made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
75     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
77     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     __m256i          vfitab;
80     __m128i          vfitab_lo,vfitab_hi;
81     __m128i          ifour       = _mm_set1_epi32(4);
82     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
83     real             *vftab;
84     __m256           dummy_mask,cutoff_mask;
85     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
86     __m256           one     = _mm256_set1_ps(1.0);
87     __m256           two     = _mm256_set1_ps(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_ps(fr->epsfac);
100     charge           = mdatoms->chargeA;
101
102     vftab            = kernel_data->table_elec->data;
103     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
104
105     /* Avoid stupid compiler warnings */
106     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
107     j_coord_offsetA = 0;
108     j_coord_offsetB = 0;
109     j_coord_offsetC = 0;
110     j_coord_offsetD = 0;
111     j_coord_offsetE = 0;
112     j_coord_offsetF = 0;
113     j_coord_offsetG = 0;
114     j_coord_offsetH = 0;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     for(iidx=0;iidx<4*DIM;iidx++)
120     {
121         scratch[iidx] = 0.0;
122     }
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129
130         /* Load limits for loop over neighbors */
131         j_index_start    = jindex[iidx];
132         j_index_end      = jindex[iidx+1];
133
134         /* Get outer coordinate index */
135         inr              = iinr[iidx];
136         i_coord_offset   = DIM*inr;
137
138         /* Load i particle coords and add shift vector */
139         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
140
141         fix0             = _mm256_setzero_ps();
142         fiy0             = _mm256_setzero_ps();
143         fiz0             = _mm256_setzero_ps();
144
145         /* Load parameters for i particles */
146         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
147
148         /* Reset potential sums */
149         velecsum         = _mm256_setzero_ps();
150
151         /* Start inner kernel loop */
152         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
153         {
154
155             /* Get j neighbor index, and coordinate index */
156             jnrA             = jjnr[jidx];
157             jnrB             = jjnr[jidx+1];
158             jnrC             = jjnr[jidx+2];
159             jnrD             = jjnr[jidx+3];
160             jnrE             = jjnr[jidx+4];
161             jnrF             = jjnr[jidx+5];
162             jnrG             = jjnr[jidx+6];
163             jnrH             = jjnr[jidx+7];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168             j_coord_offsetE  = DIM*jnrE;
169             j_coord_offsetF  = DIM*jnrF;
170             j_coord_offsetG  = DIM*jnrG;
171             j_coord_offsetH  = DIM*jnrH;
172
173             /* load j atom coordinates */
174             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
175                                                  x+j_coord_offsetC,x+j_coord_offsetD,
176                                                  x+j_coord_offsetE,x+j_coord_offsetF,
177                                                  x+j_coord_offsetG,x+j_coord_offsetH,
178                                                  &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm256_sub_ps(ix0,jx0);
182             dy00             = _mm256_sub_ps(iy0,jy0);
183             dz00             = _mm256_sub_ps(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
192                                                                  charge+jnrC+0,charge+jnrD+0,
193                                                                  charge+jnrE+0,charge+jnrF+0,
194                                                                  charge+jnrG+0,charge+jnrH+0);
195
196             /**************************
197              * CALCULATE INTERACTIONS *
198              **************************/
199
200             r00              = _mm256_mul_ps(rsq00,rinv00);
201
202             /* Compute parameters for interactions between i and j atoms */
203             qq00             = _mm256_mul_ps(iq0,jq0);
204
205             /* Calculate table index by multiplying r with table scale and truncate to integer */
206             rt               = _mm256_mul_ps(r00,vftabscale);
207             vfitab           = _mm256_cvttps_epi32(rt);
208             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
209             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
210             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
211             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
212             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
213             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
214
215             /* CUBIC SPLINE TABLE ELECTROSTATICS */
216             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
217                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
218             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
219                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
220             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
221                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
222             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
223                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
224             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
225             Heps             = _mm256_mul_ps(vfeps,H);
226             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
227             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
228             velec            = _mm256_mul_ps(qq00,VV);
229             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
230             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
231
232             /* Update potential sum for this i atom from the interaction with this j atom. */
233             velecsum         = _mm256_add_ps(velecsum,velec);
234
235             fscal            = felec;
236
237             /* Calculate temporary vectorial force */
238             tx               = _mm256_mul_ps(fscal,dx00);
239             ty               = _mm256_mul_ps(fscal,dy00);
240             tz               = _mm256_mul_ps(fscal,dz00);
241
242             /* Update vectorial force */
243             fix0             = _mm256_add_ps(fix0,tx);
244             fiy0             = _mm256_add_ps(fiy0,ty);
245             fiz0             = _mm256_add_ps(fiz0,tz);
246
247             fjptrA             = f+j_coord_offsetA;
248             fjptrB             = f+j_coord_offsetB;
249             fjptrC             = f+j_coord_offsetC;
250             fjptrD             = f+j_coord_offsetD;
251             fjptrE             = f+j_coord_offsetE;
252             fjptrF             = f+j_coord_offsetF;
253             fjptrG             = f+j_coord_offsetG;
254             fjptrH             = f+j_coord_offsetH;
255             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
256
257             /* Inner loop uses 43 flops */
258         }
259
260         if(jidx<j_index_end)
261         {
262
263             /* Get j neighbor index, and coordinate index */
264             jnrlistA         = jjnr[jidx];
265             jnrlistB         = jjnr[jidx+1];
266             jnrlistC         = jjnr[jidx+2];
267             jnrlistD         = jjnr[jidx+3];
268             jnrlistE         = jjnr[jidx+4];
269             jnrlistF         = jjnr[jidx+5];
270             jnrlistG         = jjnr[jidx+6];
271             jnrlistH         = jjnr[jidx+7];
272             /* Sign of each element will be negative for non-real atoms.
273              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
274              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
275              */
276             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
277                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
278                                             
279             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
280             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
281             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
282             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
283             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
284             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
285             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
286             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
287             j_coord_offsetA  = DIM*jnrA;
288             j_coord_offsetB  = DIM*jnrB;
289             j_coord_offsetC  = DIM*jnrC;
290             j_coord_offsetD  = DIM*jnrD;
291             j_coord_offsetE  = DIM*jnrE;
292             j_coord_offsetF  = DIM*jnrF;
293             j_coord_offsetG  = DIM*jnrG;
294             j_coord_offsetH  = DIM*jnrH;
295
296             /* load j atom coordinates */
297             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
298                                                  x+j_coord_offsetC,x+j_coord_offsetD,
299                                                  x+j_coord_offsetE,x+j_coord_offsetF,
300                                                  x+j_coord_offsetG,x+j_coord_offsetH,
301                                                  &jx0,&jy0,&jz0);
302
303             /* Calculate displacement vector */
304             dx00             = _mm256_sub_ps(ix0,jx0);
305             dy00             = _mm256_sub_ps(iy0,jy0);
306             dz00             = _mm256_sub_ps(iz0,jz0);
307
308             /* Calculate squared distance and things based on it */
309             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
310
311             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
312
313             /* Load parameters for j particles */
314             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
315                                                                  charge+jnrC+0,charge+jnrD+0,
316                                                                  charge+jnrE+0,charge+jnrF+0,
317                                                                  charge+jnrG+0,charge+jnrH+0);
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r00              = _mm256_mul_ps(rsq00,rinv00);
324             r00              = _mm256_andnot_ps(dummy_mask,r00);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq00             = _mm256_mul_ps(iq0,jq0);
328
329             /* Calculate table index by multiplying r with table scale and truncate to integer */
330             rt               = _mm256_mul_ps(r00,vftabscale);
331             vfitab           = _mm256_cvttps_epi32(rt);
332             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
333             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
334             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
335             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
336             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
337             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
338
339             /* CUBIC SPLINE TABLE ELECTROSTATICS */
340             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
341                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
342             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
343                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
344             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
345                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
346             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
347                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
348             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
349             Heps             = _mm256_mul_ps(vfeps,H);
350             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
351             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
352             velec            = _mm256_mul_ps(qq00,VV);
353             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
354             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velec            = _mm256_andnot_ps(dummy_mask,velec);
358             velecsum         = _mm256_add_ps(velecsum,velec);
359
360             fscal            = felec;
361
362             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_ps(fscal,dx00);
366             ty               = _mm256_mul_ps(fscal,dy00);
367             tz               = _mm256_mul_ps(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm256_add_ps(fix0,tx);
371             fiy0             = _mm256_add_ps(fiy0,ty);
372             fiz0             = _mm256_add_ps(fiz0,tz);
373
374             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
375             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
376             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
377             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
378             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
379             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
380             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
381             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
382             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
383
384             /* Inner loop uses 44 flops */
385         }
386
387         /* End of innermost loop */
388
389         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
390                                                  f+i_coord_offset,fshift+i_shift_offset);
391
392         ggid                        = gid[iidx];
393         /* Update potential energies */
394         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
395
396         /* Increment number of inner iterations */
397         inneriter                  += j_index_end - j_index_start;
398
399         /* Outer loop uses 8 flops */
400     }
401
402     /* Increment number of outer iterations */
403     outeriter        += nri;
404
405     /* Update outer/inner flops */
406
407     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*44);
408 }
409 /*
410  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
411  * Electrostatics interaction: CubicSplineTable
412  * VdW interaction:            None
413  * Geometry:                   Particle-Particle
414  * Calculate force/pot:        Force
415  */
416 void
417 nb_kernel_ElecCSTab_VdwNone_GeomP1P1_F_avx_256_single
418                     (t_nblist * gmx_restrict                nlist,
419                      rvec * gmx_restrict                    xx,
420                      rvec * gmx_restrict                    ff,
421                      t_forcerec * gmx_restrict              fr,
422                      t_mdatoms * gmx_restrict               mdatoms,
423                      nb_kernel_data_t * gmx_restrict        kernel_data,
424                      t_nrnb * gmx_restrict                  nrnb)
425 {
426     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
427      * just 0 for non-waters.
428      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
429      * jnr indices corresponding to data put in the four positions in the SIMD register.
430      */
431     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
432     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
433     int              jnrA,jnrB,jnrC,jnrD;
434     int              jnrE,jnrF,jnrG,jnrH;
435     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
436     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
437     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
438     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
439     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
440     real             rcutoff_scalar;
441     real             *shiftvec,*fshift,*x,*f;
442     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
443     real             scratch[4*DIM];
444     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
445     real *           vdwioffsetptr0;
446     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
447     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
448     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
449     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
450     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
451     real             *charge;
452     __m256i          vfitab;
453     __m128i          vfitab_lo,vfitab_hi;
454     __m128i          ifour       = _mm_set1_epi32(4);
455     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
456     real             *vftab;
457     __m256           dummy_mask,cutoff_mask;
458     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
459     __m256           one     = _mm256_set1_ps(1.0);
460     __m256           two     = _mm256_set1_ps(2.0);
461     x                = xx[0];
462     f                = ff[0];
463
464     nri              = nlist->nri;
465     iinr             = nlist->iinr;
466     jindex           = nlist->jindex;
467     jjnr             = nlist->jjnr;
468     shiftidx         = nlist->shift;
469     gid              = nlist->gid;
470     shiftvec         = fr->shift_vec[0];
471     fshift           = fr->fshift[0];
472     facel            = _mm256_set1_ps(fr->epsfac);
473     charge           = mdatoms->chargeA;
474
475     vftab            = kernel_data->table_elec->data;
476     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
477
478     /* Avoid stupid compiler warnings */
479     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
480     j_coord_offsetA = 0;
481     j_coord_offsetB = 0;
482     j_coord_offsetC = 0;
483     j_coord_offsetD = 0;
484     j_coord_offsetE = 0;
485     j_coord_offsetF = 0;
486     j_coord_offsetG = 0;
487     j_coord_offsetH = 0;
488
489     outeriter        = 0;
490     inneriter        = 0;
491
492     for(iidx=0;iidx<4*DIM;iidx++)
493     {
494         scratch[iidx] = 0.0;
495     }
496
497     /* Start outer loop over neighborlists */
498     for(iidx=0; iidx<nri; iidx++)
499     {
500         /* Load shift vector for this list */
501         i_shift_offset   = DIM*shiftidx[iidx];
502
503         /* Load limits for loop over neighbors */
504         j_index_start    = jindex[iidx];
505         j_index_end      = jindex[iidx+1];
506
507         /* Get outer coordinate index */
508         inr              = iinr[iidx];
509         i_coord_offset   = DIM*inr;
510
511         /* Load i particle coords and add shift vector */
512         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
513
514         fix0             = _mm256_setzero_ps();
515         fiy0             = _mm256_setzero_ps();
516         fiz0             = _mm256_setzero_ps();
517
518         /* Load parameters for i particles */
519         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
520
521         /* Start inner kernel loop */
522         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
523         {
524
525             /* Get j neighbor index, and coordinate index */
526             jnrA             = jjnr[jidx];
527             jnrB             = jjnr[jidx+1];
528             jnrC             = jjnr[jidx+2];
529             jnrD             = jjnr[jidx+3];
530             jnrE             = jjnr[jidx+4];
531             jnrF             = jjnr[jidx+5];
532             jnrG             = jjnr[jidx+6];
533             jnrH             = jjnr[jidx+7];
534             j_coord_offsetA  = DIM*jnrA;
535             j_coord_offsetB  = DIM*jnrB;
536             j_coord_offsetC  = DIM*jnrC;
537             j_coord_offsetD  = DIM*jnrD;
538             j_coord_offsetE  = DIM*jnrE;
539             j_coord_offsetF  = DIM*jnrF;
540             j_coord_offsetG  = DIM*jnrG;
541             j_coord_offsetH  = DIM*jnrH;
542
543             /* load j atom coordinates */
544             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
545                                                  x+j_coord_offsetC,x+j_coord_offsetD,
546                                                  x+j_coord_offsetE,x+j_coord_offsetF,
547                                                  x+j_coord_offsetG,x+j_coord_offsetH,
548                                                  &jx0,&jy0,&jz0);
549
550             /* Calculate displacement vector */
551             dx00             = _mm256_sub_ps(ix0,jx0);
552             dy00             = _mm256_sub_ps(iy0,jy0);
553             dz00             = _mm256_sub_ps(iz0,jz0);
554
555             /* Calculate squared distance and things based on it */
556             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
557
558             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
559
560             /* Load parameters for j particles */
561             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
562                                                                  charge+jnrC+0,charge+jnrD+0,
563                                                                  charge+jnrE+0,charge+jnrF+0,
564                                                                  charge+jnrG+0,charge+jnrH+0);
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             r00              = _mm256_mul_ps(rsq00,rinv00);
571
572             /* Compute parameters for interactions between i and j atoms */
573             qq00             = _mm256_mul_ps(iq0,jq0);
574
575             /* Calculate table index by multiplying r with table scale and truncate to integer */
576             rt               = _mm256_mul_ps(r00,vftabscale);
577             vfitab           = _mm256_cvttps_epi32(rt);
578             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
579             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
580             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
581             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
582             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
583             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
584
585             /* CUBIC SPLINE TABLE ELECTROSTATICS */
586             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
587                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
588             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
589                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
590             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
591                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
592             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
593                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
594             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
595             Heps             = _mm256_mul_ps(vfeps,H);
596             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
597             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
598             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
599
600             fscal            = felec;
601
602             /* Calculate temporary vectorial force */
603             tx               = _mm256_mul_ps(fscal,dx00);
604             ty               = _mm256_mul_ps(fscal,dy00);
605             tz               = _mm256_mul_ps(fscal,dz00);
606
607             /* Update vectorial force */
608             fix0             = _mm256_add_ps(fix0,tx);
609             fiy0             = _mm256_add_ps(fiy0,ty);
610             fiz0             = _mm256_add_ps(fiz0,tz);
611
612             fjptrA             = f+j_coord_offsetA;
613             fjptrB             = f+j_coord_offsetB;
614             fjptrC             = f+j_coord_offsetC;
615             fjptrD             = f+j_coord_offsetD;
616             fjptrE             = f+j_coord_offsetE;
617             fjptrF             = f+j_coord_offsetF;
618             fjptrG             = f+j_coord_offsetG;
619             fjptrH             = f+j_coord_offsetH;
620             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
621
622             /* Inner loop uses 39 flops */
623         }
624
625         if(jidx<j_index_end)
626         {
627
628             /* Get j neighbor index, and coordinate index */
629             jnrlistA         = jjnr[jidx];
630             jnrlistB         = jjnr[jidx+1];
631             jnrlistC         = jjnr[jidx+2];
632             jnrlistD         = jjnr[jidx+3];
633             jnrlistE         = jjnr[jidx+4];
634             jnrlistF         = jjnr[jidx+5];
635             jnrlistG         = jjnr[jidx+6];
636             jnrlistH         = jjnr[jidx+7];
637             /* Sign of each element will be negative for non-real atoms.
638              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
639              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
640              */
641             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
642                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
643                                             
644             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
645             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
646             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
647             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
648             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
649             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
650             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
651             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
652             j_coord_offsetA  = DIM*jnrA;
653             j_coord_offsetB  = DIM*jnrB;
654             j_coord_offsetC  = DIM*jnrC;
655             j_coord_offsetD  = DIM*jnrD;
656             j_coord_offsetE  = DIM*jnrE;
657             j_coord_offsetF  = DIM*jnrF;
658             j_coord_offsetG  = DIM*jnrG;
659             j_coord_offsetH  = DIM*jnrH;
660
661             /* load j atom coordinates */
662             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
663                                                  x+j_coord_offsetC,x+j_coord_offsetD,
664                                                  x+j_coord_offsetE,x+j_coord_offsetF,
665                                                  x+j_coord_offsetG,x+j_coord_offsetH,
666                                                  &jx0,&jy0,&jz0);
667
668             /* Calculate displacement vector */
669             dx00             = _mm256_sub_ps(ix0,jx0);
670             dy00             = _mm256_sub_ps(iy0,jy0);
671             dz00             = _mm256_sub_ps(iz0,jz0);
672
673             /* Calculate squared distance and things based on it */
674             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
675
676             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
677
678             /* Load parameters for j particles */
679             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
680                                                                  charge+jnrC+0,charge+jnrD+0,
681                                                                  charge+jnrE+0,charge+jnrF+0,
682                                                                  charge+jnrG+0,charge+jnrH+0);
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             r00              = _mm256_mul_ps(rsq00,rinv00);
689             r00              = _mm256_andnot_ps(dummy_mask,r00);
690
691             /* Compute parameters for interactions between i and j atoms */
692             qq00             = _mm256_mul_ps(iq0,jq0);
693
694             /* Calculate table index by multiplying r with table scale and truncate to integer */
695             rt               = _mm256_mul_ps(r00,vftabscale);
696             vfitab           = _mm256_cvttps_epi32(rt);
697             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
698             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
699             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
700             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
701             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
702             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
703
704             /* CUBIC SPLINE TABLE ELECTROSTATICS */
705             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
706                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
707             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
708                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
709             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
710                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
711             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
712                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
713             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
714             Heps             = _mm256_mul_ps(vfeps,H);
715             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
716             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
717             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
718
719             fscal            = felec;
720
721             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
722
723             /* Calculate temporary vectorial force */
724             tx               = _mm256_mul_ps(fscal,dx00);
725             ty               = _mm256_mul_ps(fscal,dy00);
726             tz               = _mm256_mul_ps(fscal,dz00);
727
728             /* Update vectorial force */
729             fix0             = _mm256_add_ps(fix0,tx);
730             fiy0             = _mm256_add_ps(fiy0,ty);
731             fiz0             = _mm256_add_ps(fiz0,tz);
732
733             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
734             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
735             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
736             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
737             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
738             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
739             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
740             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
741             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
742
743             /* Inner loop uses 40 flops */
744         }
745
746         /* End of innermost loop */
747
748         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
749                                                  f+i_coord_offset,fshift+i_shift_offset);
750
751         /* Increment number of inner iterations */
752         inneriter                  += j_index_end - j_index_start;
753
754         /* Outer loop uses 7 flops */
755     }
756
757     /* Increment number of outer iterations */
758     outeriter        += nri;
759
760     /* Update outer/inner flops */
761
762     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
763 }