96b87526012c86889fc097f8d137d7f4ec706387
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256           dummy_mask,cutoff_mask;
86     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
87     __m256           one     = _mm256_set1_ps(1.0);
88     __m256           two     = _mm256_set1_ps(2.0);
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = _mm256_set1_ps(fr->epsfac);
101     charge           = mdatoms->chargeA;
102     nvdwtype         = fr->ntype;
103     vdwparam         = fr->nbfp;
104     vdwtype          = mdatoms->typeA;
105
106     /* Avoid stupid compiler warnings */
107     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
108     j_coord_offsetA = 0;
109     j_coord_offsetB = 0;
110     j_coord_offsetC = 0;
111     j_coord_offsetD = 0;
112     j_coord_offsetE = 0;
113     j_coord_offsetF = 0;
114     j_coord_offsetG = 0;
115     j_coord_offsetH = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm256_setzero_ps();
143         fiy0             = _mm256_setzero_ps();
144         fiz0             = _mm256_setzero_ps();
145
146         /* Load parameters for i particles */
147         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
148         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         velecsum         = _mm256_setzero_ps();
152         vvdwsum          = _mm256_setzero_ps();
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
156         {
157
158             /* Get j neighbor index, and coordinate index */
159             jnrA             = jjnr[jidx];
160             jnrB             = jjnr[jidx+1];
161             jnrC             = jjnr[jidx+2];
162             jnrD             = jjnr[jidx+3];
163             jnrE             = jjnr[jidx+4];
164             jnrF             = jjnr[jidx+5];
165             jnrG             = jjnr[jidx+6];
166             jnrH             = jjnr[jidx+7];
167             j_coord_offsetA  = DIM*jnrA;
168             j_coord_offsetB  = DIM*jnrB;
169             j_coord_offsetC  = DIM*jnrC;
170             j_coord_offsetD  = DIM*jnrD;
171             j_coord_offsetE  = DIM*jnrE;
172             j_coord_offsetF  = DIM*jnrF;
173             j_coord_offsetG  = DIM*jnrG;
174             j_coord_offsetH  = DIM*jnrH;
175
176             /* load j atom coordinates */
177             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
178                                                  x+j_coord_offsetC,x+j_coord_offsetD,
179                                                  x+j_coord_offsetE,x+j_coord_offsetF,
180                                                  x+j_coord_offsetG,x+j_coord_offsetH,
181                                                  &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm256_sub_ps(ix0,jx0);
185             dy00             = _mm256_sub_ps(iy0,jy0);
186             dz00             = _mm256_sub_ps(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
192
193             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
197                                                                  charge+jnrC+0,charge+jnrD+0,
198                                                                  charge+jnrE+0,charge+jnrF+0,
199                                                                  charge+jnrG+0,charge+jnrH+0);
200             vdwjidx0A        = 2*vdwtype[jnrA+0];
201             vdwjidx0B        = 2*vdwtype[jnrB+0];
202             vdwjidx0C        = 2*vdwtype[jnrC+0];
203             vdwjidx0D        = 2*vdwtype[jnrD+0];
204             vdwjidx0E        = 2*vdwtype[jnrE+0];
205             vdwjidx0F        = 2*vdwtype[jnrF+0];
206             vdwjidx0G        = 2*vdwtype[jnrG+0];
207             vdwjidx0H        = 2*vdwtype[jnrH+0];
208
209             /**************************
210              * CALCULATE INTERACTIONS *
211              **************************/
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm256_mul_ps(iq0,jq0);
215             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
216                                             vdwioffsetptr0+vdwjidx0B,
217                                             vdwioffsetptr0+vdwjidx0C,
218                                             vdwioffsetptr0+vdwjidx0D,
219                                             vdwioffsetptr0+vdwjidx0E,
220                                             vdwioffsetptr0+vdwjidx0F,
221                                             vdwioffsetptr0+vdwjidx0G,
222                                             vdwioffsetptr0+vdwjidx0H,
223                                             &c6_00,&c12_00);
224
225             /* COULOMB ELECTROSTATICS */
226             velec            = _mm256_mul_ps(qq00,rinv00);
227             felec            = _mm256_mul_ps(velec,rinvsq00);
228
229             /* LENNARD-JONES DISPERSION/REPULSION */
230
231             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
232             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
233             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
234             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
235             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
236
237             /* Update potential sum for this i atom from the interaction with this j atom. */
238             velecsum         = _mm256_add_ps(velecsum,velec);
239             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
240
241             fscal            = _mm256_add_ps(felec,fvdw);
242
243             /* Calculate temporary vectorial force */
244             tx               = _mm256_mul_ps(fscal,dx00);
245             ty               = _mm256_mul_ps(fscal,dy00);
246             tz               = _mm256_mul_ps(fscal,dz00);
247
248             /* Update vectorial force */
249             fix0             = _mm256_add_ps(fix0,tx);
250             fiy0             = _mm256_add_ps(fiy0,ty);
251             fiz0             = _mm256_add_ps(fiz0,tz);
252
253             fjptrA             = f+j_coord_offsetA;
254             fjptrB             = f+j_coord_offsetB;
255             fjptrC             = f+j_coord_offsetC;
256             fjptrD             = f+j_coord_offsetD;
257             fjptrE             = f+j_coord_offsetE;
258             fjptrF             = f+j_coord_offsetF;
259             fjptrG             = f+j_coord_offsetG;
260             fjptrH             = f+j_coord_offsetH;
261             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
262
263             /* Inner loop uses 39 flops */
264         }
265
266         if(jidx<j_index_end)
267         {
268
269             /* Get j neighbor index, and coordinate index */
270             jnrlistA         = jjnr[jidx];
271             jnrlistB         = jjnr[jidx+1];
272             jnrlistC         = jjnr[jidx+2];
273             jnrlistD         = jjnr[jidx+3];
274             jnrlistE         = jjnr[jidx+4];
275             jnrlistF         = jjnr[jidx+5];
276             jnrlistG         = jjnr[jidx+6];
277             jnrlistH         = jjnr[jidx+7];
278             /* Sign of each element will be negative for non-real atoms.
279              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
280              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
281              */
282             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
283                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
284                                             
285             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
286             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
287             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
288             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
289             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
290             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
291             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
292             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
293             j_coord_offsetA  = DIM*jnrA;
294             j_coord_offsetB  = DIM*jnrB;
295             j_coord_offsetC  = DIM*jnrC;
296             j_coord_offsetD  = DIM*jnrD;
297             j_coord_offsetE  = DIM*jnrE;
298             j_coord_offsetF  = DIM*jnrF;
299             j_coord_offsetG  = DIM*jnrG;
300             j_coord_offsetH  = DIM*jnrH;
301
302             /* load j atom coordinates */
303             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
304                                                  x+j_coord_offsetC,x+j_coord_offsetD,
305                                                  x+j_coord_offsetE,x+j_coord_offsetF,
306                                                  x+j_coord_offsetG,x+j_coord_offsetH,
307                                                  &jx0,&jy0,&jz0);
308
309             /* Calculate displacement vector */
310             dx00             = _mm256_sub_ps(ix0,jx0);
311             dy00             = _mm256_sub_ps(iy0,jy0);
312             dz00             = _mm256_sub_ps(iz0,jz0);
313
314             /* Calculate squared distance and things based on it */
315             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
316
317             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
318
319             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
320
321             /* Load parameters for j particles */
322             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
323                                                                  charge+jnrC+0,charge+jnrD+0,
324                                                                  charge+jnrE+0,charge+jnrF+0,
325                                                                  charge+jnrG+0,charge+jnrH+0);
326             vdwjidx0A        = 2*vdwtype[jnrA+0];
327             vdwjidx0B        = 2*vdwtype[jnrB+0];
328             vdwjidx0C        = 2*vdwtype[jnrC+0];
329             vdwjidx0D        = 2*vdwtype[jnrD+0];
330             vdwjidx0E        = 2*vdwtype[jnrE+0];
331             vdwjidx0F        = 2*vdwtype[jnrF+0];
332             vdwjidx0G        = 2*vdwtype[jnrG+0];
333             vdwjidx0H        = 2*vdwtype[jnrH+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq00             = _mm256_mul_ps(iq0,jq0);
341             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
342                                             vdwioffsetptr0+vdwjidx0B,
343                                             vdwioffsetptr0+vdwjidx0C,
344                                             vdwioffsetptr0+vdwjidx0D,
345                                             vdwioffsetptr0+vdwjidx0E,
346                                             vdwioffsetptr0+vdwjidx0F,
347                                             vdwioffsetptr0+vdwjidx0G,
348                                             vdwioffsetptr0+vdwjidx0H,
349                                             &c6_00,&c12_00);
350
351             /* COULOMB ELECTROSTATICS */
352             velec            = _mm256_mul_ps(qq00,rinv00);
353             felec            = _mm256_mul_ps(velec,rinvsq00);
354
355             /* LENNARD-JONES DISPERSION/REPULSION */
356
357             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
358             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
359             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
360             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
361             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
362
363             /* Update potential sum for this i atom from the interaction with this j atom. */
364             velec            = _mm256_andnot_ps(dummy_mask,velec);
365             velecsum         = _mm256_add_ps(velecsum,velec);
366             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
367             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
368
369             fscal            = _mm256_add_ps(felec,fvdw);
370
371             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
372
373             /* Calculate temporary vectorial force */
374             tx               = _mm256_mul_ps(fscal,dx00);
375             ty               = _mm256_mul_ps(fscal,dy00);
376             tz               = _mm256_mul_ps(fscal,dz00);
377
378             /* Update vectorial force */
379             fix0             = _mm256_add_ps(fix0,tx);
380             fiy0             = _mm256_add_ps(fiy0,ty);
381             fiz0             = _mm256_add_ps(fiz0,tz);
382
383             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
384             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
385             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
386             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
387             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
388             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
389             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
390             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
391             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
392
393             /* Inner loop uses 39 flops */
394         }
395
396         /* End of innermost loop */
397
398         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
399                                                  f+i_coord_offset,fshift+i_shift_offset);
400
401         ggid                        = gid[iidx];
402         /* Update potential energies */
403         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
404         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
405
406         /* Increment number of inner iterations */
407         inneriter                  += j_index_end - j_index_start;
408
409         /* Outer loop uses 9 flops */
410     }
411
412     /* Increment number of outer iterations */
413     outeriter        += nri;
414
415     /* Update outer/inner flops */
416
417     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*39);
418 }
419 /*
420  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_single
421  * Electrostatics interaction: Coulomb
422  * VdW interaction:            LennardJones
423  * Geometry:                   Particle-Particle
424  * Calculate force/pot:        Force
425  */
426 void
427 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_single
428                     (t_nblist * gmx_restrict                nlist,
429                      rvec * gmx_restrict                    xx,
430                      rvec * gmx_restrict                    ff,
431                      t_forcerec * gmx_restrict              fr,
432                      t_mdatoms * gmx_restrict               mdatoms,
433                      nb_kernel_data_t * gmx_restrict        kernel_data,
434                      t_nrnb * gmx_restrict                  nrnb)
435 {
436     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
437      * just 0 for non-waters.
438      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
439      * jnr indices corresponding to data put in the four positions in the SIMD register.
440      */
441     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
442     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
443     int              jnrA,jnrB,jnrC,jnrD;
444     int              jnrE,jnrF,jnrG,jnrH;
445     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
446     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
447     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
448     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
449     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
450     real             rcutoff_scalar;
451     real             *shiftvec,*fshift,*x,*f;
452     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
453     real             scratch[4*DIM];
454     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
455     real *           vdwioffsetptr0;
456     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
458     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
459     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
460     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     int              nvdwtype;
463     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
464     int              *vdwtype;
465     real             *vdwparam;
466     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
467     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
468     __m256           dummy_mask,cutoff_mask;
469     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
470     __m256           one     = _mm256_set1_ps(1.0);
471     __m256           two     = _mm256_set1_ps(2.0);
472     x                = xx[0];
473     f                = ff[0];
474
475     nri              = nlist->nri;
476     iinr             = nlist->iinr;
477     jindex           = nlist->jindex;
478     jjnr             = nlist->jjnr;
479     shiftidx         = nlist->shift;
480     gid              = nlist->gid;
481     shiftvec         = fr->shift_vec[0];
482     fshift           = fr->fshift[0];
483     facel            = _mm256_set1_ps(fr->epsfac);
484     charge           = mdatoms->chargeA;
485     nvdwtype         = fr->ntype;
486     vdwparam         = fr->nbfp;
487     vdwtype          = mdatoms->typeA;
488
489     /* Avoid stupid compiler warnings */
490     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
491     j_coord_offsetA = 0;
492     j_coord_offsetB = 0;
493     j_coord_offsetC = 0;
494     j_coord_offsetD = 0;
495     j_coord_offsetE = 0;
496     j_coord_offsetF = 0;
497     j_coord_offsetG = 0;
498     j_coord_offsetH = 0;
499
500     outeriter        = 0;
501     inneriter        = 0;
502
503     for(iidx=0;iidx<4*DIM;iidx++)
504     {
505         scratch[iidx] = 0.0;
506     }
507
508     /* Start outer loop over neighborlists */
509     for(iidx=0; iidx<nri; iidx++)
510     {
511         /* Load shift vector for this list */
512         i_shift_offset   = DIM*shiftidx[iidx];
513
514         /* Load limits for loop over neighbors */
515         j_index_start    = jindex[iidx];
516         j_index_end      = jindex[iidx+1];
517
518         /* Get outer coordinate index */
519         inr              = iinr[iidx];
520         i_coord_offset   = DIM*inr;
521
522         /* Load i particle coords and add shift vector */
523         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
524
525         fix0             = _mm256_setzero_ps();
526         fiy0             = _mm256_setzero_ps();
527         fiz0             = _mm256_setzero_ps();
528
529         /* Load parameters for i particles */
530         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
531         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
535         {
536
537             /* Get j neighbor index, and coordinate index */
538             jnrA             = jjnr[jidx];
539             jnrB             = jjnr[jidx+1];
540             jnrC             = jjnr[jidx+2];
541             jnrD             = jjnr[jidx+3];
542             jnrE             = jjnr[jidx+4];
543             jnrF             = jjnr[jidx+5];
544             jnrG             = jjnr[jidx+6];
545             jnrH             = jjnr[jidx+7];
546             j_coord_offsetA  = DIM*jnrA;
547             j_coord_offsetB  = DIM*jnrB;
548             j_coord_offsetC  = DIM*jnrC;
549             j_coord_offsetD  = DIM*jnrD;
550             j_coord_offsetE  = DIM*jnrE;
551             j_coord_offsetF  = DIM*jnrF;
552             j_coord_offsetG  = DIM*jnrG;
553             j_coord_offsetH  = DIM*jnrH;
554
555             /* load j atom coordinates */
556             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
557                                                  x+j_coord_offsetC,x+j_coord_offsetD,
558                                                  x+j_coord_offsetE,x+j_coord_offsetF,
559                                                  x+j_coord_offsetG,x+j_coord_offsetH,
560                                                  &jx0,&jy0,&jz0);
561
562             /* Calculate displacement vector */
563             dx00             = _mm256_sub_ps(ix0,jx0);
564             dy00             = _mm256_sub_ps(iy0,jy0);
565             dz00             = _mm256_sub_ps(iz0,jz0);
566
567             /* Calculate squared distance and things based on it */
568             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
569
570             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
571
572             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
573
574             /* Load parameters for j particles */
575             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
576                                                                  charge+jnrC+0,charge+jnrD+0,
577                                                                  charge+jnrE+0,charge+jnrF+0,
578                                                                  charge+jnrG+0,charge+jnrH+0);
579             vdwjidx0A        = 2*vdwtype[jnrA+0];
580             vdwjidx0B        = 2*vdwtype[jnrB+0];
581             vdwjidx0C        = 2*vdwtype[jnrC+0];
582             vdwjidx0D        = 2*vdwtype[jnrD+0];
583             vdwjidx0E        = 2*vdwtype[jnrE+0];
584             vdwjidx0F        = 2*vdwtype[jnrF+0];
585             vdwjidx0G        = 2*vdwtype[jnrG+0];
586             vdwjidx0H        = 2*vdwtype[jnrH+0];
587
588             /**************************
589              * CALCULATE INTERACTIONS *
590              **************************/
591
592             /* Compute parameters for interactions between i and j atoms */
593             qq00             = _mm256_mul_ps(iq0,jq0);
594             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
595                                             vdwioffsetptr0+vdwjidx0B,
596                                             vdwioffsetptr0+vdwjidx0C,
597                                             vdwioffsetptr0+vdwjidx0D,
598                                             vdwioffsetptr0+vdwjidx0E,
599                                             vdwioffsetptr0+vdwjidx0F,
600                                             vdwioffsetptr0+vdwjidx0G,
601                                             vdwioffsetptr0+vdwjidx0H,
602                                             &c6_00,&c12_00);
603
604             /* COULOMB ELECTROSTATICS */
605             velec            = _mm256_mul_ps(qq00,rinv00);
606             felec            = _mm256_mul_ps(velec,rinvsq00);
607
608             /* LENNARD-JONES DISPERSION/REPULSION */
609
610             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
611             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
612
613             fscal            = _mm256_add_ps(felec,fvdw);
614
615             /* Calculate temporary vectorial force */
616             tx               = _mm256_mul_ps(fscal,dx00);
617             ty               = _mm256_mul_ps(fscal,dy00);
618             tz               = _mm256_mul_ps(fscal,dz00);
619
620             /* Update vectorial force */
621             fix0             = _mm256_add_ps(fix0,tx);
622             fiy0             = _mm256_add_ps(fiy0,ty);
623             fiz0             = _mm256_add_ps(fiz0,tz);
624
625             fjptrA             = f+j_coord_offsetA;
626             fjptrB             = f+j_coord_offsetB;
627             fjptrC             = f+j_coord_offsetC;
628             fjptrD             = f+j_coord_offsetD;
629             fjptrE             = f+j_coord_offsetE;
630             fjptrF             = f+j_coord_offsetF;
631             fjptrG             = f+j_coord_offsetG;
632             fjptrH             = f+j_coord_offsetH;
633             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
634
635             /* Inner loop uses 33 flops */
636         }
637
638         if(jidx<j_index_end)
639         {
640
641             /* Get j neighbor index, and coordinate index */
642             jnrlistA         = jjnr[jidx];
643             jnrlistB         = jjnr[jidx+1];
644             jnrlistC         = jjnr[jidx+2];
645             jnrlistD         = jjnr[jidx+3];
646             jnrlistE         = jjnr[jidx+4];
647             jnrlistF         = jjnr[jidx+5];
648             jnrlistG         = jjnr[jidx+6];
649             jnrlistH         = jjnr[jidx+7];
650             /* Sign of each element will be negative for non-real atoms.
651              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
652              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
653              */
654             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
655                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
656                                             
657             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
658             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
659             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
660             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
661             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
662             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
663             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
664             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
665             j_coord_offsetA  = DIM*jnrA;
666             j_coord_offsetB  = DIM*jnrB;
667             j_coord_offsetC  = DIM*jnrC;
668             j_coord_offsetD  = DIM*jnrD;
669             j_coord_offsetE  = DIM*jnrE;
670             j_coord_offsetF  = DIM*jnrF;
671             j_coord_offsetG  = DIM*jnrG;
672             j_coord_offsetH  = DIM*jnrH;
673
674             /* load j atom coordinates */
675             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
676                                                  x+j_coord_offsetC,x+j_coord_offsetD,
677                                                  x+j_coord_offsetE,x+j_coord_offsetF,
678                                                  x+j_coord_offsetG,x+j_coord_offsetH,
679                                                  &jx0,&jy0,&jz0);
680
681             /* Calculate displacement vector */
682             dx00             = _mm256_sub_ps(ix0,jx0);
683             dy00             = _mm256_sub_ps(iy0,jy0);
684             dz00             = _mm256_sub_ps(iz0,jz0);
685
686             /* Calculate squared distance and things based on it */
687             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
688
689             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
690
691             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
692
693             /* Load parameters for j particles */
694             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
695                                                                  charge+jnrC+0,charge+jnrD+0,
696                                                                  charge+jnrE+0,charge+jnrF+0,
697                                                                  charge+jnrG+0,charge+jnrH+0);
698             vdwjidx0A        = 2*vdwtype[jnrA+0];
699             vdwjidx0B        = 2*vdwtype[jnrB+0];
700             vdwjidx0C        = 2*vdwtype[jnrC+0];
701             vdwjidx0D        = 2*vdwtype[jnrD+0];
702             vdwjidx0E        = 2*vdwtype[jnrE+0];
703             vdwjidx0F        = 2*vdwtype[jnrF+0];
704             vdwjidx0G        = 2*vdwtype[jnrG+0];
705             vdwjidx0H        = 2*vdwtype[jnrH+0];
706
707             /**************************
708              * CALCULATE INTERACTIONS *
709              **************************/
710
711             /* Compute parameters for interactions between i and j atoms */
712             qq00             = _mm256_mul_ps(iq0,jq0);
713             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
714                                             vdwioffsetptr0+vdwjidx0B,
715                                             vdwioffsetptr0+vdwjidx0C,
716                                             vdwioffsetptr0+vdwjidx0D,
717                                             vdwioffsetptr0+vdwjidx0E,
718                                             vdwioffsetptr0+vdwjidx0F,
719                                             vdwioffsetptr0+vdwjidx0G,
720                                             vdwioffsetptr0+vdwjidx0H,
721                                             &c6_00,&c12_00);
722
723             /* COULOMB ELECTROSTATICS */
724             velec            = _mm256_mul_ps(qq00,rinv00);
725             felec            = _mm256_mul_ps(velec,rinvsq00);
726
727             /* LENNARD-JONES DISPERSION/REPULSION */
728
729             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
730             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
731
732             fscal            = _mm256_add_ps(felec,fvdw);
733
734             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
735
736             /* Calculate temporary vectorial force */
737             tx               = _mm256_mul_ps(fscal,dx00);
738             ty               = _mm256_mul_ps(fscal,dy00);
739             tz               = _mm256_mul_ps(fscal,dz00);
740
741             /* Update vectorial force */
742             fix0             = _mm256_add_ps(fix0,tx);
743             fiy0             = _mm256_add_ps(fiy0,ty);
744             fiz0             = _mm256_add_ps(fiz0,tz);
745
746             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
747             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
748             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
749             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
750             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
751             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
752             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
753             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
754             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
755
756             /* Inner loop uses 33 flops */
757         }
758
759         /* End of innermost loop */
760
761         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
762                                                  f+i_coord_offset,fshift+i_shift_offset);
763
764         /* Increment number of inner iterations */
765         inneriter                  += j_index_end - j_index_start;
766
767         /* Outer loop uses 7 flops */
768     }
769
770     /* Increment number of outer iterations */
771     outeriter        += nri;
772
773     /* Update outer/inner flops */
774
775     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*33);
776 }