e74e1ea6224fd4c60134c4aa32cb61224579cda7
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_single.h"
34 #include "kernelutil_x86_avx_256_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrE,jnrF,jnrG,jnrH;
62     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
63     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
64     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
65     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
66     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
67     real             rcutoff_scalar;
68     real             *shiftvec,*fshift,*x,*f;
69     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
70     real             scratch[4*DIM];
71     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
72     real *           vdwioffsetptr0;
73     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     real *           vdwioffsetptr1;
75     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     real *           vdwioffsetptr2;
77     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
79     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
90     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
91     __m256i          vfitab;
92     __m128i          vfitab_lo,vfitab_hi;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m256           dummy_mask,cutoff_mask;
97     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
98     __m256           one     = _mm256_set1_ps(1.0);
99     __m256           two     = _mm256_set1_ps(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm256_set1_ps(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     vftab            = kernel_data->table_elec->data;
118     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
119
120     /* Setup water-specific parameters */
121     inr              = nlist->iinr[0];
122     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
123     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
124     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
125     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133     j_coord_offsetE = 0;
134     j_coord_offsetF = 0;
135     j_coord_offsetG = 0;
136     j_coord_offsetH = 0;
137
138     outeriter        = 0;
139     inneriter        = 0;
140
141     for(iidx=0;iidx<4*DIM;iidx++)
142     {
143         scratch[iidx] = 0.0;
144     }
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
162                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
163
164         fix0             = _mm256_setzero_ps();
165         fiy0             = _mm256_setzero_ps();
166         fiz0             = _mm256_setzero_ps();
167         fix1             = _mm256_setzero_ps();
168         fiy1             = _mm256_setzero_ps();
169         fiz1             = _mm256_setzero_ps();
170         fix2             = _mm256_setzero_ps();
171         fiy2             = _mm256_setzero_ps();
172         fiz2             = _mm256_setzero_ps();
173
174         /* Reset potential sums */
175         velecsum         = _mm256_setzero_ps();
176         vvdwsum          = _mm256_setzero_ps();
177
178         /* Start inner kernel loop */
179         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
180         {
181
182             /* Get j neighbor index, and coordinate index */
183             jnrA             = jjnr[jidx];
184             jnrB             = jjnr[jidx+1];
185             jnrC             = jjnr[jidx+2];
186             jnrD             = jjnr[jidx+3];
187             jnrE             = jjnr[jidx+4];
188             jnrF             = jjnr[jidx+5];
189             jnrG             = jjnr[jidx+6];
190             jnrH             = jjnr[jidx+7];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195             j_coord_offsetE  = DIM*jnrE;
196             j_coord_offsetF  = DIM*jnrF;
197             j_coord_offsetG  = DIM*jnrG;
198             j_coord_offsetH  = DIM*jnrH;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  x+j_coord_offsetE,x+j_coord_offsetF,
204                                                  x+j_coord_offsetG,x+j_coord_offsetH,
205                                                  &jx0,&jy0,&jz0);
206
207             /* Calculate displacement vector */
208             dx00             = _mm256_sub_ps(ix0,jx0);
209             dy00             = _mm256_sub_ps(iy0,jy0);
210             dz00             = _mm256_sub_ps(iz0,jz0);
211             dx10             = _mm256_sub_ps(ix1,jx0);
212             dy10             = _mm256_sub_ps(iy1,jy0);
213             dz10             = _mm256_sub_ps(iz1,jz0);
214             dx20             = _mm256_sub_ps(ix2,jx0);
215             dy20             = _mm256_sub_ps(iy2,jy0);
216             dz20             = _mm256_sub_ps(iz2,jz0);
217
218             /* Calculate squared distance and things based on it */
219             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
220             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
221             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
222
223             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
224             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
225             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
226
227             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0,
232                                                                  charge+jnrE+0,charge+jnrF+0,
233                                                                  charge+jnrG+0,charge+jnrH+0);
234             vdwjidx0A        = 2*vdwtype[jnrA+0];
235             vdwjidx0B        = 2*vdwtype[jnrB+0];
236             vdwjidx0C        = 2*vdwtype[jnrC+0];
237             vdwjidx0D        = 2*vdwtype[jnrD+0];
238             vdwjidx0E        = 2*vdwtype[jnrE+0];
239             vdwjidx0F        = 2*vdwtype[jnrF+0];
240             vdwjidx0G        = 2*vdwtype[jnrG+0];
241             vdwjidx0H        = 2*vdwtype[jnrH+0];
242
243             fjx0             = _mm256_setzero_ps();
244             fjy0             = _mm256_setzero_ps();
245             fjz0             = _mm256_setzero_ps();
246
247             /**************************
248              * CALCULATE INTERACTIONS *
249              **************************/
250
251             r00              = _mm256_mul_ps(rsq00,rinv00);
252
253             /* Compute parameters for interactions between i and j atoms */
254             qq00             = _mm256_mul_ps(iq0,jq0);
255             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
256                                             vdwioffsetptr0+vdwjidx0B,
257                                             vdwioffsetptr0+vdwjidx0C,
258                                             vdwioffsetptr0+vdwjidx0D,
259                                             vdwioffsetptr0+vdwjidx0E,
260                                             vdwioffsetptr0+vdwjidx0F,
261                                             vdwioffsetptr0+vdwjidx0G,
262                                             vdwioffsetptr0+vdwjidx0H,
263                                             &c6_00,&c12_00);
264
265             /* Calculate table index by multiplying r with table scale and truncate to integer */
266             rt               = _mm256_mul_ps(r00,vftabscale);
267             vfitab           = _mm256_cvttps_epi32(rt);
268             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
269             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
270             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
271             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
272             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
273             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
274
275             /* CUBIC SPLINE TABLE ELECTROSTATICS */
276             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
277                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
278             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
279                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
280             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
281                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
282             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
283                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
284             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
285             Heps             = _mm256_mul_ps(vfeps,H);
286             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
287             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
288             velec            = _mm256_mul_ps(qq00,VV);
289             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
290             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
291
292             /* LENNARD-JONES DISPERSION/REPULSION */
293
294             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
295             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
296             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
297             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
298             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
299
300             /* Update potential sum for this i atom from the interaction with this j atom. */
301             velecsum         = _mm256_add_ps(velecsum,velec);
302             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
303
304             fscal            = _mm256_add_ps(felec,fvdw);
305
306             /* Calculate temporary vectorial force */
307             tx               = _mm256_mul_ps(fscal,dx00);
308             ty               = _mm256_mul_ps(fscal,dy00);
309             tz               = _mm256_mul_ps(fscal,dz00);
310
311             /* Update vectorial force */
312             fix0             = _mm256_add_ps(fix0,tx);
313             fiy0             = _mm256_add_ps(fiy0,ty);
314             fiz0             = _mm256_add_ps(fiz0,tz);
315
316             fjx0             = _mm256_add_ps(fjx0,tx);
317             fjy0             = _mm256_add_ps(fjy0,ty);
318             fjz0             = _mm256_add_ps(fjz0,tz);
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r10              = _mm256_mul_ps(rsq10,rinv10);
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm256_mul_ps(iq1,jq0);
328
329             /* Calculate table index by multiplying r with table scale and truncate to integer */
330             rt               = _mm256_mul_ps(r10,vftabscale);
331             vfitab           = _mm256_cvttps_epi32(rt);
332             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
333             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
334             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
335             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
336             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
337             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
338
339             /* CUBIC SPLINE TABLE ELECTROSTATICS */
340             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
341                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
342             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
343                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
344             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
345                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
346             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
347                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
348             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
349             Heps             = _mm256_mul_ps(vfeps,H);
350             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
351             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
352             velec            = _mm256_mul_ps(qq10,VV);
353             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
354             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
355
356             /* Update potential sum for this i atom from the interaction with this j atom. */
357             velecsum         = _mm256_add_ps(velecsum,velec);
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = _mm256_mul_ps(fscal,dx10);
363             ty               = _mm256_mul_ps(fscal,dy10);
364             tz               = _mm256_mul_ps(fscal,dz10);
365
366             /* Update vectorial force */
367             fix1             = _mm256_add_ps(fix1,tx);
368             fiy1             = _mm256_add_ps(fiy1,ty);
369             fiz1             = _mm256_add_ps(fiz1,tz);
370
371             fjx0             = _mm256_add_ps(fjx0,tx);
372             fjy0             = _mm256_add_ps(fjy0,ty);
373             fjz0             = _mm256_add_ps(fjz0,tz);
374
375             /**************************
376              * CALCULATE INTERACTIONS *
377              **************************/
378
379             r20              = _mm256_mul_ps(rsq20,rinv20);
380
381             /* Compute parameters for interactions between i and j atoms */
382             qq20             = _mm256_mul_ps(iq2,jq0);
383
384             /* Calculate table index by multiplying r with table scale and truncate to integer */
385             rt               = _mm256_mul_ps(r20,vftabscale);
386             vfitab           = _mm256_cvttps_epi32(rt);
387             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
388             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
389             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
390             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
391             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
392             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
393
394             /* CUBIC SPLINE TABLE ELECTROSTATICS */
395             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
396                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
397             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
398                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
399             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
400                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
401             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
402                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
403             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
404             Heps             = _mm256_mul_ps(vfeps,H);
405             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
406             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
407             velec            = _mm256_mul_ps(qq20,VV);
408             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
409             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
410
411             /* Update potential sum for this i atom from the interaction with this j atom. */
412             velecsum         = _mm256_add_ps(velecsum,velec);
413
414             fscal            = felec;
415
416             /* Calculate temporary vectorial force */
417             tx               = _mm256_mul_ps(fscal,dx20);
418             ty               = _mm256_mul_ps(fscal,dy20);
419             tz               = _mm256_mul_ps(fscal,dz20);
420
421             /* Update vectorial force */
422             fix2             = _mm256_add_ps(fix2,tx);
423             fiy2             = _mm256_add_ps(fiy2,ty);
424             fiz2             = _mm256_add_ps(fiz2,tz);
425
426             fjx0             = _mm256_add_ps(fjx0,tx);
427             fjy0             = _mm256_add_ps(fjy0,ty);
428             fjz0             = _mm256_add_ps(fjz0,tz);
429
430             fjptrA             = f+j_coord_offsetA;
431             fjptrB             = f+j_coord_offsetB;
432             fjptrC             = f+j_coord_offsetC;
433             fjptrD             = f+j_coord_offsetD;
434             fjptrE             = f+j_coord_offsetE;
435             fjptrF             = f+j_coord_offsetF;
436             fjptrG             = f+j_coord_offsetG;
437             fjptrH             = f+j_coord_offsetH;
438
439             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
440
441             /* Inner loop uses 145 flops */
442         }
443
444         if(jidx<j_index_end)
445         {
446
447             /* Get j neighbor index, and coordinate index */
448             jnrlistA         = jjnr[jidx];
449             jnrlistB         = jjnr[jidx+1];
450             jnrlistC         = jjnr[jidx+2];
451             jnrlistD         = jjnr[jidx+3];
452             jnrlistE         = jjnr[jidx+4];
453             jnrlistF         = jjnr[jidx+5];
454             jnrlistG         = jjnr[jidx+6];
455             jnrlistH         = jjnr[jidx+7];
456             /* Sign of each element will be negative for non-real atoms.
457              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
458              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
459              */
460             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
461                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
462                                             
463             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
464             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
465             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
466             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
467             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
468             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
469             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
470             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
471             j_coord_offsetA  = DIM*jnrA;
472             j_coord_offsetB  = DIM*jnrB;
473             j_coord_offsetC  = DIM*jnrC;
474             j_coord_offsetD  = DIM*jnrD;
475             j_coord_offsetE  = DIM*jnrE;
476             j_coord_offsetF  = DIM*jnrF;
477             j_coord_offsetG  = DIM*jnrG;
478             j_coord_offsetH  = DIM*jnrH;
479
480             /* load j atom coordinates */
481             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
482                                                  x+j_coord_offsetC,x+j_coord_offsetD,
483                                                  x+j_coord_offsetE,x+j_coord_offsetF,
484                                                  x+j_coord_offsetG,x+j_coord_offsetH,
485                                                  &jx0,&jy0,&jz0);
486
487             /* Calculate displacement vector */
488             dx00             = _mm256_sub_ps(ix0,jx0);
489             dy00             = _mm256_sub_ps(iy0,jy0);
490             dz00             = _mm256_sub_ps(iz0,jz0);
491             dx10             = _mm256_sub_ps(ix1,jx0);
492             dy10             = _mm256_sub_ps(iy1,jy0);
493             dz10             = _mm256_sub_ps(iz1,jz0);
494             dx20             = _mm256_sub_ps(ix2,jx0);
495             dy20             = _mm256_sub_ps(iy2,jy0);
496             dz20             = _mm256_sub_ps(iz2,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
500             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
501             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
502
503             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
504             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
505             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
506
507             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
508
509             /* Load parameters for j particles */
510             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
511                                                                  charge+jnrC+0,charge+jnrD+0,
512                                                                  charge+jnrE+0,charge+jnrF+0,
513                                                                  charge+jnrG+0,charge+jnrH+0);
514             vdwjidx0A        = 2*vdwtype[jnrA+0];
515             vdwjidx0B        = 2*vdwtype[jnrB+0];
516             vdwjidx0C        = 2*vdwtype[jnrC+0];
517             vdwjidx0D        = 2*vdwtype[jnrD+0];
518             vdwjidx0E        = 2*vdwtype[jnrE+0];
519             vdwjidx0F        = 2*vdwtype[jnrF+0];
520             vdwjidx0G        = 2*vdwtype[jnrG+0];
521             vdwjidx0H        = 2*vdwtype[jnrH+0];
522
523             fjx0             = _mm256_setzero_ps();
524             fjy0             = _mm256_setzero_ps();
525             fjz0             = _mm256_setzero_ps();
526
527             /**************************
528              * CALCULATE INTERACTIONS *
529              **************************/
530
531             r00              = _mm256_mul_ps(rsq00,rinv00);
532             r00              = _mm256_andnot_ps(dummy_mask,r00);
533
534             /* Compute parameters for interactions between i and j atoms */
535             qq00             = _mm256_mul_ps(iq0,jq0);
536             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
537                                             vdwioffsetptr0+vdwjidx0B,
538                                             vdwioffsetptr0+vdwjidx0C,
539                                             vdwioffsetptr0+vdwjidx0D,
540                                             vdwioffsetptr0+vdwjidx0E,
541                                             vdwioffsetptr0+vdwjidx0F,
542                                             vdwioffsetptr0+vdwjidx0G,
543                                             vdwioffsetptr0+vdwjidx0H,
544                                             &c6_00,&c12_00);
545
546             /* Calculate table index by multiplying r with table scale and truncate to integer */
547             rt               = _mm256_mul_ps(r00,vftabscale);
548             vfitab           = _mm256_cvttps_epi32(rt);
549             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
550             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
551             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
552             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
553             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
554             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
555
556             /* CUBIC SPLINE TABLE ELECTROSTATICS */
557             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
558                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
559             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
560                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
561             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
562                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
563             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
564                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
565             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
566             Heps             = _mm256_mul_ps(vfeps,H);
567             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
568             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
569             velec            = _mm256_mul_ps(qq00,VV);
570             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
571             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
572
573             /* LENNARD-JONES DISPERSION/REPULSION */
574
575             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
576             vvdw6            = _mm256_mul_ps(c6_00,rinvsix);
577             vvdw12           = _mm256_mul_ps(c12_00,_mm256_mul_ps(rinvsix,rinvsix));
578             vvdw             = _mm256_sub_ps( _mm256_mul_ps(vvdw12,one_twelfth) , _mm256_mul_ps(vvdw6,one_sixth) );
579             fvdw             = _mm256_mul_ps(_mm256_sub_ps(vvdw12,vvdw6),rinvsq00);
580
581             /* Update potential sum for this i atom from the interaction with this j atom. */
582             velec            = _mm256_andnot_ps(dummy_mask,velec);
583             velecsum         = _mm256_add_ps(velecsum,velec);
584             vvdw             = _mm256_andnot_ps(dummy_mask,vvdw);
585             vvdwsum          = _mm256_add_ps(vvdwsum,vvdw);
586
587             fscal            = _mm256_add_ps(felec,fvdw);
588
589             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
590
591             /* Calculate temporary vectorial force */
592             tx               = _mm256_mul_ps(fscal,dx00);
593             ty               = _mm256_mul_ps(fscal,dy00);
594             tz               = _mm256_mul_ps(fscal,dz00);
595
596             /* Update vectorial force */
597             fix0             = _mm256_add_ps(fix0,tx);
598             fiy0             = _mm256_add_ps(fiy0,ty);
599             fiz0             = _mm256_add_ps(fiz0,tz);
600
601             fjx0             = _mm256_add_ps(fjx0,tx);
602             fjy0             = _mm256_add_ps(fjy0,ty);
603             fjz0             = _mm256_add_ps(fjz0,tz);
604
605             /**************************
606              * CALCULATE INTERACTIONS *
607              **************************/
608
609             r10              = _mm256_mul_ps(rsq10,rinv10);
610             r10              = _mm256_andnot_ps(dummy_mask,r10);
611
612             /* Compute parameters for interactions between i and j atoms */
613             qq10             = _mm256_mul_ps(iq1,jq0);
614
615             /* Calculate table index by multiplying r with table scale and truncate to integer */
616             rt               = _mm256_mul_ps(r10,vftabscale);
617             vfitab           = _mm256_cvttps_epi32(rt);
618             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
619             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
620             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
621             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
622             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
623             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
624
625             /* CUBIC SPLINE TABLE ELECTROSTATICS */
626             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
627                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
628             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
629                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
630             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
631                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
632             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
633                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
634             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
635             Heps             = _mm256_mul_ps(vfeps,H);
636             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
637             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
638             velec            = _mm256_mul_ps(qq10,VV);
639             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
640             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
641
642             /* Update potential sum for this i atom from the interaction with this j atom. */
643             velec            = _mm256_andnot_ps(dummy_mask,velec);
644             velecsum         = _mm256_add_ps(velecsum,velec);
645
646             fscal            = felec;
647
648             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_ps(fscal,dx10);
652             ty               = _mm256_mul_ps(fscal,dy10);
653             tz               = _mm256_mul_ps(fscal,dz10);
654
655             /* Update vectorial force */
656             fix1             = _mm256_add_ps(fix1,tx);
657             fiy1             = _mm256_add_ps(fiy1,ty);
658             fiz1             = _mm256_add_ps(fiz1,tz);
659
660             fjx0             = _mm256_add_ps(fjx0,tx);
661             fjy0             = _mm256_add_ps(fjy0,ty);
662             fjz0             = _mm256_add_ps(fjz0,tz);
663
664             /**************************
665              * CALCULATE INTERACTIONS *
666              **************************/
667
668             r20              = _mm256_mul_ps(rsq20,rinv20);
669             r20              = _mm256_andnot_ps(dummy_mask,r20);
670
671             /* Compute parameters for interactions between i and j atoms */
672             qq20             = _mm256_mul_ps(iq2,jq0);
673
674             /* Calculate table index by multiplying r with table scale and truncate to integer */
675             rt               = _mm256_mul_ps(r20,vftabscale);
676             vfitab           = _mm256_cvttps_epi32(rt);
677             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
678             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
679             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
680             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
681             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
682             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
683
684             /* CUBIC SPLINE TABLE ELECTROSTATICS */
685             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
686                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
687             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
688                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
689             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
690                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
691             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
692                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
693             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
694             Heps             = _mm256_mul_ps(vfeps,H);
695             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
696             VV               = _mm256_add_ps(Y,_mm256_mul_ps(vfeps,Fp));
697             velec            = _mm256_mul_ps(qq20,VV);
698             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
699             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
700
701             /* Update potential sum for this i atom from the interaction with this j atom. */
702             velec            = _mm256_andnot_ps(dummy_mask,velec);
703             velecsum         = _mm256_add_ps(velecsum,velec);
704
705             fscal            = felec;
706
707             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm256_mul_ps(fscal,dx20);
711             ty               = _mm256_mul_ps(fscal,dy20);
712             tz               = _mm256_mul_ps(fscal,dz20);
713
714             /* Update vectorial force */
715             fix2             = _mm256_add_ps(fix2,tx);
716             fiy2             = _mm256_add_ps(fiy2,ty);
717             fiz2             = _mm256_add_ps(fiz2,tz);
718
719             fjx0             = _mm256_add_ps(fjx0,tx);
720             fjy0             = _mm256_add_ps(fjy0,ty);
721             fjz0             = _mm256_add_ps(fjz0,tz);
722
723             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
724             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
725             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
726             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
727             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
728             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
729             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
730             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
731
732             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
733
734             /* Inner loop uses 148 flops */
735         }
736
737         /* End of innermost loop */
738
739         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
740                                                  f+i_coord_offset,fshift+i_shift_offset);
741
742         ggid                        = gid[iidx];
743         /* Update potential energies */
744         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
745         gmx_mm256_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
746
747         /* Increment number of inner iterations */
748         inneriter                  += j_index_end - j_index_start;
749
750         /* Outer loop uses 20 flops */
751     }
752
753     /* Increment number of outer iterations */
754     outeriter        += nri;
755
756     /* Update outer/inner flops */
757
758     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
759 }
760 /*
761  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
762  * Electrostatics interaction: CubicSplineTable
763  * VdW interaction:            LennardJones
764  * Geometry:                   Water3-Particle
765  * Calculate force/pot:        Force
766  */
767 void
768 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_single
769                     (t_nblist * gmx_restrict                nlist,
770                      rvec * gmx_restrict                    xx,
771                      rvec * gmx_restrict                    ff,
772                      t_forcerec * gmx_restrict              fr,
773                      t_mdatoms * gmx_restrict               mdatoms,
774                      nb_kernel_data_t * gmx_restrict        kernel_data,
775                      t_nrnb * gmx_restrict                  nrnb)
776 {
777     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
778      * just 0 for non-waters.
779      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
780      * jnr indices corresponding to data put in the four positions in the SIMD register.
781      */
782     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
783     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
784     int              jnrA,jnrB,jnrC,jnrD;
785     int              jnrE,jnrF,jnrG,jnrH;
786     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
787     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
788     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
789     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
790     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
791     real             rcutoff_scalar;
792     real             *shiftvec,*fshift,*x,*f;
793     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
794     real             scratch[4*DIM];
795     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
796     real *           vdwioffsetptr0;
797     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
798     real *           vdwioffsetptr1;
799     __m256           ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
800     real *           vdwioffsetptr2;
801     __m256           ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
802     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
803     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
804     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
805     __m256           dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
806     __m256           dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
807     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
808     real             *charge;
809     int              nvdwtype;
810     __m256           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
811     int              *vdwtype;
812     real             *vdwparam;
813     __m256           one_sixth   = _mm256_set1_ps(1.0/6.0);
814     __m256           one_twelfth = _mm256_set1_ps(1.0/12.0);
815     __m256i          vfitab;
816     __m128i          vfitab_lo,vfitab_hi;
817     __m128i          ifour       = _mm_set1_epi32(4);
818     __m256           rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
819     real             *vftab;
820     __m256           dummy_mask,cutoff_mask;
821     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
822     __m256           one     = _mm256_set1_ps(1.0);
823     __m256           two     = _mm256_set1_ps(2.0);
824     x                = xx[0];
825     f                = ff[0];
826
827     nri              = nlist->nri;
828     iinr             = nlist->iinr;
829     jindex           = nlist->jindex;
830     jjnr             = nlist->jjnr;
831     shiftidx         = nlist->shift;
832     gid              = nlist->gid;
833     shiftvec         = fr->shift_vec[0];
834     fshift           = fr->fshift[0];
835     facel            = _mm256_set1_ps(fr->epsfac);
836     charge           = mdatoms->chargeA;
837     nvdwtype         = fr->ntype;
838     vdwparam         = fr->nbfp;
839     vdwtype          = mdatoms->typeA;
840
841     vftab            = kernel_data->table_elec->data;
842     vftabscale       = _mm256_set1_ps(kernel_data->table_elec->scale);
843
844     /* Setup water-specific parameters */
845     inr              = nlist->iinr[0];
846     iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
847     iq1              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+1]));
848     iq2              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+2]));
849     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
850
851     /* Avoid stupid compiler warnings */
852     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
853     j_coord_offsetA = 0;
854     j_coord_offsetB = 0;
855     j_coord_offsetC = 0;
856     j_coord_offsetD = 0;
857     j_coord_offsetE = 0;
858     j_coord_offsetF = 0;
859     j_coord_offsetG = 0;
860     j_coord_offsetH = 0;
861
862     outeriter        = 0;
863     inneriter        = 0;
864
865     for(iidx=0;iidx<4*DIM;iidx++)
866     {
867         scratch[iidx] = 0.0;
868     }
869
870     /* Start outer loop over neighborlists */
871     for(iidx=0; iidx<nri; iidx++)
872     {
873         /* Load shift vector for this list */
874         i_shift_offset   = DIM*shiftidx[iidx];
875
876         /* Load limits for loop over neighbors */
877         j_index_start    = jindex[iidx];
878         j_index_end      = jindex[iidx+1];
879
880         /* Get outer coordinate index */
881         inr              = iinr[iidx];
882         i_coord_offset   = DIM*inr;
883
884         /* Load i particle coords and add shift vector */
885         gmx_mm256_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
886                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
887
888         fix0             = _mm256_setzero_ps();
889         fiy0             = _mm256_setzero_ps();
890         fiz0             = _mm256_setzero_ps();
891         fix1             = _mm256_setzero_ps();
892         fiy1             = _mm256_setzero_ps();
893         fiz1             = _mm256_setzero_ps();
894         fix2             = _mm256_setzero_ps();
895         fiy2             = _mm256_setzero_ps();
896         fiz2             = _mm256_setzero_ps();
897
898         /* Start inner kernel loop */
899         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
900         {
901
902             /* Get j neighbor index, and coordinate index */
903             jnrA             = jjnr[jidx];
904             jnrB             = jjnr[jidx+1];
905             jnrC             = jjnr[jidx+2];
906             jnrD             = jjnr[jidx+3];
907             jnrE             = jjnr[jidx+4];
908             jnrF             = jjnr[jidx+5];
909             jnrG             = jjnr[jidx+6];
910             jnrH             = jjnr[jidx+7];
911             j_coord_offsetA  = DIM*jnrA;
912             j_coord_offsetB  = DIM*jnrB;
913             j_coord_offsetC  = DIM*jnrC;
914             j_coord_offsetD  = DIM*jnrD;
915             j_coord_offsetE  = DIM*jnrE;
916             j_coord_offsetF  = DIM*jnrF;
917             j_coord_offsetG  = DIM*jnrG;
918             j_coord_offsetH  = DIM*jnrH;
919
920             /* load j atom coordinates */
921             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
922                                                  x+j_coord_offsetC,x+j_coord_offsetD,
923                                                  x+j_coord_offsetE,x+j_coord_offsetF,
924                                                  x+j_coord_offsetG,x+j_coord_offsetH,
925                                                  &jx0,&jy0,&jz0);
926
927             /* Calculate displacement vector */
928             dx00             = _mm256_sub_ps(ix0,jx0);
929             dy00             = _mm256_sub_ps(iy0,jy0);
930             dz00             = _mm256_sub_ps(iz0,jz0);
931             dx10             = _mm256_sub_ps(ix1,jx0);
932             dy10             = _mm256_sub_ps(iy1,jy0);
933             dz10             = _mm256_sub_ps(iz1,jz0);
934             dx20             = _mm256_sub_ps(ix2,jx0);
935             dy20             = _mm256_sub_ps(iy2,jy0);
936             dz20             = _mm256_sub_ps(iz2,jz0);
937
938             /* Calculate squared distance and things based on it */
939             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
940             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
941             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
942
943             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
944             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
945             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
946
947             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
948
949             /* Load parameters for j particles */
950             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
951                                                                  charge+jnrC+0,charge+jnrD+0,
952                                                                  charge+jnrE+0,charge+jnrF+0,
953                                                                  charge+jnrG+0,charge+jnrH+0);
954             vdwjidx0A        = 2*vdwtype[jnrA+0];
955             vdwjidx0B        = 2*vdwtype[jnrB+0];
956             vdwjidx0C        = 2*vdwtype[jnrC+0];
957             vdwjidx0D        = 2*vdwtype[jnrD+0];
958             vdwjidx0E        = 2*vdwtype[jnrE+0];
959             vdwjidx0F        = 2*vdwtype[jnrF+0];
960             vdwjidx0G        = 2*vdwtype[jnrG+0];
961             vdwjidx0H        = 2*vdwtype[jnrH+0];
962
963             fjx0             = _mm256_setzero_ps();
964             fjy0             = _mm256_setzero_ps();
965             fjz0             = _mm256_setzero_ps();
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             r00              = _mm256_mul_ps(rsq00,rinv00);
972
973             /* Compute parameters for interactions between i and j atoms */
974             qq00             = _mm256_mul_ps(iq0,jq0);
975             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
976                                             vdwioffsetptr0+vdwjidx0B,
977                                             vdwioffsetptr0+vdwjidx0C,
978                                             vdwioffsetptr0+vdwjidx0D,
979                                             vdwioffsetptr0+vdwjidx0E,
980                                             vdwioffsetptr0+vdwjidx0F,
981                                             vdwioffsetptr0+vdwjidx0G,
982                                             vdwioffsetptr0+vdwjidx0H,
983                                             &c6_00,&c12_00);
984
985             /* Calculate table index by multiplying r with table scale and truncate to integer */
986             rt               = _mm256_mul_ps(r00,vftabscale);
987             vfitab           = _mm256_cvttps_epi32(rt);
988             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
989             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
990             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
991             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
992             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
993             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
994
995             /* CUBIC SPLINE TABLE ELECTROSTATICS */
996             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
997                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
998             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
999                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1000             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1001                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1002             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1003                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1004             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1005             Heps             = _mm256_mul_ps(vfeps,H);
1006             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1007             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1008             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1009
1010             /* LENNARD-JONES DISPERSION/REPULSION */
1011
1012             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1013             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1014
1015             fscal            = _mm256_add_ps(felec,fvdw);
1016
1017             /* Calculate temporary vectorial force */
1018             tx               = _mm256_mul_ps(fscal,dx00);
1019             ty               = _mm256_mul_ps(fscal,dy00);
1020             tz               = _mm256_mul_ps(fscal,dz00);
1021
1022             /* Update vectorial force */
1023             fix0             = _mm256_add_ps(fix0,tx);
1024             fiy0             = _mm256_add_ps(fiy0,ty);
1025             fiz0             = _mm256_add_ps(fiz0,tz);
1026
1027             fjx0             = _mm256_add_ps(fjx0,tx);
1028             fjy0             = _mm256_add_ps(fjy0,ty);
1029             fjz0             = _mm256_add_ps(fjz0,tz);
1030
1031             /**************************
1032              * CALCULATE INTERACTIONS *
1033              **************************/
1034
1035             r10              = _mm256_mul_ps(rsq10,rinv10);
1036
1037             /* Compute parameters for interactions between i and j atoms */
1038             qq10             = _mm256_mul_ps(iq1,jq0);
1039
1040             /* Calculate table index by multiplying r with table scale and truncate to integer */
1041             rt               = _mm256_mul_ps(r10,vftabscale);
1042             vfitab           = _mm256_cvttps_epi32(rt);
1043             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1044             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1045             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1046             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1047             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1048             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1049
1050             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1051             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1052                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1053             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1054                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1055             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1056                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1057             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1058                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1059             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1060             Heps             = _mm256_mul_ps(vfeps,H);
1061             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1062             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1063             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1064
1065             fscal            = felec;
1066
1067             /* Calculate temporary vectorial force */
1068             tx               = _mm256_mul_ps(fscal,dx10);
1069             ty               = _mm256_mul_ps(fscal,dy10);
1070             tz               = _mm256_mul_ps(fscal,dz10);
1071
1072             /* Update vectorial force */
1073             fix1             = _mm256_add_ps(fix1,tx);
1074             fiy1             = _mm256_add_ps(fiy1,ty);
1075             fiz1             = _mm256_add_ps(fiz1,tz);
1076
1077             fjx0             = _mm256_add_ps(fjx0,tx);
1078             fjy0             = _mm256_add_ps(fjy0,ty);
1079             fjz0             = _mm256_add_ps(fjz0,tz);
1080
1081             /**************************
1082              * CALCULATE INTERACTIONS *
1083              **************************/
1084
1085             r20              = _mm256_mul_ps(rsq20,rinv20);
1086
1087             /* Compute parameters for interactions between i and j atoms */
1088             qq20             = _mm256_mul_ps(iq2,jq0);
1089
1090             /* Calculate table index by multiplying r with table scale and truncate to integer */
1091             rt               = _mm256_mul_ps(r20,vftabscale);
1092             vfitab           = _mm256_cvttps_epi32(rt);
1093             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1094             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1095             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1096             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1097             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1098             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1099
1100             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1101             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1102                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1103             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1104                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1105             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1106                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1107             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1108                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1109             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1110             Heps             = _mm256_mul_ps(vfeps,H);
1111             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1112             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1113             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1114
1115             fscal            = felec;
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm256_mul_ps(fscal,dx20);
1119             ty               = _mm256_mul_ps(fscal,dy20);
1120             tz               = _mm256_mul_ps(fscal,dz20);
1121
1122             /* Update vectorial force */
1123             fix2             = _mm256_add_ps(fix2,tx);
1124             fiy2             = _mm256_add_ps(fiy2,ty);
1125             fiz2             = _mm256_add_ps(fiz2,tz);
1126
1127             fjx0             = _mm256_add_ps(fjx0,tx);
1128             fjy0             = _mm256_add_ps(fjy0,ty);
1129             fjz0             = _mm256_add_ps(fjz0,tz);
1130
1131             fjptrA             = f+j_coord_offsetA;
1132             fjptrB             = f+j_coord_offsetB;
1133             fjptrC             = f+j_coord_offsetC;
1134             fjptrD             = f+j_coord_offsetD;
1135             fjptrE             = f+j_coord_offsetE;
1136             fjptrF             = f+j_coord_offsetF;
1137             fjptrG             = f+j_coord_offsetG;
1138             fjptrH             = f+j_coord_offsetH;
1139
1140             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1141
1142             /* Inner loop uses 128 flops */
1143         }
1144
1145         if(jidx<j_index_end)
1146         {
1147
1148             /* Get j neighbor index, and coordinate index */
1149             jnrlistA         = jjnr[jidx];
1150             jnrlistB         = jjnr[jidx+1];
1151             jnrlistC         = jjnr[jidx+2];
1152             jnrlistD         = jjnr[jidx+3];
1153             jnrlistE         = jjnr[jidx+4];
1154             jnrlistF         = jjnr[jidx+5];
1155             jnrlistG         = jjnr[jidx+6];
1156             jnrlistH         = jjnr[jidx+7];
1157             /* Sign of each element will be negative for non-real atoms.
1158              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1159              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1160              */
1161             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
1162                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
1163                                             
1164             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1165             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1166             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1167             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1168             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
1169             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
1170             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
1171             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
1172             j_coord_offsetA  = DIM*jnrA;
1173             j_coord_offsetB  = DIM*jnrB;
1174             j_coord_offsetC  = DIM*jnrC;
1175             j_coord_offsetD  = DIM*jnrD;
1176             j_coord_offsetE  = DIM*jnrE;
1177             j_coord_offsetF  = DIM*jnrF;
1178             j_coord_offsetG  = DIM*jnrG;
1179             j_coord_offsetH  = DIM*jnrH;
1180
1181             /* load j atom coordinates */
1182             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1183                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1184                                                  x+j_coord_offsetE,x+j_coord_offsetF,
1185                                                  x+j_coord_offsetG,x+j_coord_offsetH,
1186                                                  &jx0,&jy0,&jz0);
1187
1188             /* Calculate displacement vector */
1189             dx00             = _mm256_sub_ps(ix0,jx0);
1190             dy00             = _mm256_sub_ps(iy0,jy0);
1191             dz00             = _mm256_sub_ps(iz0,jz0);
1192             dx10             = _mm256_sub_ps(ix1,jx0);
1193             dy10             = _mm256_sub_ps(iy1,jy0);
1194             dz10             = _mm256_sub_ps(iz1,jz0);
1195             dx20             = _mm256_sub_ps(ix2,jx0);
1196             dy20             = _mm256_sub_ps(iy2,jy0);
1197             dz20             = _mm256_sub_ps(iz2,jz0);
1198
1199             /* Calculate squared distance and things based on it */
1200             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
1201             rsq10            = gmx_mm256_calc_rsq_ps(dx10,dy10,dz10);
1202             rsq20            = gmx_mm256_calc_rsq_ps(dx20,dy20,dz20);
1203
1204             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
1205             rinv10           = gmx_mm256_invsqrt_ps(rsq10);
1206             rinv20           = gmx_mm256_invsqrt_ps(rsq20);
1207
1208             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
1209
1210             /* Load parameters for j particles */
1211             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1212                                                                  charge+jnrC+0,charge+jnrD+0,
1213                                                                  charge+jnrE+0,charge+jnrF+0,
1214                                                                  charge+jnrG+0,charge+jnrH+0);
1215             vdwjidx0A        = 2*vdwtype[jnrA+0];
1216             vdwjidx0B        = 2*vdwtype[jnrB+0];
1217             vdwjidx0C        = 2*vdwtype[jnrC+0];
1218             vdwjidx0D        = 2*vdwtype[jnrD+0];
1219             vdwjidx0E        = 2*vdwtype[jnrE+0];
1220             vdwjidx0F        = 2*vdwtype[jnrF+0];
1221             vdwjidx0G        = 2*vdwtype[jnrG+0];
1222             vdwjidx0H        = 2*vdwtype[jnrH+0];
1223
1224             fjx0             = _mm256_setzero_ps();
1225             fjy0             = _mm256_setzero_ps();
1226             fjz0             = _mm256_setzero_ps();
1227
1228             /**************************
1229              * CALCULATE INTERACTIONS *
1230              **************************/
1231
1232             r00              = _mm256_mul_ps(rsq00,rinv00);
1233             r00              = _mm256_andnot_ps(dummy_mask,r00);
1234
1235             /* Compute parameters for interactions between i and j atoms */
1236             qq00             = _mm256_mul_ps(iq0,jq0);
1237             gmx_mm256_load_8pair_swizzle_ps(vdwioffsetptr0+vdwjidx0A,
1238                                             vdwioffsetptr0+vdwjidx0B,
1239                                             vdwioffsetptr0+vdwjidx0C,
1240                                             vdwioffsetptr0+vdwjidx0D,
1241                                             vdwioffsetptr0+vdwjidx0E,
1242                                             vdwioffsetptr0+vdwjidx0F,
1243                                             vdwioffsetptr0+vdwjidx0G,
1244                                             vdwioffsetptr0+vdwjidx0H,
1245                                             &c6_00,&c12_00);
1246
1247             /* Calculate table index by multiplying r with table scale and truncate to integer */
1248             rt               = _mm256_mul_ps(r00,vftabscale);
1249             vfitab           = _mm256_cvttps_epi32(rt);
1250             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1251             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1252             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1253             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1254             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1255             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1256
1257             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1258             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1259                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1260             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1261                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1262             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1263                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1264             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1265                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1266             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1267             Heps             = _mm256_mul_ps(vfeps,H);
1268             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1269             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1270             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq00,FF),_mm256_mul_ps(vftabscale,rinv00)));
1271
1272             /* LENNARD-JONES DISPERSION/REPULSION */
1273
1274             rinvsix          = _mm256_mul_ps(_mm256_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1275             fvdw             = _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(c12_00,rinvsix),c6_00),_mm256_mul_ps(rinvsix,rinvsq00));
1276
1277             fscal            = _mm256_add_ps(felec,fvdw);
1278
1279             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1280
1281             /* Calculate temporary vectorial force */
1282             tx               = _mm256_mul_ps(fscal,dx00);
1283             ty               = _mm256_mul_ps(fscal,dy00);
1284             tz               = _mm256_mul_ps(fscal,dz00);
1285
1286             /* Update vectorial force */
1287             fix0             = _mm256_add_ps(fix0,tx);
1288             fiy0             = _mm256_add_ps(fiy0,ty);
1289             fiz0             = _mm256_add_ps(fiz0,tz);
1290
1291             fjx0             = _mm256_add_ps(fjx0,tx);
1292             fjy0             = _mm256_add_ps(fjy0,ty);
1293             fjz0             = _mm256_add_ps(fjz0,tz);
1294
1295             /**************************
1296              * CALCULATE INTERACTIONS *
1297              **************************/
1298
1299             r10              = _mm256_mul_ps(rsq10,rinv10);
1300             r10              = _mm256_andnot_ps(dummy_mask,r10);
1301
1302             /* Compute parameters for interactions between i and j atoms */
1303             qq10             = _mm256_mul_ps(iq1,jq0);
1304
1305             /* Calculate table index by multiplying r with table scale and truncate to integer */
1306             rt               = _mm256_mul_ps(r10,vftabscale);
1307             vfitab           = _mm256_cvttps_epi32(rt);
1308             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1309             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1310             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1311             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1312             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1313             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1314
1315             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1316             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1317                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1318             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1319                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1320             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1321                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1322             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1323                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1324             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1325             Heps             = _mm256_mul_ps(vfeps,H);
1326             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1327             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1328             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq10,FF),_mm256_mul_ps(vftabscale,rinv10)));
1329
1330             fscal            = felec;
1331
1332             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1333
1334             /* Calculate temporary vectorial force */
1335             tx               = _mm256_mul_ps(fscal,dx10);
1336             ty               = _mm256_mul_ps(fscal,dy10);
1337             tz               = _mm256_mul_ps(fscal,dz10);
1338
1339             /* Update vectorial force */
1340             fix1             = _mm256_add_ps(fix1,tx);
1341             fiy1             = _mm256_add_ps(fiy1,ty);
1342             fiz1             = _mm256_add_ps(fiz1,tz);
1343
1344             fjx0             = _mm256_add_ps(fjx0,tx);
1345             fjy0             = _mm256_add_ps(fjy0,ty);
1346             fjz0             = _mm256_add_ps(fjz0,tz);
1347
1348             /**************************
1349              * CALCULATE INTERACTIONS *
1350              **************************/
1351
1352             r20              = _mm256_mul_ps(rsq20,rinv20);
1353             r20              = _mm256_andnot_ps(dummy_mask,r20);
1354
1355             /* Compute parameters for interactions between i and j atoms */
1356             qq20             = _mm256_mul_ps(iq2,jq0);
1357
1358             /* Calculate table index by multiplying r with table scale and truncate to integer */
1359             rt               = _mm256_mul_ps(r20,vftabscale);
1360             vfitab           = _mm256_cvttps_epi32(rt);
1361             vfeps            = _mm256_sub_ps(rt,_mm256_round_ps(rt, _MM_FROUND_FLOOR));
1362             /*         AVX1 does not support 256-bit integer operations, so now we go to 128-bit mode... */
1363             vfitab_lo        = _mm256_extractf128_si256(vfitab,0x0);
1364             vfitab_hi        = _mm256_extractf128_si256(vfitab,0x1);
1365             vfitab_lo        = _mm_slli_epi32(vfitab_lo,2);
1366             vfitab_hi        = _mm_slli_epi32(vfitab_hi,2);
1367
1368             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1369             Y                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,0)),
1370                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,0)));
1371             F                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,1)),
1372                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,1)));
1373             G                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,2)),
1374                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,2)));
1375             H                = gmx_mm256_set_m128(_mm_load_ps(vftab + _mm_extract_epi32(vfitab_hi,3)),
1376                                                   _mm_load_ps(vftab + _mm_extract_epi32(vfitab_lo,3)));
1377             GMX_MM256_HALFTRANSPOSE4_PS(Y,F,G,H);
1378             Heps             = _mm256_mul_ps(vfeps,H);
1379             Fp               = _mm256_add_ps(F,_mm256_mul_ps(vfeps,_mm256_add_ps(G,Heps)));
1380             FF               = _mm256_add_ps(Fp,_mm256_mul_ps(vfeps,_mm256_add_ps(G,_mm256_add_ps(Heps,Heps))));
1381             felec            = _mm256_xor_ps(signbit,_mm256_mul_ps(_mm256_mul_ps(qq20,FF),_mm256_mul_ps(vftabscale,rinv20)));
1382
1383             fscal            = felec;
1384
1385             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
1386
1387             /* Calculate temporary vectorial force */
1388             tx               = _mm256_mul_ps(fscal,dx20);
1389             ty               = _mm256_mul_ps(fscal,dy20);
1390             tz               = _mm256_mul_ps(fscal,dz20);
1391
1392             /* Update vectorial force */
1393             fix2             = _mm256_add_ps(fix2,tx);
1394             fiy2             = _mm256_add_ps(fiy2,ty);
1395             fiz2             = _mm256_add_ps(fiz2,tz);
1396
1397             fjx0             = _mm256_add_ps(fjx0,tx);
1398             fjy0             = _mm256_add_ps(fjy0,ty);
1399             fjz0             = _mm256_add_ps(fjz0,tz);
1400
1401             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1402             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1403             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1404             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1405             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
1406             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
1407             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
1408             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
1409
1410             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,fjx0,fjy0,fjz0);
1411
1412             /* Inner loop uses 131 flops */
1413         }
1414
1415         /* End of innermost loop */
1416
1417         gmx_mm256_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1418                                                  f+i_coord_offset,fshift+i_shift_offset);
1419
1420         /* Increment number of inner iterations */
1421         inneriter                  += j_index_end - j_index_start;
1422
1423         /* Outer loop uses 18 flops */
1424     }
1425
1426     /* Increment number of outer iterations */
1427     outeriter        += nri;
1428
1429     /* Update outer/inner flops */
1430
1431     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1432 }