c6ae1e74f11678bc93fdd9ad5223cf450adbaafe
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
84     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
85     __m256i          vfitab;
86     __m128i          vfitab_lo,vfitab_hi;
87     __m128i          ifour       = _mm_set1_epi32(4);
88     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
89     real             *vftab;
90     __m256           dummy_mask,cutoff_mask;
91     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
92     __m256           one     = _mm256_set1_ps(1.0);
93     __m256           two     = _mm256_set1_ps(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_ps(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_vdw->data;
112     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120     j_coord_offsetE = 0;
121     j_coord_offsetF = 0;
122     j_coord_offsetG = 0;
123     j_coord_offsetH = 0;
124
125     outeriter        = 0;
126     inneriter        = 0;
127
128     for(iidx=0;iidx<4*DIM;iidx++)
129     {
130         scratch[iidx] = 0.0;
131     }
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138
139         /* Load limits for loop over neighbors */
140         j_index_start    = jindex[iidx];
141         j_index_end      = jindex[iidx+1];
142
143         /* Get outer coordinate index */
144         inr              = iinr[iidx];
145         i_coord_offset   = DIM*inr;
146
147         /* Load i particle coords and add shift vector */
148         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
149
150         fix0             = _mm256_setzero_ps();
151         fiy0             = _mm256_setzero_ps();
152         fiz0             = _mm256_setzero_ps();
153
154         /* Load parameters for i particles */
155         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
156         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         velecsum         = _mm256_setzero_ps();
160         vvdwsum          = _mm256_setzero_ps();
161
162         /* Start inner kernel loop */
163         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
164         {
165
166             /* Get j neighbor index, and coordinate index */
167             jnrA             = jjnr[jidx];
168             jnrB             = jjnr[jidx+1];
169             jnrC             = jjnr[jidx+2];
170             jnrD             = jjnr[jidx+3];
171             jnrE             = jjnr[jidx+4];
172             jnrF             = jjnr[jidx+5];
173             jnrG             = jjnr[jidx+6];
174             jnrH             = jjnr[jidx+7];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179             j_coord_offsetE  = DIM*jnrE;
180             j_coord_offsetF  = DIM*jnrF;
181             j_coord_offsetG  = DIM*jnrG;
182             j_coord_offsetH  = DIM*jnrH;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  x+j_coord_offsetE,x+j_coord_offsetF,
188                                                  x+j_coord_offsetG,x+j_coord_offsetH,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_ps(ix0,jx0);
193             dy00             = _mm256_sub_ps(iy0,jy0);
194             dz00             = _mm256_sub_ps(iz0,jz0);
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
198
199             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
200
201             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
202
203             /* Load parameters for j particles */
204             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
205                                                                  charge+jnrC+0,charge+jnrD+0,
206                                                                  charge+jnrE+0,charge+jnrF+0,
207                                                                  charge+jnrG+0,charge+jnrH+0);
208             vdwjidx0A        = 2*vdwtype[jnrA+0];
209             vdwjidx0B        = 2*vdwtype[jnrB+0];
210             vdwjidx0C        = 2*vdwtype[jnrC+0];
211             vdwjidx0D        = 2*vdwtype[jnrD+0];
212             vdwjidx0E        = 2*vdwtype[jnrE+0];
213             vdwjidx0F        = 2*vdwtype[jnrF+0];
214             vdwjidx0G        = 2*vdwtype[jnrG+0];
215             vdwjidx0H        = 2*vdwtype[jnrH+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = _mm256_mul_ps(rsq00,rinv00);
222
223             /* Compute parameters for interactions between i and j atoms */
224             qq00             = _mm256_mul_ps(iq0,jq0);
225             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
226                                             vdwioffsetptr0+vdwjidx0B,
227                                             vdwioffsetptr0+vdwjidx0C,
228                                             vdwioffsetptr0+vdwjidx0D,
229                                             vdwioffsetptr0+vdwjidx0E,
230                                             vdwioffsetptr0+vdwjidx0F,
231                                             vdwioffsetptr0+vdwjidx0G,
232                                             vdwioffsetptr0+vdwjidx0H,
233                                             &c6_00,&c12_00);
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = _mm256_mul_ps(r00,vftabscale);
237             vfitab           = _mm256_cvttps_epi32(rt);
238             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
239             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
240             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
241             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
242             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
243             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
244
245             /* COULOMB ELECTROSTATICS */
246             velec            = _mm256_mul_ps(qq00,rinv00);
247             felec            = _mm256_mul_ps(velec,rinvsq00);
248
249             /* CUBIC SPLINE TABLE DISPERSION */
250             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
251                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
252             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
253                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
254             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
255                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
256             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
257                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
258             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
259             Heps             = _mm256_mul_ps(vfeps,H);
260             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
261             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
262             vvdw6            = _mm256_mul_ps(c6_00,VV);
263             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
264             fvdw6            = _mm256_mul_ps(c6_00,FF);
265
266             /* CUBIC SPLINE TABLE REPULSION */
267             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
268             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
269             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
270                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
271             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
272                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
273             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
274                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
275             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
276                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
277             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
278             Heps             = _mm256_mul_ps(vfeps,H);
279             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
280             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
281             vvdw12           = _mm256_mul_ps(c12_00,VV);
282             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
283             fvdw12           = _mm256_mul_ps(c12_00,FF);
284             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
285             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
286
287             /* Update potential sum for this i atom from the interaction with this j atom. */
288             velecsum         = _mm256_add_ps(velecsum,velec);
289             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
290
291             fscal            = _mm256_add_ps(felec,fvdw);
292
293             /* Calculate temporary vectorial force */
294             tx               = _mm256_mul_ps(fscal,dx00);
295             ty               = _mm256_mul_ps(fscal,dy00);
296             tz               = _mm256_mul_ps(fscal,dz00);
297
298             /* Update vectorial force */
299             fix0             = _mm256_add_ps(fix0,tx);
300             fiy0             = _mm256_add_ps(fiy0,ty);
301             fiz0             = _mm256_add_ps(fiz0,tz);
302
303             fjptrA             = f+j_coord_offsetA;
304             fjptrB             = f+j_coord_offsetB;
305             fjptrC             = f+j_coord_offsetC;
306             fjptrD             = f+j_coord_offsetD;
307             fjptrE             = f+j_coord_offsetE;
308             fjptrF             = f+j_coord_offsetF;
309             fjptrG             = f+j_coord_offsetG;
310             fjptrH             = f+j_coord_offsetH;
311             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
312
313             /* Inner loop uses 62 flops */
314         }
315
316         if(jidx<j_index_end)
317         {
318
319             /* Get j neighbor index, and coordinate index */
320             jnrlistA         = jjnr[jidx];
321             jnrlistB         = jjnr[jidx+1];
322             jnrlistC         = jjnr[jidx+2];
323             jnrlistD         = jjnr[jidx+3];
324             jnrlistE         = jjnr[jidx+4];
325             jnrlistF         = jjnr[jidx+5];
326             jnrlistG         = jjnr[jidx+6];
327             jnrlistH         = jjnr[jidx+7];
328             /* Sign of each element will be negative for non-real atoms.
329              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
330              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
331              */
332             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
333                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
334                                             
335             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
336             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
337             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
338             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
339             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
340             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
341             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
342             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
343             j_coord_offsetA  = DIM*jnrA;
344             j_coord_offsetB  = DIM*jnrB;
345             j_coord_offsetC  = DIM*jnrC;
346             j_coord_offsetD  = DIM*jnrD;
347             j_coord_offsetE  = DIM*jnrE;
348             j_coord_offsetF  = DIM*jnrF;
349             j_coord_offsetG  = DIM*jnrG;
350             j_coord_offsetH  = DIM*jnrH;
351
352             /* load j atom coordinates */
353             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
354                                                  x+j_coord_offsetC,x+j_coord_offsetD,
355                                                  x+j_coord_offsetE,x+j_coord_offsetF,
356                                                  x+j_coord_offsetG,x+j_coord_offsetH,
357                                                  &jx0,&jy0,&jz0);
358
359             /* Calculate displacement vector */
360             dx00             = _mm256_sub_ps(ix0,jx0);
361             dy00             = _mm256_sub_ps(iy0,jy0);
362             dz00             = _mm256_sub_ps(iz0,jz0);
363
364             /* Calculate squared distance and things based on it */
365             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
366
367             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
368
369             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
370
371             /* Load parameters for j particles */
372             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
373                                                                  charge+jnrC+0,charge+jnrD+0,
374                                                                  charge+jnrE+0,charge+jnrF+0,
375                                                                  charge+jnrG+0,charge+jnrH+0);
376             vdwjidx0A        = 2*vdwtype[jnrA+0];
377             vdwjidx0B        = 2*vdwtype[jnrB+0];
378             vdwjidx0C        = 2*vdwtype[jnrC+0];
379             vdwjidx0D        = 2*vdwtype[jnrD+0];
380             vdwjidx0E        = 2*vdwtype[jnrE+0];
381             vdwjidx0F        = 2*vdwtype[jnrF+0];
382             vdwjidx0G        = 2*vdwtype[jnrG+0];
383             vdwjidx0H        = 2*vdwtype[jnrH+0];
384
385             /**************************
386              * CALCULATE INTERACTIONS *
387              **************************/
388
389             r00              = _mm256_mul_ps(rsq00,rinv00);
390             r00              = _mm256_andnot_ps(dummy_mask,r00);
391
392             /* Compute parameters for interactions between i and j atoms */
393             qq00             = _mm256_mul_ps(iq0,jq0);
394             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
395                                             vdwioffsetptr0+vdwjidx0B,
396                                             vdwioffsetptr0+vdwjidx0C,
397                                             vdwioffsetptr0+vdwjidx0D,
398                                             vdwioffsetptr0+vdwjidx0E,
399                                             vdwioffsetptr0+vdwjidx0F,
400                                             vdwioffsetptr0+vdwjidx0G,
401                                             vdwioffsetptr0+vdwjidx0H,
402                                             &c6_00,&c12_00);
403
404             /* Calculate table index by multiplying r with table scale and truncate to integer */
405             rt               = _mm256_mul_ps(r00,vftabscale);
406             vfitab           = _mm256_cvttps_epi32(rt);
407             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
408             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
409             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
410             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
411             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
412             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
413
414             /* COULOMB ELECTROSTATICS */
415             velec            = _mm256_mul_ps(qq00,rinv00);
416             felec            = _mm256_mul_ps(velec,rinvsq00);
417
418             /* CUBIC SPLINE TABLE DISPERSION */
419             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
420                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
421             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
422                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
423             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
424                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
425             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
426                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
427             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
428             Heps             = _mm256_mul_ps(vfeps,H);
429             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
430             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
431             vvdw6            = _mm256_mul_ps(c6_00,VV);
432             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
433             fvdw6            = _mm256_mul_ps(c6_00,FF);
434
435             /* CUBIC SPLINE TABLE REPULSION */
436             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
437             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
438             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
439                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
440             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
441                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
442             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
443                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
444             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
445                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
446             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
447             Heps             = _mm256_mul_ps(vfeps,H);
448             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
449             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
450             vvdw12           = _mm256_mul_ps(c12_00,VV);
451             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
452             fvdw12           = _mm256_mul_ps(c12_00,FF);
453             vvdw             = _mm256_add_ps(vvdw12,vvdw6);
454             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
455
456             /* Update potential sum for this i atom from the interaction with this j atom. */
457             velec            = _mm256_andnot_ps(dummy_mask,velec);
458             velecsum         = _mm256_add_ps(velecsum,velec);
459             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
460             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
461
462             fscal            = _mm256_add_ps(felec,fvdw);
463
464             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
465
466             /* Calculate temporary vectorial force */
467             tx               = _mm256_mul_ps(fscal,dx00);
468             ty               = _mm256_mul_ps(fscal,dy00);
469             tz               = _mm256_mul_ps(fscal,dz00);
470
471             /* Update vectorial force */
472             fix0             = _mm256_add_ps(fix0,tx);
473             fiy0             = _mm256_add_ps(fiy0,ty);
474             fiz0             = _mm256_add_ps(fiz0,tz);
475
476             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
477             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
478             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
479             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
480             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
481             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
482             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
483             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
484             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
485
486             /* Inner loop uses 63 flops */
487         }
488
489         /* End of innermost loop */
490
491         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
492                                                  f+i_coord_offset,fshift+i_shift_offset);
493
494         ggid                        = gid[iidx];
495         /* Update potential energies */
496         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
497         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
498
499         /* Increment number of inner iterations */
500         inneriter                  += j_index_end - j_index_start;
501
502         /* Outer loop uses 9 flops */
503     }
504
505     /* Increment number of outer iterations */
506     outeriter        += nri;
507
508     /* Update outer/inner flops */
509
510     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*63);
511 }
512 /*
513  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_256_single
514  * Electrostatics interaction: Coulomb
515  * VdW interaction:            CubicSplineTable
516  * Geometry:                   Particle-Particle
517  * Calculate force/pot:        Force
518  */
519 void
520 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_avx_256_single
521                     (t_nblist * gmx_restrict                nlist,
522                      rvec * gmx_restrict                    xx,
523                      rvec * gmx_restrict                    ff,
524                      t_forcerec * gmx_restrict              fr,
525                      t_mdatoms * gmx_restrict               mdatoms,
526                      nb_kernel_data_t * gmx_restrict        kernel_data,
527                      t_nrnb * gmx_restrict                  nrnb)
528 {
529     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
530      * just 0 for non-waters.
531      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
532      * jnr indices corresponding to data put in the four positions in the SIMD register.
533      */
534     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
535     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
536     int              jnrA,jnrB,jnrC,jnrD;
537     int              jnrE,jnrF,jnrG,jnrH;
538     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
539     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
540     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
541     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
542     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
543     real             rcutoff_scalar;
544     real             *shiftvec,*fshift,*x,*f;
545     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
546     real             scratch[4*DIM];
547     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
548     real *           vdwioffsetptr0;
549     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
550     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
551     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
552     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
553     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
554     real             *charge;
555     int              nvdwtype;
556     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
557     int              *vdwtype;
558     real             *vdwparam;
559     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
560     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
561     __m256i          vfitab;
562     __m128i          vfitab_lo,vfitab_hi;
563     __m128i          ifour       = _mm_set1_epi32(4);
564     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
565     real             *vftab;
566     __m256           dummy_mask,cutoff_mask;
567     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
568     __m256           one     = _mm256_set1_ps(1.0);
569     __m256           two     = _mm256_set1_ps(2.0);
570     x                = xx[0];
571     f                = ff[0];
572
573     nri              = nlist->nri;
574     iinr             = nlist->iinr;
575     jindex           = nlist->jindex;
576     jjnr             = nlist->jjnr;
577     shiftidx         = nlist->shift;
578     gid              = nlist->gid;
579     shiftvec         = fr->shift_vec[0];
580     fshift           = fr->fshift[0];
581     facel            = _mm256_set1_ps(fr->epsfac);
582     charge           = mdatoms->chargeA;
583     nvdwtype         = fr->ntype;
584     vdwparam         = fr->nbfp;
585     vdwtype          = mdatoms->typeA;
586
587     vftab            = kernel_data->table_vdw->data;
588     vftabscale       = _mm256_set1_ps(kernel_data->table_vdw->scale);
589
590     /* Avoid stupid compiler warnings */
591     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
592     j_coord_offsetA = 0;
593     j_coord_offsetB = 0;
594     j_coord_offsetC = 0;
595     j_coord_offsetD = 0;
596     j_coord_offsetE = 0;
597     j_coord_offsetF = 0;
598     j_coord_offsetG = 0;
599     j_coord_offsetH = 0;
600
601     outeriter        = 0;
602     inneriter        = 0;
603
604     for(iidx=0;iidx<4*DIM;iidx++)
605     {
606         scratch[iidx] = 0.0;
607     }
608
609     /* Start outer loop over neighborlists */
610     for(iidx=0; iidx<nri; iidx++)
611     {
612         /* Load shift vector for this list */
613         i_shift_offset   = DIM*shiftidx[iidx];
614
615         /* Load limits for loop over neighbors */
616         j_index_start    = jindex[iidx];
617         j_index_end      = jindex[iidx+1];
618
619         /* Get outer coordinate index */
620         inr              = iinr[iidx];
621         i_coord_offset   = DIM*inr;
622
623         /* Load i particle coords and add shift vector */
624         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
625
626         fix0             = _mm256_setzero_ps();
627         fiy0             = _mm256_setzero_ps();
628         fiz0             = _mm256_setzero_ps();
629
630         /* Load parameters for i particles */
631         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
632         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
633
634         /* Start inner kernel loop */
635         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
636         {
637
638             /* Get j neighbor index, and coordinate index */
639             jnrA             = jjnr[jidx];
640             jnrB             = jjnr[jidx+1];
641             jnrC             = jjnr[jidx+2];
642             jnrD             = jjnr[jidx+3];
643             jnrE             = jjnr[jidx+4];
644             jnrF             = jjnr[jidx+5];
645             jnrG             = jjnr[jidx+6];
646             jnrH             = jjnr[jidx+7];
647             j_coord_offsetA  = DIM*jnrA;
648             j_coord_offsetB  = DIM*jnrB;
649             j_coord_offsetC  = DIM*jnrC;
650             j_coord_offsetD  = DIM*jnrD;
651             j_coord_offsetE  = DIM*jnrE;
652             j_coord_offsetF  = DIM*jnrF;
653             j_coord_offsetG  = DIM*jnrG;
654             j_coord_offsetH  = DIM*jnrH;
655
656             /* load j atom coordinates */
657             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
658                                                  x+j_coord_offsetC,x+j_coord_offsetD,
659                                                  x+j_coord_offsetE,x+j_coord_offsetF,
660                                                  x+j_coord_offsetG,x+j_coord_offsetH,
661                                                  &jx0,&jy0,&jz0);
662
663             /* Calculate displacement vector */
664             dx00             = _mm256_sub_ps(ix0,jx0);
665             dy00             = _mm256_sub_ps(iy0,jy0);
666             dz00             = _mm256_sub_ps(iz0,jz0);
667
668             /* Calculate squared distance and things based on it */
669             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
670
671             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
672
673             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
674
675             /* Load parameters for j particles */
676             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
677                                                                  charge+jnrC+0,charge+jnrD+0,
678                                                                  charge+jnrE+0,charge+jnrF+0,
679                                                                  charge+jnrG+0,charge+jnrH+0);
680             vdwjidx0A        = 2*vdwtype[jnrA+0];
681             vdwjidx0B        = 2*vdwtype[jnrB+0];
682             vdwjidx0C        = 2*vdwtype[jnrC+0];
683             vdwjidx0D        = 2*vdwtype[jnrD+0];
684             vdwjidx0E        = 2*vdwtype[jnrE+0];
685             vdwjidx0F        = 2*vdwtype[jnrF+0];
686             vdwjidx0G        = 2*vdwtype[jnrG+0];
687             vdwjidx0H        = 2*vdwtype[jnrH+0];
688
689             /**************************
690              * CALCULATE INTERACTIONS *
691              **************************/
692
693             r00              = _mm256_mul_ps(rsq00,rinv00);
694
695             /* Compute parameters for interactions between i and j atoms */
696             qq00             = _mm256_mul_ps(iq0,jq0);
697             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
698                                             vdwioffsetptr0+vdwjidx0B,
699                                             vdwioffsetptr0+vdwjidx0C,
700                                             vdwioffsetptr0+vdwjidx0D,
701                                             vdwioffsetptr0+vdwjidx0E,
702                                             vdwioffsetptr0+vdwjidx0F,
703                                             vdwioffsetptr0+vdwjidx0G,
704                                             vdwioffsetptr0+vdwjidx0H,
705                                             &c6_00,&c12_00);
706
707             /* Calculate table index by multiplying r with table scale and truncate to integer */
708             rt               = _mm256_mul_ps(r00,vftabscale);
709             vfitab           = _mm256_cvttps_epi32(rt);
710             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
711             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
712             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
713             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
714             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
715             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
716
717             /* COULOMB ELECTROSTATICS */
718             velec            = _mm256_mul_ps(qq00,rinv00);
719             felec            = _mm256_mul_ps(velec,rinvsq00);
720
721             /* CUBIC SPLINE TABLE DISPERSION */
722             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
723                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
724             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
725                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
726             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
727                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
728             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
729                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
730             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
731             Heps             = _mm256_mul_ps(vfeps,H);
732             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
733             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
734             fvdw6            = _mm256_mul_ps(c6_00,FF);
735
736             /* CUBIC SPLINE TABLE REPULSION */
737             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
738             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
739             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
740                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
741             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
742                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
743             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
744                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
745             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
746                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
747             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
748             Heps             = _mm256_mul_ps(vfeps,H);
749             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
750             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
751             fvdw12           = _mm256_mul_ps(c12_00,FF);
752             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
753
754             fscal            = _mm256_add_ps(felec,fvdw);
755
756             /* Calculate temporary vectorial force */
757             tx               = _mm256_mul_ps(fscal,dx00);
758             ty               = _mm256_mul_ps(fscal,dy00);
759             tz               = _mm256_mul_ps(fscal,dz00);
760
761             /* Update vectorial force */
762             fix0             = _mm256_add_ps(fix0,tx);
763             fiy0             = _mm256_add_ps(fiy0,ty);
764             fiz0             = _mm256_add_ps(fiz0,tz);
765
766             fjptrA             = f+j_coord_offsetA;
767             fjptrB             = f+j_coord_offsetB;
768             fjptrC             = f+j_coord_offsetC;
769             fjptrD             = f+j_coord_offsetD;
770             fjptrE             = f+j_coord_offsetE;
771             fjptrF             = f+j_coord_offsetF;
772             fjptrG             = f+j_coord_offsetG;
773             fjptrH             = f+j_coord_offsetH;
774             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
775
776             /* Inner loop uses 53 flops */
777         }
778
779         if(jidx<j_index_end)
780         {
781
782             /* Get j neighbor index, and coordinate index */
783             jnrlistA         = jjnr[jidx];
784             jnrlistB         = jjnr[jidx+1];
785             jnrlistC         = jjnr[jidx+2];
786             jnrlistD         = jjnr[jidx+3];
787             jnrlistE         = jjnr[jidx+4];
788             jnrlistF         = jjnr[jidx+5];
789             jnrlistG         = jjnr[jidx+6];
790             jnrlistH         = jjnr[jidx+7];
791             /* Sign of each element will be negative for non-real atoms.
792              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
793              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
794              */
795             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
796                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
797                                             
798             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
799             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
800             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
801             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
802             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
803             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
804             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
805             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
806             j_coord_offsetA  = DIM*jnrA;
807             j_coord_offsetB  = DIM*jnrB;
808             j_coord_offsetC  = DIM*jnrC;
809             j_coord_offsetD  = DIM*jnrD;
810             j_coord_offsetE  = DIM*jnrE;
811             j_coord_offsetF  = DIM*jnrF;
812             j_coord_offsetG  = DIM*jnrG;
813             j_coord_offsetH  = DIM*jnrH;
814
815             /* load j atom coordinates */
816             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
817                                                  x+j_coord_offsetC,x+j_coord_offsetD,
818                                                  x+j_coord_offsetE,x+j_coord_offsetF,
819                                                  x+j_coord_offsetG,x+j_coord_offsetH,
820                                                  &jx0,&jy0,&jz0);
821
822             /* Calculate displacement vector */
823             dx00             = _mm256_sub_ps(ix0,jx0);
824             dy00             = _mm256_sub_ps(iy0,jy0);
825             dz00             = _mm256_sub_ps(iz0,jz0);
826
827             /* Calculate squared distance and things based on it */
828             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
829
830             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
831
832             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
833
834             /* Load parameters for j particles */
835             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
836                                                                  charge+jnrC+0,charge+jnrD+0,
837                                                                  charge+jnrE+0,charge+jnrF+0,
838                                                                  charge+jnrG+0,charge+jnrH+0);
839             vdwjidx0A        = 2*vdwtype[jnrA+0];
840             vdwjidx0B        = 2*vdwtype[jnrB+0];
841             vdwjidx0C        = 2*vdwtype[jnrC+0];
842             vdwjidx0D        = 2*vdwtype[jnrD+0];
843             vdwjidx0E        = 2*vdwtype[jnrE+0];
844             vdwjidx0F        = 2*vdwtype[jnrF+0];
845             vdwjidx0G        = 2*vdwtype[jnrG+0];
846             vdwjidx0H        = 2*vdwtype[jnrH+0];
847
848             /**************************
849              * CALCULATE INTERACTIONS *
850              **************************/
851
852             r00              = _mm256_mul_ps(rsq00,rinv00);
853             r00              = _mm256_andnot_ps(dummy_mask,r00);
854
855             /* Compute parameters for interactions between i and j atoms */
856             qq00             = _mm256_mul_ps(iq0,jq0);
857             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
858                                             vdwioffsetptr0+vdwjidx0B,
859                                             vdwioffsetptr0+vdwjidx0C,
860                                             vdwioffsetptr0+vdwjidx0D,
861                                             vdwioffsetptr0+vdwjidx0E,
862                                             vdwioffsetptr0+vdwjidx0F,
863                                             vdwioffsetptr0+vdwjidx0G,
864                                             vdwioffsetptr0+vdwjidx0H,
865                                             &c6_00,&c12_00);
866
867             /* Calculate table index by multiplying r with table scale and truncate to integer */
868             rt               = _mm256_mul_ps(r00,vftabscale);
869             vfitab           = _mm256_cvttps_epi32(rt);
870             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
871             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
872             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
873             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
874             vfitab_lo        = _mm_slli_epi32(vfitab_lo,3);
875             vfitab_hi        = _mm_slli_epi32(vfitab_hi,3);
876
877             /* COULOMB ELECTROSTATICS */
878             velec            = _mm256_mul_ps(qq00,rinv00);
879             felec            = _mm256_mul_ps(velec,rinvsq00);
880
881             /* CUBIC SPLINE TABLE DISPERSION */
882             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
883                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
884             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
885                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
886             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
887                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
888             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
889                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
890             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
891             Heps             = _mm256_mul_ps(vfeps,H);
892             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
893             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
894             fvdw6            = _mm256_mul_ps(c6_00,FF);
895
896             /* CUBIC SPLINE TABLE REPULSION */
897             vfitab_lo        = _mm_add_epi32(vfitab_lo,ifour);
898             vfitab_hi        = _mm_add_epi32(vfitab_hi,ifour);
899             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
900                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
901             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
902                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
903             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
904                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
905             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
906                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
907             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
908             Heps             = _mm256_mul_ps(vfeps,H);
909             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
910             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
911             fvdw12           = _mm256_mul_ps(c12_00,FF);
912             fvdw             = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_add_ps(fvdw6,fvdw12),_mm256_mul_ps(vftabscale,rinv00)));
913
914             fscal            = _mm256_add_ps(felec,fvdw);
915
916             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
917
918             /* Calculate temporary vectorial force */
919             tx               = _mm256_mul_ps(fscal,dx00);
920             ty               = _mm256_mul_ps(fscal,dy00);
921             tz               = _mm256_mul_ps(fscal,dz00);
922
923             /* Update vectorial force */
924             fix0             = _mm256_add_ps(fix0,tx);
925             fiy0             = _mm256_add_ps(fiy0,ty);
926             fiz0             = _mm256_add_ps(fiz0,tz);
927
928             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
929             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
930             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
931             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
932             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
933             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
934             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
935             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
936             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
937
938             /* Inner loop uses 54 flops */
939         }
940
941         /* End of innermost loop */
942
943         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
944                                                  f+i_coord_offset,fshift+i_shift_offset);
945
946         /* Increment number of inner iterations */
947         inneriter                  += j_index_end - j_index_start;
948
949         /* Outer loop uses 7 flops */
950     }
951
952     /* Increment number of outer iterations */
953     outeriter        += nri;
954
955     /* Update outer/inner flops */
956
957     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*54);
958 }