atoms */
1107             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1108                                             vdwioffsetptr0+vdwjidx0B,
1109                                             vdwioffsetptr0+vdwjidx0C,
1110                                             vdwioffsetptr0+vdwjidx0D,
1111                                             vdwioffsetptr0+vdwjidx0E,
1112                                             vdwioffsetptr0+vdwjidx0F,
1113                                             vdwioffsetptr0+vdwjidx0G,
1114                                             vdwioffsetptr0+vdwjidx0H,
1115                                             &c6_00,&c12_00);
1116
1117             /* LENNARD-JONES DISPERSION/REPULSION */
1118
1119             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1120             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1121
1122             fscal            = fvdw;
1123
1124             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1125
1126             /* Calculate temporary vectorial force */
1127             tx               = _mm256_mul_ps(fscal,dx00);
1128             ty               = _mm256_mul_ps(fscal,dy00);
1129             tz               = _mm256_mul_ps(fscal,dz00);
1130
1131             /* Update vectorial force */
1132             fix0             = _mm256_add_ps(fix0,tx);
1133             fiy0             = _mm256_add_ps(fiy0,ty);
1134             fiz0             = _mm256_add_ps(fiz0,tz);
1135
1136             fjx0             = _mm256_add_ps(fjx0,tx);
1137             fjy0             = _mm256_add_ps(fjy0,ty);
1138             fjz0             = _mm256_add_ps(fjz0,tz);
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             /* Compute parameters for interactions between i and j atoms */
1145             qq10             = _mm256_mul_ps(iq1,jq0);
1146
1147             /* COULOMB ELECTROSTATICS */
1148             velec            = _mm256_mul_ps(qq10,rinv10);
1149             felec            = _mm256_mul_ps(velec,rinvsq10);
1150
1151             fscal            = felec;
1152
1153             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1154
1155             /* Calculate temporary vectorial force */
1156             tx               = _mm256_mul_ps(fscal,dx10);
1157             ty               = _mm256_mul_ps(fscal,dy10);
1158             tz               = _mm256_mul_ps(fscal,dz10);
1159
1160             /* Update vectorial force */
1161             fix1             = _mm256_add_ps(fix1,tx);
1162             fiy1             = _mm256_add_ps(fiy1,ty);
1163             fiz1             = _mm256_add_ps(fiz1,tz);
1164
1165             fjx0             = _mm256_add_ps(fjx0,tx);
1166             fjy0             = _mm256_add_ps(fjy0,ty);
1167             fjz0             = _mm256_add_ps(fjz0,tz);
1168
1169             /**************************
1170              * CALCULATE INTERACTIONS *
1171              **************************/
1172
1173             /* Compute parameters for interactions between i and j atoms */
1174             qq20             = _mm256_mul_ps(iq2,jq0);
1175
1176             /* COULOMB ELECTROSTATICS */
1177             velec            = _mm256_mul_ps(qq20,rinv20);
1178             felec            = _mm256_mul_ps(velec,rinvsq20);
1179
1180             fscal            = felec;
1181
1182             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1183
1184             /* Calculate temporary vectorial force */
1185             tx               = _mm256_mul_ps(fscal,dx20);
1186             ty               = _mm256_mul_ps(fscal,dy20);
1187             tz               = _mm256_mul_ps(fscal,dz20);
1188
1189             /* Update vectorial force */
1190             fix2             = _mm256_add_ps(fix2,tx);
1191             fiy2             = _mm256_add_ps(fiy2,ty);
1192             fiz2             = _mm256_add_ps(fiz2,tz);
1193
1194             fjx0             = _mm256_add_ps(fjx0,tx);
1195             fjy0             = _mm256_add_ps(fjy0,ty);
1196             fjz0             = _mm256_add_ps(fjz0,tz);
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             /* Compute parameters for interactions between i and j atoms */
1203             qq30             = _mm256_mul_ps(iq3,jq0);
1204
1205             /* COULOMB ELECTROSTATICS */
1206             velec            = _mm256_mul_ps(qq30,rinv30);
1207             felec            = _mm256_mul_ps(velec,rinvsq30);
1208
1209             fscal            = felec;
1210
1211             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1212
1213             /* Calculate temporary vectorial force */
1214             tx               = _mm256_mul_ps(fscal,dx30);
1215             ty               = _mm256_mul_ps(fscal,dy30);
1216             tz               = _mm256_mul_ps(fscal,dz30);
1217
1218             /* Update vectorial force */
1219             fix3             = _mm256_add_ps(fix3,tx);
1220             fiy3             = _mm256_add_ps(fiy3,ty);
1221             fiz3             = _mm256_add_ps(fiz3,tz);
1222
1223             fjx0             = _mm256_add_ps(fjx0,tx);
1224             fjy0             = _mm256_add_ps(fjy0,ty);
1225             fjz0             = _mm256_add_ps(fjz0,tz);
1226
1227             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1228             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1229             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1230             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1231             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1232             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1233             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1234             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1235
1236             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1237
1238             /* Inner loop uses 108 flops */
1239         }
1240
1241         /* End of innermost loop */
1242
1243         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1244                                                  f+i_coord_offset,fshift+i_shift_offset);
1245
1246         /* Increment number of inner iterations */
1247         inneriter                  += j_index_end - j_index_start;
1248
1249         /* Outer loop uses 24 flops */
1250     }
1251
1252     /* Increment number of outer iterations */
1253     outeriter        += nri;
1254
1255     /* Update outer/inner flops */
1256
1257     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108);
1258 }