made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     real *           vdwioffsetptr3;
79     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
81     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
84     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
85     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
86     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
93     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
94     __m256i          vfitab;
95     __m128i          vfitab_lo,vfitab_hi;
96     __m128i          ifour       = _mm_set1_epi32(4);
97     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
98     real             *vftab;
99     __m256           dummy_mask,cutoff_mask;
100     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
101     __m256           one     = _mm256_set1_ps(1.0);
102     __m256           two     = _mm256_set1_ps(2.0);
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = _mm256_set1_ps(fr->epsfac);
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     vftab            = kernel_data->table_vdw->data;
121     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
122
123     /* Setup water-specific parameters */
124     inr              = nlist->iinr[0];
125     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
126     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
127     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
128     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
129
130     /* Avoid stupid compiler warnings */
131     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
132     j_coord_offsetA = 0;
133     j_coord_offsetB = 0;
134     j_coord_offsetC = 0;
135     j_coord_offsetD = 0;
136     j_coord_offsetE = 0;
137     j_coord_offsetF = 0;
138     j_coord_offsetG = 0;
139     j_coord_offsetH = 0;
140
141     outeriter        = 0;
142     inneriter        = 0;
143
144     for(iidx=0;iidx<4*DIM;iidx++)
145     {
146         scratch[iidx] = 0.0;
147     }
148
149     /* Start outer loop over neighborlists */
150     for(iidx=0; iidx<nri; iidx++)
151     {
152         /* Load shift vector for this list */
153         i_shift_offset   = DIM*shiftidx[iidx];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
165                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
166
167         fix0             = _mm256_setzero_ps();
168         fiy0             = _mm256_setzero_ps();
169         fiz0             = _mm256_setzero_ps();
170         fix1             = _mm256_setzero_ps();
171         fiy1             = _mm256_setzero_ps();
172         fiz1             = _mm256_setzero_ps();
173         fix2             = _mm256_setzero_ps();
174         fiy2             = _mm256_setzero_ps();
175         fiz2             = _mm256_setzero_ps();
176         fix3             = _mm256_setzero_ps();
177         fiy3             = _mm256_setzero_ps();
178         fiz3             = _mm256_setzero_ps();
179
180         /* Reset potential sums */
181         velecsum         = _mm256_setzero_ps();
182         vvdwsum          = _mm256_setzero_ps();
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
186         {
187
188             /* Get j neighbor index, and coordinate index */
189             jnrA             = jjnr[jidx];
190             jnrB             = jjnr[jidx+1];
191             jnrC             = jjnr[jidx+2];
192             jnrD             = jjnr[jidx+3];
193             jnrE             = jjnr[jidx+4];
194             jnrF             = jjnr[jidx+5];
195             jnrG             = jjnr[jidx+6];
196             jnrH             = jjnr[jidx+7];
197             j_coord_offsetA  = DIM*jnrA;
198             j_coord_offsetB  = DIM*jnrB;
199             j_coord_offsetC  = DIM*jnrC;
200             j_coord_offsetD  = DIM*jnrD;
201             j_coord_offsetE  = DIM*jnrE;
202             j_coord_offsetF  = DIM*jnrF;
203             j_coord_offsetG  = DIM*jnrG;
204             j_coord_offsetH  = DIM*jnrH;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  x+j_coord_offsetE,x+j_coord_offsetF,
210                                                  x+j_coord_offsetG,x+j_coord_offsetH,
211                                                  &jx0,&jy0,&jz0);
212
213             /* Calculate displacement vector */
214             dx00             = _mm256_sub_ps(ix0,jx0);
215             dy00             = _mm256_sub_ps(iy0,jy0);
216             dz00             = _mm256_sub_ps(iz0,jz0);
217             dx10             = _mm256_sub_ps(ix1,jx0);
218             dy10             = _mm256_sub_ps(iy1,jy0);
219             dz10             = _mm256_sub_ps(iz1,jz0);
220             dx20             = _mm256_sub_ps(ix2,jx0);
221             dy20             = _mm256_sub_ps(iy2,jy0);
222             dz20             = _mm256_sub_ps(iz2,jz0);
223             dx30             = _mm256_sub_ps(ix3,jx0);
224             dy30             = _mm256_sub_ps(iy3,jy0);
225             dz30             = _mm256_sub_ps(iz3,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
229             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
230             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
231             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
232
233             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
234             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
235             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
236             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
237
238             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
239             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
240             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
241
242             /* Load parameters for j particles */
243             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
244                                                                  charge+jnrC+0,charge+jnrD+0,
245                                                                  charge+jnrE+0,charge+jnrF+0,
246                                                                  charge+jnrG+0,charge+jnrH+0);
247             vdwjidx0A        = 2*vdwtype[jnrA+0];
248             vdwjidx0B        = 2*vdwtype[jnrB+0];
249             vdwjidx0C        = 2*vdwtype[jnrC+0];
250             vdwjidx0D        = 2*vdwtype[jnrD+0];
251             vdwjidx0E        = 2*vdwtype[jnrE+0];
252             vdwjidx0F        = 2*vdwtype[jnrF+0];
253             vdwjidx0G        = 2*vdwtype[jnrG+0];
254             vdwjidx0H        = 2*vdwtype[jnrH+0];
255
256             fjx0             = _mm256_setzero_ps();
257             fjy0             = _mm256_setzero_ps();
258             fjz0             = _mm256_setzero_ps();
259
260             /**************************
261              * CALCULATE INTERACTIONS *
262              **************************/
263
264             r00              = _mm256_mul_ps(rsq00,rinv00);
265
266             /* Compute parameters for interactions between i and j atoms */
267             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
268                                             vdwioffsetptr0+vdwjidx0B,
269                                             vdwioffsetptr0+vdwjidx0C,
270                                             vdwioffsetptr0+vdwjidx0D,
271                                             vdwioffsetptr0+vdwjidx0E,
272                                             vdwioffsetptr0+vdwjidx0F,
273                                             vdwioffsetptr0+vdwjidx0G,
274                                             vdwioffsetptr0+vdwjidx0H,
275                                             &c6_00,&c12_00);
276
277             /* Calculate table index by multiplying r with table scale and truncate to integer */
278             rt               = _mm256_mul_ps(r00,vftabscale);
279             vfitab           = _mm256_cvttps_epi32(rt);
280             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
281             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
282             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
283             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
284             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
285             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
286
287             /* CUBIC SPLINE TABLE DISPERSION */
288             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
289                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
290             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
291                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
292             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
293                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
294             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
295                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
296             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
297             Heps             = _mm256_mul_ps(vfeps,H);
298             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
299             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
300             vvdw6            = _mm256_mul_ps(c6_00,VV);
301             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
302             fvdw6            = _mm256_mul_ps(c6_00,FF);
303
304             /* CUBIC SPLINE TABLE REPULSION */
305             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
306             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
307             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
308                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
309             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
310                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
311             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
312                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
313             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
314                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
315             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
316             Heps             = _mm256_mul_ps(vfeps,H);
317             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
318             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
319             vvdw12           = _mm256_mul_ps(c12_00,VV);
320             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
321             fvdw12           = _mm256_mul_ps(c12_00,FF);
322             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
323             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
324
325             /* Update potential sum for this i atom from the interaction with this j atom. */
326             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
327
328             fscal            = fvdw;
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm256_mul_ps(fscal,dx00);
332             ty               = _mm256_mul_ps(fscal,dy00);
333             tz               = _mm256_mul_ps(fscal,dz00);
334
335             /* Update vectorial force */
336             fix0             = _mm256_add_ps(fix0,tx);
337             fiy0             = _mm256_add_ps(fiy0,ty);
338             fiz0             = _mm256_add_ps(fiz0,tz);
339
340             fjx0             = _mm256_add_ps(fjx0,tx);
341             fjy0             = _mm256_add_ps(fjy0,ty);
342             fjz0             = _mm256_add_ps(fjz0,tz);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             /* Compute parameters for interactions between i and j atoms */
349             qq10             = _mm256_mul_ps(iq1,jq0);
350
351             /* COULOMB ELECTROSTATICS */
352             velec            = _mm256_mul_ps(qq10,rinv10);
353             felec            = _mm256_mul_ps(velec,rinvsq10);
354
355             /* Update potential sum for this i atom from the interaction with this j atom. */
356             velecsum         = _mm256_add_ps(velecsum,velec);
357
358             fscal            = felec;
359
360             /* Calculate temporary vectorial force */
361             tx               = _mm256_mul_ps(fscal,dx10);
362             ty               = _mm256_mul_ps(fscal,dy10);
363             tz               = _mm256_mul_ps(fscal,dz10);
364
365             /* Update vectorial force */
366             fix1             = _mm256_add_ps(fix1,tx);
367             fiy1             = _mm256_add_ps(fiy1,ty);
368             fiz1             = _mm256_add_ps(fiz1,tz);
369
370             fjx0             = _mm256_add_ps(fjx0,tx);
371             fjy0             = _mm256_add_ps(fjy0,ty);
372             fjz0             = _mm256_add_ps(fjz0,tz);
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             /* Compute parameters for interactions between i and j atoms */
379             qq20             = _mm256_mul_ps(iq2,jq0);
380
381             /* COULOMB ELECTROSTATICS */
382             velec            = _mm256_mul_ps(qq20,rinv20);
383             felec            = _mm256_mul_ps(velec,rinvsq20);
384
385             /* Update potential sum for this i atom from the interaction with this j atom. */
386             velecsum         = _mm256_add_ps(velecsum,velec);
387
388             fscal            = felec;
389
390             /* Calculate temporary vectorial force */
391             tx               = _mm256_mul_ps(fscal,dx20);
392             ty               = _mm256_mul_ps(fscal,dy20);
393             tz               = _mm256_mul_ps(fscal,dz20);
394
395             /* Update vectorial force */
396             fix2             = _mm256_add_ps(fix2,tx);
397             fiy2             = _mm256_add_ps(fiy2,ty);
398             fiz2             = _mm256_add_ps(fiz2,tz);
399
400             fjx0             = _mm256_add_ps(fjx0,tx);
401             fjy0             = _mm256_add_ps(fjy0,ty);
402             fjz0             = _mm256_add_ps(fjz0,tz);
403
404             /**************************
405              * CALCULATE INTERACTIONS *
406              **************************/
407
408             /* Compute parameters for interactions between i and j atoms */
409             qq30             = _mm256_mul_ps(iq3,jq0);
410
411             /* COULOMB ELECTROSTATICS */
412             velec            = _mm256_mul_ps(qq30,rinv30);
413             felec            = _mm256_mul_ps(velec,rinvsq30);
414
415             /* Update potential sum for this i atom from the interaction with this j atom. */
416             velecsum         = _mm256_add_ps(velecsum,velec);
417
418             fscal            = felec;
419
420             /* Calculate temporary vectorial force */
421             tx               = _mm256_mul_ps(fscal,dx30);
422             ty               = _mm256_mul_ps(fscal,dy30);
423             tz               = _mm256_mul_ps(fscal,dz30);
424
425             /* Update vectorial force */
426             fix3             = _mm256_add_ps(fix3,tx);
427             fiy3             = _mm256_add_ps(fiy3,ty);
428             fiz3             = _mm256_add_ps(fiz3,tz);
429
430             fjx0             = _mm256_add_ps(fjx0,tx);
431             fjy0             = _mm256_add_ps(fjy0,ty);
432             fjz0             = _mm256_add_ps(fjz0,tz);
433
434             fjptrA             = f+j_coord_offsetA;
435             fjptrB             = f+j_coord_offsetB;
436             fjptrC             = f+j_coord_offsetC;
437             fjptrD             = f+j_coord_offsetD;
438             fjptrE             = f+j_coord_offsetE;
439             fjptrF             = f+j_coord_offsetF;
440             fjptrG             = f+j_coord_offsetG;
441             fjptrH             = f+j_coord_offsetH;
442
443             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
444
445             /* Inner loop uses 140 flops */
446         }
447
448         if(jidx<j_index_end)
449         {
450
451             /* Get j neighbor index, and coordinate index */
452             jnrlistA         = jjnr[jidx];
453             jnrlistB         = jjnr[jidx+1];
454             jnrlistC         = jjnr[jidx+2];
455             jnrlistD         = jjnr[jidx+3];
456             jnrlistE         = jjnr[jidx+4];
457             jnrlistF         = jjnr[jidx+5];
458             jnrlistG         = jjnr[jidx+6];
459             jnrlistH         = jjnr[jidx+7];
460             /* Sign of each element will be negative for non-real atoms.
461              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
462              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
463              */
464             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
465                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
466                                             
467             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
468             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
469             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
470             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
471             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
472             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
473             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
474             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
475             j_coord_offsetA  = DIM*jnrA;
476             j_coord_offsetB  = DIM*jnrB;
477             j_coord_offsetC  = DIM*jnrC;
478             j_coord_offsetD  = DIM*jnrD;
479             j_coord_offsetE  = DIM*jnrE;
480             j_coord_offsetF  = DIM*jnrF;
481             j_coord_offsetG  = DIM*jnrG;
482             j_coord_offsetH  = DIM*jnrH;
483
484             /* load j atom coordinates */
485             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
486                                                  x+j_coord_offsetC,x+j_coord_offsetD,
487                                                  x+j_coord_offsetE,x+j_coord_offsetF,
488                                                  x+j_coord_offsetG,x+j_coord_offsetH,
489                                                  &jx0,&jy0,&jz0);
490
491             /* Calculate displacement vector */
492             dx00             = _mm256_sub_ps(ix0,jx0);
493             dy00             = _mm256_sub_ps(iy0,jy0);
494             dz00             = _mm256_sub_ps(iz0,jz0);
495             dx10             = _mm256_sub_ps(ix1,jx0);
496             dy10             = _mm256_sub_ps(iy1,jy0);
497             dz10             = _mm256_sub_ps(iz1,jz0);
498             dx20             = _mm256_sub_ps(ix2,jx0);
499             dy20             = _mm256_sub_ps(iy2,jy0);
500             dz20             = _mm256_sub_ps(iz2,jz0);
501             dx30             = _mm256_sub_ps(ix3,jx0);
502             dy30             = _mm256_sub_ps(iy3,jy0);
503             dz30             = _mm256_sub_ps(iz3,jz0);
504
505             /* Calculate squared distance and things based on it */
506             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
507             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
508             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
509             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
510
511             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
512             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
513             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
514             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
515
516             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
517             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
518             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
519
520             /* Load parameters for j particles */
521             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
522                                                                  charge+jnrC+0,charge+jnrD+0,
523                                                                  charge+jnrE+0,charge+jnrF+0,
524                                                                  charge+jnrG+0,charge+jnrH+0);
525             vdwjidx0A        = 2*vdwtype[jnrA+0];
526             vdwjidx0B        = 2*vdwtype[jnrB+0];
527             vdwjidx0C        = 2*vdwtype[jnrC+0];
528             vdwjidx0D        = 2*vdwtype[jnrD+0];
529             vdwjidx0E        = 2*vdwtype[jnrE+0];
530             vdwjidx0F        = 2*vdwtype[jnrF+0];
531             vdwjidx0G        = 2*vdwtype[jnrG+0];
532             vdwjidx0H        = 2*vdwtype[jnrH+0];
533
534             fjx0             = _mm256_setzero_ps();
535             fjy0             = _mm256_setzero_ps();
536             fjz0             = _mm256_setzero_ps();
537
538             /**************************
539              * CALCULATE INTERACTIONS *
540              **************************/
541
542             r00              = _mm256_mul_ps(rsq00,rinv00);
543             r00              = _mm256_andnot_ps(dummy_mask,r00);
544
545             /* Compute parameters for interactions between i and j atoms */
546             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
547                                             vdwioffsetptr0+vdwjidx0B,
548                                             vdwioffsetptr0+vdwjidx0C,
549                                             vdwioffsetptr0+vdwjidx0D,
550                                             vdwioffsetptr0+vdwjidx0E,
551                                             vdwioffsetptr0+vdwjidx0F,
552                                             vdwioffsetptr0+vdwjidx0G,
553                                             vdwioffsetptr0+vdwjidx0H,
554                                             &c6_00,&c12_00);
555
556             /* Calculate table index by multiplying r with table scale and truncate to integer */
557             rt               = _mm256_mul_ps(r00,vftabscale);
558             vfitab           = _mm256_cvttps_epi32(rt);
559             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
560             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
561             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
562             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
563             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
564             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
565
566             /* CUBIC SPLINE TABLE DISPERSION */
567             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
568                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
569             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
570                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
571             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
572                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
573             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
574                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
575             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
576             Heps             = _mm256_mul_ps(vfeps,H);
577             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
578             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
579             vvdw6            = _mm256_mul_ps(c6_00,VV);
580             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
581             fvdw6            = _mm256_mul_ps(c6_00,FF);
582
583             /* CUBIC SPLINE TABLE REPULSION */
584             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
585             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
586             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
587                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
588             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
589                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
590             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
591                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
592             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
593                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
594             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
595             Heps             = _mm256_mul_ps(vfeps,H);
596             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
597             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
598             vvdw12           = _mm256_mul_ps(c12_00,VV);
599             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
600             fvdw12           = _mm256_mul_ps(c12_00,FF);
601             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
602             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
603
604             /* Update potential sum for this i atom from the interaction with this j atom. */
605             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
606             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
607
608             fscal            = fvdw;
609
610             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
611
612             /* Calculate temporary vectorial force */
613             tx               = _mm256_mul_ps(fscal,dx00);
614             ty               = _mm256_mul_ps(fscal,dy00);
615             tz               = _mm256_mul_ps(fscal,dz00);
616
617             /* Update vectorial force */
618             fix0             = _mm256_add_ps(fix0,tx);
619             fiy0             = _mm256_add_ps(fiy0,ty);
620             fiz0             = _mm256_add_ps(fiz0,tz);
621
622             fjx0             = _mm256_add_ps(fjx0,tx);
623             fjy0             = _mm256_add_ps(fjy0,ty);
624             fjz0             = _mm256_add_ps(fjz0,tz);
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             /* Compute parameters for interactions between i and j atoms */
631             qq10             = _mm256_mul_ps(iq1,jq0);
632
633             /* COULOMB ELECTROSTATICS */
634             velec            = _mm256_mul_ps(qq10,rinv10);
635             felec            = _mm256_mul_ps(velec,rinvsq10);
636
637             /* Update potential sum for this i atom from the interaction with this j atom. */
638             velec            = _mm256_andnot_ps(dummy_mask,velec);
639             velecsum         = _mm256_add_ps(velecsum,velec);
640
641             fscal            = felec;
642
643             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
644
645             /* Calculate temporary vectorial force */
646             tx               = _mm256_mul_ps(fscal,dx10);
647             ty               = _mm256_mul_ps(fscal,dy10);
648             tz               = _mm256_mul_ps(fscal,dz10);
649
650             /* Update vectorial force */
651             fix1             = _mm256_add_ps(fix1,tx);
652             fiy1             = _mm256_add_ps(fiy1,ty);
653             fiz1             = _mm256_add_ps(fiz1,tz);
654
655             fjx0             = _mm256_add_ps(fjx0,tx);
656             fjy0             = _mm256_add_ps(fjy0,ty);
657             fjz0             = _mm256_add_ps(fjz0,tz);
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq20             = _mm256_mul_ps(iq2,jq0);
665
666             /* COULOMB ELECTROSTATICS */
667             velec            = _mm256_mul_ps(qq20,rinv20);
668             felec            = _mm256_mul_ps(velec,rinvsq20);
669
670             /* Update potential sum for this i atom from the interaction with this j atom. */
671             velec            = _mm256_andnot_ps(dummy_mask,velec);
672             velecsum         = _mm256_add_ps(velecsum,velec);
673
674             fscal            = felec;
675
676             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
677
678             /* Calculate temporary vectorial force */
679             tx               = _mm256_mul_ps(fscal,dx20);
680             ty               = _mm256_mul_ps(fscal,dy20);
681             tz               = _mm256_mul_ps(fscal,dz20);
682
683             /* Update vectorial force */
684             fix2             = _mm256_add_ps(fix2,tx);
685             fiy2             = _mm256_add_ps(fiy2,ty);
686             fiz2             = _mm256_add_ps(fiz2,tz);
687
688             fjx0             = _mm256_add_ps(fjx0,tx);
689             fjy0             = _mm256_add_ps(fjy0,ty);
690             fjz0             = _mm256_add_ps(fjz0,tz);
691
692             /**************************
693              * CALCULATE INTERACTIONS *
694              **************************/
695
696             /* Compute parameters for interactions between i and j atoms */
697             qq30             = _mm256_mul_ps(iq3,jq0);
698
699             /* COULOMB ELECTROSTATICS */
700             velec            = _mm256_mul_ps(qq30,rinv30);
701             felec            = _mm256_mul_ps(velec,rinvsq30);
702
703             /* Update potential sum for this i atom from the interaction with this j atom. */
704             velec            = _mm256_andnot_ps(dummy_mask,velec);
705             velecsum         = _mm256_add_ps(velecsum,velec);
706
707             fscal            = felec;
708
709             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
710
711             /* Calculate temporary vectorial force */
712             tx               = _mm256_mul_ps(fscal,dx30);
713             ty               = _mm256_mul_ps(fscal,dy30);
714             tz               = _mm256_mul_ps(fscal,dz30);
715
716             /* Update vectorial force */
717             fix3             = _mm256_add_ps(fix3,tx);
718             fiy3             = _mm256_add_ps(fiy3,ty);
719             fiz3             = _mm256_add_ps(fiz3,tz);
720
721             fjx0             = _mm256_add_ps(fjx0,tx);
722             fjy0             = _mm256_add_ps(fjy0,ty);
723             fjz0             = _mm256_add_ps(fjz0,tz);
724
725             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
726             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
727             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
728             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
729             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
730             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
731             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
732             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
733
734             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
735
736             /* Inner loop uses 141 flops */
737         }
738
739         /* End of innermost loop */
740
741         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
742                                                  f+i_coord_offset,fshift+i_shift_offset);
743
744         ggid                        = gid[iidx];
745         /* Update potential energies */
746         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
747         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
748
749         /* Increment number of inner iterations */
750         inneriter                  += j_index_end - j_index_start;
751
752         /* Outer loop uses 26 flops */
753     }
754
755     /* Increment number of outer iterations */
756     outeriter        += nri;
757
758     /* Update outer/inner flops */
759
760     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*141);
761 }
762 /*
763  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_single
764  * Electrostatics interaction: Coulomb
765  * VdW interaction:            CubicSplineTable
766  * Geometry:                   Water4-Particle
767  * Calculate force/pot:        Force
768  */
769 void
770 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_avx_256_single
771                     (t_nblist * gmx_restrict                nlist,
772                      rvec * gmx_restrict                    xx,
773                      rvec * gmx_restrict                    ff,
774                      t_forcerec * gmx_restrict              fr,
775                      t_mdatoms * gmx_restrict               mdatoms,
776                      nb_kernel_data_t * gmx_restrict        kernel_data,
777                      t_nrnb * gmx_restrict                  nrnb)
778 {
779     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
780      * just 0 for non-waters.
781      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
782      * jnr indices corresponding to data put in the four positions in the SIMD register.
783      */
784     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
785     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
786     int              jnrA,jnrB,jnrC,jnrD;
787     int              jnrE,jnrF,jnrG,jnrH;
788     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
789     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
790     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
791     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
792     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
793     real             rcutoff_scalar;
794     real             *shiftvec,*fshift,*x,*f;
795     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
796     real             scratch[4*DIM];
797     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
798     real *           vdwioffsetptr0;
799     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
800     real *           vdwioffsetptr1;
801     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
802     real *           vdwioffsetptr2;
803     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
804     real *           vdwioffsetptr3;
805     __m256           ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
806     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
807     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
808     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
809     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
810     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
811     __m256           dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
812     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
813     real             *charge;
814     int              nvdwtype;
815     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
816     int              *vdwtype;
817     real             *vdwparam;
818     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
819     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
820     __m256i          vfitab;
821     __m128i          vfitab_lo,vfitab_hi;
822     __m128i          ifour       = _mm_set1_epi32(4);
823     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
824     real             *vftab;
825     __m256           dummy_mask,cutoff_mask;
826     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
827     __m256           one     = _mm256_set1_ps(1.0);
828     __m256           two     = _mm256_set1_ps(2.0);
829     x                = xx[0];
830     f                = ff[0];
831
832     nri              = nlist->nri;
833     iinr             = nlist->iinr;
834     jindex           = nlist->jindex;
835     jjnr             = nlist->jjnr;
836     shiftidx         = nlist->shift;
837     gid              = nlist->gid;
838     shiftvec         = fr->shift_vec[0];
839     fshift           = fr->fshift[0];
840     facel            = _mm256_set1_ps(fr->epsfac);
841     charge           = mdatoms->chargeA;
842     nvdwtype         = fr->ntype;
843     vdwparam         = fr->nbfp;
844     vdwtype          = mdatoms->typeA;
845
846     vftab            = kernel_data->table_vdw->data;
847     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
848
849     /* Setup water-specific parameters */
850     inr              = nlist->iinr[0];
851     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
852     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
853     iq3              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+3]));
854     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
855
856     /* Avoid stupid compiler warnings */
857     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
858     j_coord_offsetA = 0;
859     j_coord_offsetB = 0;
860     j_coord_offsetC = 0;
861     j_coord_offsetD = 0;
862     j_coord_offsetE = 0;
863     j_coord_offsetF = 0;
864     j_coord_offsetG = 0;
865     j_coord_offsetH = 0;
866
867     outeriter        = 0;
868     inneriter        = 0;
869
870     for(iidx=0;iidx<4*DIM;iidx++)
871     {
872         scratch[iidx] = 0.0;
873     }
874
875     /* Start outer loop over neighborlists */
876     for(iidx=0; iidx<nri; iidx++)
877     {
878         /* Load shift vector for this list */
879         i_shift_offset   = DIM*shiftidx[iidx];
880
881         /* Load limits for loop over neighbors */
882         j_index_start    = jindex[iidx];
883         j_index_end      = jindex[iidx+1];
884
885         /* Get outer coordinate index */
886         inr              = iinr[iidx];
887         i_coord_offset   = DIM*inr;
888
889         /* Load i particle coords and add shift vector */
890         gmx_mm256_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
891                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
892
893         fix0             = _mm256_setzero_ps();
894         fiy0             = _mm256_setzero_ps();
895         fiz0             = _mm256_setzero_ps();
896         fix1             = _mm256_setzero_ps();
897         fiy1             = _mm256_setzero_ps();
898         fiz1             = _mm256_setzero_ps();
899         fix2             = _mm256_setzero_ps();
900         fiy2             = _mm256_setzero_ps();
901         fiz2             = _mm256_setzero_ps();
902         fix3             = _mm256_setzero_ps();
903         fiy3             = _mm256_setzero_ps();
904         fiz3             = _mm256_setzero_ps();
905
906         /* Start inner kernel loop */
907         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
908         {
909
910             /* Get j neighbor index, and coordinate index */
911             jnrA             = jjnr[jidx];
912             jnrB             = jjnr[jidx+1];
913             jnrC             = jjnr[jidx+2];
914             jnrD             = jjnr[jidx+3];
915             jnrE             = jjnr[jidx+4];
916             jnrF             = jjnr[jidx+5];
917             jnrG             = jjnr[jidx+6];
918             jnrH             = jjnr[jidx+7];
919             j_coord_offsetA  = DIM*jnrA;
920             j_coord_offsetB  = DIM*jnrB;
921             j_coord_offsetC  = DIM*jnrC;
922             j_coord_offsetD  = DIM*jnrD;
923             j_coord_offsetE  = DIM*jnrE;
924             j_coord_offsetF  = DIM*jnrF;
925             j_coord_offsetG  = DIM*jnrG;
926             j_coord_offsetH  = DIM*jnrH;
927
928             /* load j atom coordinates */
929             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
930                                                  x+j_coord_offsetC,x+j_coord_offsetD,
931                                                  x+j_coord_offsetE,x+j_coord_offsetF,
932                                                  x+j_coord_offsetG,x+j_coord_offsetH,
933                                                  &jx0,&jy0,&jz0);
934
935             /* Calculate displacement vector */
936             dx00             = _mm256_sub_ps(ix0,jx0);
937             dy00             = _mm256_sub_ps(iy0,jy0);
938             dz00             = _mm256_sub_ps(iz0,jz0);
939             dx10             = _mm256_sub_ps(ix1,jx0);
940             dy10             = _mm256_sub_ps(iy1,jy0);
941             dz10             = _mm256_sub_ps(iz1,jz0);
942             dx20             = _mm256_sub_ps(ix2,jx0);
943             dy20             = _mm256_sub_ps(iy2,jy0);
944             dz20             = _mm256_sub_ps(iz2,jz0);
945             dx30             = _mm256_sub_ps(ix3,jx0);
946             dy30             = _mm256_sub_ps(iy3,jy0);
947             dz30             = _mm256_sub_ps(iz3,jz0);
948
949             /* Calculate squared distance and things based on it */
950             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
951             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
952             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
953             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
954
955             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
956             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
957             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
958             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
959
960             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
961             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
962             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
963
964             /* Load parameters for j particles */
965             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
966                                                                  charge+jnrC+0,charge+jnrD+0,
967                                                                  charge+jnrE+0,charge+jnrF+0,
968                                                                  charge+jnrG+0,charge+jnrH+0);
969             vdwjidx0A        = 2*vdwtype[jnrA+0];
970             vdwjidx0B        = 2*vdwtype[jnrB+0];
971             vdwjidx0C        = 2*vdwtype[jnrC+0];
972             vdwjidx0D        = 2*vdwtype[jnrD+0];
973             vdwjidx0E        = 2*vdwtype[jnrE+0];
974             vdwjidx0F        = 2*vdwtype[jnrF+0];
975             vdwjidx0G        = 2*vdwtype[jnrG+0];
976             vdwjidx0H        = 2*vdwtype[jnrH+0];
977
978             fjx0             = _mm256_setzero_ps();
979             fjy0             = _mm256_setzero_ps();
980             fjz0             = _mm256_setzero_ps();
981
982             /**************************
983              * CALCULATE INTERACTIONS *
984              **************************/
985
986             r00              = _mm256_mul_ps(rsq00,rinv00);
987
988             /* Compute parameters for interactions between i and j atoms */
989             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
990                                             vdwioffsetptr0+vdwjidx0B,
991                                             vdwioffsetptr0+vdwjidx0C,
992                                             vdwioffsetptr0+vdwjidx0D,
993                                             vdwioffsetptr0+vdwjidx0E,
994                                             vdwioffsetptr0+vdwjidx0F,
995                                             vdwioffsetptr0+vdwjidx0G,
996                                             vdwioffsetptr0+vdwjidx0H,
997                                             &c6_00,&c12_00);
998
999             /* Calculate table index by multiplying r with table scale and truncate to integer */
1000             rt               = _mm256_mul_ps(r00,vftabscale);
1001             vfitab           = _mm256_cvttps_epi32(rt);
1002             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1003             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1004             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1005             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1006             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1007             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1008
1009             /* CUBIC SPLINE TABLE DISPERSION */
1010             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1011                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1012             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1013                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1014             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1015                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1016             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1017                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1018             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1019             Heps             = _mm256_mul_ps(vfeps,H);
1020             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1021             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1022             fvdw6            = _mm256_mul_ps(c6_00,FF);
1023
1024             /* CUBIC SPLINE TABLE REPULSION */
1025             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1026             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1027             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1028                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1029             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1030                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1031             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1032                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1033             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1034                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1035             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1036             Heps             = _mm256_mul_ps(vfeps,H);
1037             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1038             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1039             fvdw12           = _mm256_mul_ps(c12_00,FF);
1040             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1041
1042             fscal            = fvdw;
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = _mm256_mul_ps(fscal,dx00);
1046             ty               = _mm256_mul_ps(fscal,dy00);
1047             tz               = _mm256_mul_ps(fscal,dz00);
1048
1049             /* Update vectorial force */
1050             fix0             = _mm256_add_ps(fix0,tx);
1051             fiy0             = _mm256_add_ps(fiy0,ty);
1052             fiz0             = _mm256_add_ps(fiz0,tz);
1053
1054             fjx0             = _mm256_add_ps(fjx0,tx);
1055             fjy0             = _mm256_add_ps(fjy0,ty);
1056             fjz0             = _mm256_add_ps(fjz0,tz);
1057
1058             /**************************
1059              * CALCULATE INTERACTIONS *
1060              **************************/
1061
1062             /* Compute parameters for interactions between i and j atoms */
1063             qq10             = _mm256_mul_ps(iq1,jq0);
1064
1065             /* COULOMB ELECTROSTATICS */
1066             velec            = _mm256_mul_ps(qq10,rinv10);
1067             felec            = _mm256_mul_ps(velec,rinvsq10);
1068
1069             fscal            = felec;
1070
1071             /* Calculate temporary vectorial force */
1072             tx               = _mm256_mul_ps(fscal,dx10);
1073             ty               = _mm256_mul_ps(fscal,dy10);
1074             tz               = _mm256_mul_ps(fscal,dz10);
1075
1076             /* Update vectorial force */
1077             fix1             = _mm256_add_ps(fix1,tx);
1078             fiy1             = _mm256_add_ps(fiy1,ty);
1079             fiz1             = _mm256_add_ps(fiz1,tz);
1080
1081             fjx0             = _mm256_add_ps(fjx0,tx);
1082             fjy0             = _mm256_add_ps(fjy0,ty);
1083             fjz0             = _mm256_add_ps(fjz0,tz);
1084
1085             /**************************
1086              * CALCULATE INTERACTIONS *
1087              **************************/
1088
1089             /* Compute parameters for interactions between i and j atoms */
1090             qq20             = _mm256_mul_ps(iq2,jq0);
1091
1092             /* COULOMB ELECTROSTATICS */
1093             velec            = _mm256_mul_ps(qq20,rinv20);
1094             felec            = _mm256_mul_ps(velec,rinvsq20);
1095
1096             fscal            = felec;
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = _mm256_mul_ps(fscal,dx20);
1100             ty               = _mm256_mul_ps(fscal,dy20);
1101             tz               = _mm256_mul_ps(fscal,dz20);
1102
1103             /* Update vectorial force */
1104             fix2             = _mm256_add_ps(fix2,tx);
1105             fiy2             = _mm256_add_ps(fiy2,ty);
1106             fiz2             = _mm256_add_ps(fiz2,tz);
1107
1108             fjx0             = _mm256_add_ps(fjx0,tx);
1109             fjy0             = _mm256_add_ps(fjy0,ty);
1110             fjz0             = _mm256_add_ps(fjz0,tz);
1111
1112             /**************************
1113              * CALCULATE INTERACTIONS *
1114              **************************/
1115
1116             /* Compute parameters for interactions between i and j atoms */
1117             qq30             = _mm256_mul_ps(iq3,jq0);
1118
1119             /* COULOMB ELECTROSTATICS */
1120             velec            = _mm256_mul_ps(qq30,rinv30);
1121             felec            = _mm256_mul_ps(velec,rinvsq30);
1122
1123             fscal            = felec;
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = _mm256_mul_ps(fscal,dx30);
1127             ty               = _mm256_mul_ps(fscal,dy30);
1128             tz               = _mm256_mul_ps(fscal,dz30);
1129
1130             /* Update vectorial force */
1131             fix3             = _mm256_add_ps(fix3,tx);
1132             fiy3             = _mm256_add_ps(fiy3,ty);
1133             fiz3             = _mm256_add_ps(fiz3,tz);
1134
1135             fjx0             = _mm256_add_ps(fjx0,tx);
1136             fjy0             = _mm256_add_ps(fjy0,ty);
1137             fjz0             = _mm256_add_ps(fjz0,tz);
1138
1139             fjptrA             = f+j_coord_offsetA;
1140             fjptrB             = f+j_coord_offsetB;
1141             fjptrC             = f+j_coord_offsetC;
1142             fjptrD             = f+j_coord_offsetD;
1143             fjptrE             = f+j_coord_offsetE;
1144             fjptrF             = f+j_coord_offsetF;
1145             fjptrG             = f+j_coord_offsetG;
1146             fjptrH             = f+j_coord_offsetH;
1147
1148             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1149
1150             /* Inner loop uses 129 flops */
1151         }
1152
1153         if(jidx<j_index_end)
1154         {
1155
1156             /* Get j neighbor index, and coordinate index */
1157             jnrlistA         = jjnr[jidx];
1158             jnrlistB         = jjnr[jidx+1];
1159             jnrlistC         = jjnr[jidx+2];
1160             jnrlistD         = jjnr[jidx+3];
1161             jnrlistE         = jjnr[jidx+4];
1162             jnrlistF         = jjnr[jidx+5];
1163             jnrlistG         = jjnr[jidx+6];
1164             jnrlistH         = jjnr[jidx+7];
1165             /* Sign of each element will be negative for non-real atoms.
1166              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1167              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1168              */
1169             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1170                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1171                                             
1172             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1173             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1174             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1175             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1176             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1177             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1178             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1179             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1180             j_coord_offsetA  = DIM*jnrA;
1181             j_coord_offsetB  = DIM*jnrB;
1182             j_coord_offsetC  = DIM*jnrC;
1183             j_coord_offsetD  = DIM*jnrD;
1184             j_coord_offsetE  = DIM*jnrE;
1185             j_coord_offsetF  = DIM*jnrF;
1186             j_coord_offsetG  = DIM*jnrG;
1187             j_coord_offsetH  = DIM*jnrH;
1188
1189             /* load j atom coordinates */
1190             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1192                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1193                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1194                                                  &jx0,&jy0,&jz0);
1195
1196             /* Calculate displacement vector */
1197             dx00             = _mm256_sub_ps(ix0,jx0);
1198             dy00             = _mm256_sub_ps(iy0,jy0);
1199             dz00             = _mm256_sub_ps(iz0,jz0);
1200             dx10             = _mm256_sub_ps(ix1,jx0);
1201             dy10             = _mm256_sub_ps(iy1,jy0);
1202             dz10             = _mm256_sub_ps(iz1,jz0);
1203             dx20             = _mm256_sub_ps(ix2,jx0);
1204             dy20             = _mm256_sub_ps(iy2,jy0);
1205             dz20             = _mm256_sub_ps(iz2,jz0);
1206             dx30             = _mm256_sub_ps(ix3,jx0);
1207             dy30             = _mm256_sub_ps(iy3,jy0);
1208             dz30             = _mm256_sub_ps(iz3,jz0);
1209
1210             /* Calculate squared distance and things based on it */
1211             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1212             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1213             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1214             rsq30            = gmx_mm256_calc_rsq_ps(dx30,dy30,dz30);
1215
1216             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1217             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1218             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1219             rinv30           = gmx_mm256_invsqrt_ps(rsq30);
1220
1221             rinvsq10         = _mm256_mul_ps(rinv10,rinv10);
1222             rinvsq20         = _mm256_mul_ps(rinv20,rinv20);
1223             rinvsq30         = _mm256_mul_ps(rinv30,rinv30);
1224
1225             /* Load parameters for j particles */
1226             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1227                                                                  charge+jnrC+0,charge+jnrD+0,
1228                                                                  charge+jnrE+0,charge+jnrF+0,
1229                                                                  charge+jnrG+0,charge+jnrH+0);
1230             vdwjidx0A        = 2*vdwtype[jnrA+0];
1231             vdwjidx0B        = 2*vdwtype[jnrB+0];
1232             vdwjidx0C        = 2*vdwtype[jnrC+0];
1233             vdwjidx0D        = 2*vdwtype[jnrD+0];
1234             vdwjidx0E        = 2*vdwtype[jnrE+0];
1235             vdwjidx0F        = 2*vdwtype[jnrF+0];
1236             vdwjidx0G        = 2*vdwtype[jnrG+0];
1237             vdwjidx0H        = 2*vdwtype[jnrH+0];
1238
1239             fjx0             = _mm256_setzero_ps();
1240             fjy0             = _mm256_setzero_ps();
1241             fjz0             = _mm256_setzero_ps();
1242
1243             /**************************
1244              * CALCULATE INTERACTIONS *
1245              **************************/
1246
1247             r00              = _mm256_mul_ps(rsq00,rinv00);
1248             r00              = _mm256_andnot_ps(dummy_mask,r00);
1249
1250             /* Compute parameters for interactions between i and j atoms */
1251             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1252                                             vdwioffsetptr0+vdwjidx0B,
1253                                             vdwioffsetptr0+vdwjidx0C,
1254                                             vdwioffsetptr0+vdwjidx0D,
1255                                             vdwioffsetptr0+vdwjidx0E,
1256                                             vdwioffsetptr0+vdwjidx0F,
1257                                             vdwioffsetptr0+vdwjidx0G,
1258                                             vdwioffsetptr0+vdwjidx0H,
1259                                             &c6_00,&c12_00);
1260
1261             /* Calculate table index by multiplying r with table scale and truncate to integer */
1262             rt               = _mm256_mul_ps(r00,vftabscale);
1263             vfitab           = _mm256_cvttps_epi32(rt);
1264             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1265             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1266             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1267             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1268             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
1269             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
1270
1271             /* CUBIC SPLINE TABLE DISPERSION */
1272             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1273                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1274             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1275                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1276             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1277                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1278             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1279                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1280             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1281             Heps             = _mm256_mul_ps(vfeps,H);
1282             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1283             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1284             fvdw6            = _mm256_mul_ps(c6_00,FF);
1285
1286             /* CUBIC SPLINE TABLE REPULSION */
1287             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
1288             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
1289             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1290                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1291             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1292                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1293             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1294                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1295             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1296                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1297             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1298             Heps             = _mm256_mul_ps(vfeps,H);
1299             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1300             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1301             fvdw12           = _mm256_mul_ps(c12_00,FF);
1302             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
1303
1304             fscal            = fvdw;
1305
1306             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1307
1308             /* Calculate temporary vectorial force */
1309             tx               = _mm256_mul_ps(fscal,dx00);
1310             ty               = _mm256_mul_ps(fscal,dy00);
1311             tz               = _mm256_mul_ps(fscal,dz00);
1312
1313             /* Update vectorial force */
1314             fix0             = _mm256_add_ps(fix0,tx);
1315             fiy0             = _mm256_add_ps(fiy0,ty);
1316             fiz0             = _mm256_add_ps(fiz0,tz);
1317
1318             fjx0             = _mm256_add_ps(fjx0,tx);
1319             fjy0             = _mm256_add_ps(fjy0,ty);
1320             fjz0             = _mm256_add_ps(fjz0,tz);
1321
1322             /**************************
1323              * CALCULATE INTERACTIONS *
1324              **************************/
1325
1326             /* Compute parameters for interactions between i and j atoms */
1327             qq10             = _mm256_mul_ps(iq1,jq0);
1328
1329             /* COULOMB ELECTROSTATICS */
1330             velec            = _mm256_mul_ps(qq10,rinv10);
1331             felec            = _mm256_mul_ps(velec,rinvsq10);
1332
1333             fscal            = felec;
1334
1335             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1336
1337             /* Calculate temporary vectorial force */
1338             tx               = _mm256_mul_ps(fscal,dx10);
1339             ty               = _mm256_mul_ps(fscal,dy10);
1340             tz               = _mm256_mul_ps(fscal,dz10);
1341
1342             /* Update vectorial force */
1343             fix1             = _mm256_add_ps(fix1,tx);
1344             fiy1             = _mm256_add_ps(fiy1,ty);
1345             fiz1             = _mm256_add_ps(fiz1,tz);
1346
1347             fjx0             = _mm256_add_ps(fjx0,tx);
1348             fjy0             = _mm256_add_ps(fjy0,ty);
1349             fjz0             = _mm256_add_ps(fjz0,tz);
1350
1351             /**************************
1352              * CALCULATE INTERACTIONS *
1353              **************************/
1354
1355             /* Compute parameters for interactions between i and j atoms */
1356             qq20             = _mm256_mul_ps(iq2,jq0);
1357
1358             /* COULOMB ELECTROSTATICS */
1359             velec            = _mm256_mul_ps(qq20,rinv20);
1360             felec            = _mm256_mul_ps(velec,rinvsq20);
1361
1362             fscal            = felec;
1363
1364             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1365
1366             /* Calculate temporary vectorial force */
1367             tx               = _mm256_mul_ps(fscal,dx20);
1368             ty               = _mm256_mul_ps(fscal,dy20);
1369             tz               = _mm256_mul_ps(fscal,dz20);
1370
1371             /* Update vectorial force */
1372             fix2             = _mm256_add_ps(fix2,tx);
1373             fiy2             = _mm256_add_ps(fiy2,ty);
1374             fiz2             = _mm256_add_ps(fiz2,tz);
1375
1376             fjx0             = _mm256_add_ps(fjx0,tx);
1377             fjy0             = _mm256_add_ps(fjy0,ty);
1378             fjz0             = _mm256_add_ps(fjz0,tz);
1379
1380             /**************************
1381              * CALCULATE INTERACTIONS *
1382              **************************/
1383
1384             /* Compute parameters for interactions between i and j atoms */
1385             qq30             = _mm256_mul_ps(iq3,jq0);
1386
1387             /* COULOMB ELECTROSTATICS */
1388             velec            = _mm256_mul_ps(qq30,rinv30);
1389             felec            = _mm256_mul_ps(velec,rinvsq30);
1390
1391             fscal            = felec;
1392
1393             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1394
1395             /* Calculate temporary vectorial force */
1396             tx               = _mm256_mul_ps(fscal,dx30);
1397             ty               = _mm256_mul_ps(fscal,dy30);
1398             tz               = _mm256_mul_ps(fscal,dz30);
1399
1400             /* Update vectorial force */
1401             fix3             = _mm256_add_ps(fix3,tx);
1402             fiy3             = _mm256_add_ps(fiy3,ty);
1403             fiz3             = _mm256_add_ps(fiz3,tz);
1404
1405             fjx0             = _mm256_add_ps(fjx0,tx);
1406             fjy0             = _mm256_add_ps(fjy0,ty);
1407             fjz0             = _mm256_add_ps(fjz0,tz);
1408
1409             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1410             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1411             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1412             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1413             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1414             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1415             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1416             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1417
1418             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1419
1420             /* Inner loop uses 130 flops */
1421         }
1422
1423         /* End of innermost loop */
1424
1425         gmx_mm256_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1426                                                  f+i_coord_offset,fshift+i_shift_offset);
1427
1428         /* Increment number of inner iterations */
1429         inneriter                  += j_index_end - j_index_start;
1430
1431         /* Outer loop uses 24 flops */
1432     }
1433
1434     /* Increment number of outer iterations */
1435     outeriter        += nri;
1436
1437     /* Update outer/inner flops */
1438
1439     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130);
1440 }