fde9f635b9bf7482336f58175faf4e636bcf4222
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m256d          dummy_mask,cutoff_mask;
78     __m128           tmpmask0,tmpmask1;
79     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
80     __m256d          one     = _mm256_set1_pd(1.0);
81     __m256d          two     = _mm256_set1_pd(2.0);
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = _mm256_set1_pd(fr->epsfac);
94     charge           = mdatoms->chargeA;
95     krf              = _mm256_set1_pd(fr->ic->k_rf);
96     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
97     crf              = _mm256_set1_pd(fr->ic->c_rf);
98
99     /* Avoid stupid compiler warnings */
100     jnrA = jnrB = jnrC = jnrD = 0;
101     j_coord_offsetA = 0;
102     j_coord_offsetB = 0;
103     j_coord_offsetC = 0;
104     j_coord_offsetD = 0;
105
106     outeriter        = 0;
107     inneriter        = 0;
108
109     for(iidx=0;iidx<4*DIM;iidx++)
110     {
111         scratch[iidx] = 0.0;
112     }
113
114     /* Start outer loop over neighborlists */
115     for(iidx=0; iidx<nri; iidx++)
116     {
117         /* Load shift vector for this list */
118         i_shift_offset   = DIM*shiftidx[iidx];
119
120         /* Load limits for loop over neighbors */
121         j_index_start    = jindex[iidx];
122         j_index_end      = jindex[iidx+1];
123
124         /* Get outer coordinate index */
125         inr              = iinr[iidx];
126         i_coord_offset   = DIM*inr;
127
128         /* Load i particle coords and add shift vector */
129         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
130
131         fix0             = _mm256_setzero_pd();
132         fiy0             = _mm256_setzero_pd();
133         fiz0             = _mm256_setzero_pd();
134
135         /* Load parameters for i particles */
136         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
137
138         /* Reset potential sums */
139         velecsum         = _mm256_setzero_pd();
140
141         /* Start inner kernel loop */
142         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
143         {
144
145             /* Get j neighbor index, and coordinate index */
146             jnrA             = jjnr[jidx];
147             jnrB             = jjnr[jidx+1];
148             jnrC             = jjnr[jidx+2];
149             jnrD             = jjnr[jidx+3];
150             j_coord_offsetA  = DIM*jnrA;
151             j_coord_offsetB  = DIM*jnrB;
152             j_coord_offsetC  = DIM*jnrC;
153             j_coord_offsetD  = DIM*jnrD;
154
155             /* load j atom coordinates */
156             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
157                                                  x+j_coord_offsetC,x+j_coord_offsetD,
158                                                  &jx0,&jy0,&jz0);
159
160             /* Calculate displacement vector */
161             dx00             = _mm256_sub_pd(ix0,jx0);
162             dy00             = _mm256_sub_pd(iy0,jy0);
163             dz00             = _mm256_sub_pd(iz0,jz0);
164
165             /* Calculate squared distance and things based on it */
166             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
167
168             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
169
170             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
171
172             /* Load parameters for j particles */
173             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
174                                                                  charge+jnrC+0,charge+jnrD+0);
175
176             /**************************
177              * CALCULATE INTERACTIONS *
178              **************************/
179
180             /* Compute parameters for interactions between i and j atoms */
181             qq00             = _mm256_mul_pd(iq0,jq0);
182
183             /* REACTION-FIELD ELECTROSTATICS */
184             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
185             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
186
187             /* Update potential sum for this i atom from the interaction with this j atom. */
188             velecsum         = _mm256_add_pd(velecsum,velec);
189
190             fscal            = felec;
191
192             /* Calculate temporary vectorial force */
193             tx               = _mm256_mul_pd(fscal,dx00);
194             ty               = _mm256_mul_pd(fscal,dy00);
195             tz               = _mm256_mul_pd(fscal,dz00);
196
197             /* Update vectorial force */
198             fix0             = _mm256_add_pd(fix0,tx);
199             fiy0             = _mm256_add_pd(fiy0,ty);
200             fiz0             = _mm256_add_pd(fiz0,tz);
201
202             fjptrA             = f+j_coord_offsetA;
203             fjptrB             = f+j_coord_offsetB;
204             fjptrC             = f+j_coord_offsetC;
205             fjptrD             = f+j_coord_offsetD;
206             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
207
208             /* Inner loop uses 32 flops */
209         }
210
211         if(jidx<j_index_end)
212         {
213
214             /* Get j neighbor index, and coordinate index */
215             jnrlistA         = jjnr[jidx];
216             jnrlistB         = jjnr[jidx+1];
217             jnrlistC         = jjnr[jidx+2];
218             jnrlistD         = jjnr[jidx+3];
219             /* Sign of each element will be negative for non-real atoms.
220              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
221              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
222              */
223             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
224
225             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
226             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
227             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
228
229             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
230             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
231             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
232             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
233             j_coord_offsetA  = DIM*jnrA;
234             j_coord_offsetB  = DIM*jnrB;
235             j_coord_offsetC  = DIM*jnrC;
236             j_coord_offsetD  = DIM*jnrD;
237
238             /* load j atom coordinates */
239             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
240                                                  x+j_coord_offsetC,x+j_coord_offsetD,
241                                                  &jx0,&jy0,&jz0);
242
243             /* Calculate displacement vector */
244             dx00             = _mm256_sub_pd(ix0,jx0);
245             dy00             = _mm256_sub_pd(iy0,jy0);
246             dz00             = _mm256_sub_pd(iz0,jz0);
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
250
251             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
252
253             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
254
255             /* Load parameters for j particles */
256             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
257                                                                  charge+jnrC+0,charge+jnrD+0);
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             /* Compute parameters for interactions between i and j atoms */
264             qq00             = _mm256_mul_pd(iq0,jq0);
265
266             /* REACTION-FIELD ELECTROSTATICS */
267             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
268             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
269
270             /* Update potential sum for this i atom from the interaction with this j atom. */
271             velec            = _mm256_andnot_pd(dummy_mask,velec);
272             velecsum         = _mm256_add_pd(velecsum,velec);
273
274             fscal            = felec;
275
276             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
277
278             /* Calculate temporary vectorial force */
279             tx               = _mm256_mul_pd(fscal,dx00);
280             ty               = _mm256_mul_pd(fscal,dy00);
281             tz               = _mm256_mul_pd(fscal,dz00);
282
283             /* Update vectorial force */
284             fix0             = _mm256_add_pd(fix0,tx);
285             fiy0             = _mm256_add_pd(fiy0,ty);
286             fiz0             = _mm256_add_pd(fiz0,tz);
287
288             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
289             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
290             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
291             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
292             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
293
294             /* Inner loop uses 32 flops */
295         }
296
297         /* End of innermost loop */
298
299         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
300                                                  f+i_coord_offset,fshift+i_shift_offset);
301
302         ggid                        = gid[iidx];
303         /* Update potential energies */
304         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
305
306         /* Increment number of inner iterations */
307         inneriter                  += j_index_end - j_index_start;
308
309         /* Outer loop uses 8 flops */
310     }
311
312     /* Increment number of outer iterations */
313     outeriter        += nri;
314
315     /* Update outer/inner flops */
316
317     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*32);
318 }
319 /*
320  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwNone_GeomP1P1_F_avx_256_double
321  * Electrostatics interaction: ReactionField
322  * VdW interaction:            None
323  * Geometry:                   Particle-Particle
324  * Calculate force/pot:        Force
325  */
326 void
327 nb_kernel_ElecRF_VdwNone_GeomP1P1_F_avx_256_double
328                     (t_nblist * gmx_restrict                nlist,
329                      rvec * gmx_restrict                    xx,
330                      rvec * gmx_restrict                    ff,
331                      t_forcerec * gmx_restrict              fr,
332                      t_mdatoms * gmx_restrict               mdatoms,
333                      nb_kernel_data_t * gmx_restrict        kernel_data,
334                      t_nrnb * gmx_restrict                  nrnb)
335 {
336     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
337      * just 0 for non-waters.
338      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
339      * jnr indices corresponding to data put in the four positions in the SIMD register.
340      */
341     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
342     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
343     int              jnrA,jnrB,jnrC,jnrD;
344     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
345     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
346     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
347     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
348     real             rcutoff_scalar;
349     real             *shiftvec,*fshift,*x,*f;
350     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
351     real             scratch[4*DIM];
352     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
353     real *           vdwioffsetptr0;
354     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
355     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
356     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
357     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
358     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
359     real             *charge;
360     __m256d          dummy_mask,cutoff_mask;
361     __m128           tmpmask0,tmpmask1;
362     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
363     __m256d          one     = _mm256_set1_pd(1.0);
364     __m256d          two     = _mm256_set1_pd(2.0);
365     x                = xx[0];
366     f                = ff[0];
367
368     nri              = nlist->nri;
369     iinr             = nlist->iinr;
370     jindex           = nlist->jindex;
371     jjnr             = nlist->jjnr;
372     shiftidx         = nlist->shift;
373     gid              = nlist->gid;
374     shiftvec         = fr->shift_vec[0];
375     fshift           = fr->fshift[0];
376     facel            = _mm256_set1_pd(fr->epsfac);
377     charge           = mdatoms->chargeA;
378     krf              = _mm256_set1_pd(fr->ic->k_rf);
379     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
380     crf              = _mm256_set1_pd(fr->ic->c_rf);
381
382     /* Avoid stupid compiler warnings */
383     jnrA = jnrB = jnrC = jnrD = 0;
384     j_coord_offsetA = 0;
385     j_coord_offsetB = 0;
386     j_coord_offsetC = 0;
387     j_coord_offsetD = 0;
388
389     outeriter        = 0;
390     inneriter        = 0;
391
392     for(iidx=0;iidx<4*DIM;iidx++)
393     {
394         scratch[iidx] = 0.0;
395     }
396
397     /* Start outer loop over neighborlists */
398     for(iidx=0; iidx<nri; iidx++)
399     {
400         /* Load shift vector for this list */
401         i_shift_offset   = DIM*shiftidx[iidx];
402
403         /* Load limits for loop over neighbors */
404         j_index_start    = jindex[iidx];
405         j_index_end      = jindex[iidx+1];
406
407         /* Get outer coordinate index */
408         inr              = iinr[iidx];
409         i_coord_offset   = DIM*inr;
410
411         /* Load i particle coords and add shift vector */
412         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
413
414         fix0             = _mm256_setzero_pd();
415         fiy0             = _mm256_setzero_pd();
416         fiz0             = _mm256_setzero_pd();
417
418         /* Load parameters for i particles */
419         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
420
421         /* Start inner kernel loop */
422         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
423         {
424
425             /* Get j neighbor index, and coordinate index */
426             jnrA             = jjnr[jidx];
427             jnrB             = jjnr[jidx+1];
428             jnrC             = jjnr[jidx+2];
429             jnrD             = jjnr[jidx+3];
430             j_coord_offsetA  = DIM*jnrA;
431             j_coord_offsetB  = DIM*jnrB;
432             j_coord_offsetC  = DIM*jnrC;
433             j_coord_offsetD  = DIM*jnrD;
434
435             /* load j atom coordinates */
436             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
437                                                  x+j_coord_offsetC,x+j_coord_offsetD,
438                                                  &jx0,&jy0,&jz0);
439
440             /* Calculate displacement vector */
441             dx00             = _mm256_sub_pd(ix0,jx0);
442             dy00             = _mm256_sub_pd(iy0,jy0);
443             dz00             = _mm256_sub_pd(iz0,jz0);
444
445             /* Calculate squared distance and things based on it */
446             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
447
448             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
449
450             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
451
452             /* Load parameters for j particles */
453             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
454                                                                  charge+jnrC+0,charge+jnrD+0);
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             /* Compute parameters for interactions between i and j atoms */
461             qq00             = _mm256_mul_pd(iq0,jq0);
462
463             /* REACTION-FIELD ELECTROSTATICS */
464             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
465
466             fscal            = felec;
467
468             /* Calculate temporary vectorial force */
469             tx               = _mm256_mul_pd(fscal,dx00);
470             ty               = _mm256_mul_pd(fscal,dy00);
471             tz               = _mm256_mul_pd(fscal,dz00);
472
473             /* Update vectorial force */
474             fix0             = _mm256_add_pd(fix0,tx);
475             fiy0             = _mm256_add_pd(fiy0,ty);
476             fiz0             = _mm256_add_pd(fiz0,tz);
477
478             fjptrA             = f+j_coord_offsetA;
479             fjptrB             = f+j_coord_offsetB;
480             fjptrC             = f+j_coord_offsetC;
481             fjptrD             = f+j_coord_offsetD;
482             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
483
484             /* Inner loop uses 27 flops */
485         }
486
487         if(jidx<j_index_end)
488         {
489
490             /* Get j neighbor index, and coordinate index */
491             jnrlistA         = jjnr[jidx];
492             jnrlistB         = jjnr[jidx+1];
493             jnrlistC         = jjnr[jidx+2];
494             jnrlistD         = jjnr[jidx+3];
495             /* Sign of each element will be negative for non-real atoms.
496              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
497              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
498              */
499             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
500
501             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
502             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
503             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
504
505             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
506             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
507             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
508             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
509             j_coord_offsetA  = DIM*jnrA;
510             j_coord_offsetB  = DIM*jnrB;
511             j_coord_offsetC  = DIM*jnrC;
512             j_coord_offsetD  = DIM*jnrD;
513
514             /* load j atom coordinates */
515             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
516                                                  x+j_coord_offsetC,x+j_coord_offsetD,
517                                                  &jx0,&jy0,&jz0);
518
519             /* Calculate displacement vector */
520             dx00             = _mm256_sub_pd(ix0,jx0);
521             dy00             = _mm256_sub_pd(iy0,jy0);
522             dz00             = _mm256_sub_pd(iz0,jz0);
523
524             /* Calculate squared distance and things based on it */
525             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
526
527             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
528
529             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
530
531             /* Load parameters for j particles */
532             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
533                                                                  charge+jnrC+0,charge+jnrD+0);
534
535             /**************************
536              * CALCULATE INTERACTIONS *
537              **************************/
538
539             /* Compute parameters for interactions between i and j atoms */
540             qq00             = _mm256_mul_pd(iq0,jq0);
541
542             /* REACTION-FIELD ELECTROSTATICS */
543             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
544
545             fscal            = felec;
546
547             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
548
549             /* Calculate temporary vectorial force */
550             tx               = _mm256_mul_pd(fscal,dx00);
551             ty               = _mm256_mul_pd(fscal,dy00);
552             tz               = _mm256_mul_pd(fscal,dz00);
553
554             /* Update vectorial force */
555             fix0             = _mm256_add_pd(fix0,tx);
556             fiy0             = _mm256_add_pd(fiy0,ty);
557             fiz0             = _mm256_add_pd(fiz0,tz);
558
559             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
560             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
561             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
562             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
563             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
564
565             /* Inner loop uses 27 flops */
566         }
567
568         /* End of innermost loop */
569
570         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
571                                                  f+i_coord_offset,fshift+i_shift_offset);
572
573         /* Increment number of inner iterations */
574         inneriter                  += j_index_end - j_index_start;
575
576         /* Outer loop uses 7 flops */
577     }
578
579     /* Increment number of outer iterations */
580     outeriter        += nri;
581
582     /* Update outer/inner flops */
583
584     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*27);
585 }