b3a18371c293ee3e20b4855cdf018dde3e5ec5ad
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m256d          dummy_mask,cutoff_mask;
93     __m128           tmpmask0,tmpmask1;
94     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
95     __m256d          one     = _mm256_set1_pd(1.0);
96     __m256d          two     = _mm256_set1_pd(2.0);
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = _mm256_set1_pd(fr->epsfac);
109     charge           = mdatoms->chargeA;
110     krf              = _mm256_set1_pd(fr->ic->k_rf);
111     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
112     crf              = _mm256_set1_pd(fr->ic->c_rf);
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
120     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
121     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
122     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
123
124     /* Avoid stupid compiler warnings */
125     jnrA = jnrB = jnrC = jnrD = 0;
126     j_coord_offsetA = 0;
127     j_coord_offsetB = 0;
128     j_coord_offsetC = 0;
129     j_coord_offsetD = 0;
130
131     outeriter        = 0;
132     inneriter        = 0;
133
134     for(iidx=0;iidx<4*DIM;iidx++)
135     {
136         scratch[iidx] = 0.0;
137     }
138
139     /* Start outer loop over neighborlists */
140     for(iidx=0; iidx<nri; iidx++)
141     {
142         /* Load shift vector for this list */
143         i_shift_offset   = DIM*shiftidx[iidx];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
155                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
156
157         fix0             = _mm256_setzero_pd();
158         fiy0             = _mm256_setzero_pd();
159         fiz0             = _mm256_setzero_pd();
160         fix1             = _mm256_setzero_pd();
161         fiy1             = _mm256_setzero_pd();
162         fiz1             = _mm256_setzero_pd();
163         fix2             = _mm256_setzero_pd();
164         fiy2             = _mm256_setzero_pd();
165         fiz2             = _mm256_setzero_pd();
166         fix3             = _mm256_setzero_pd();
167         fiy3             = _mm256_setzero_pd();
168         fiz3             = _mm256_setzero_pd();
169
170         /* Reset potential sums */
171         velecsum         = _mm256_setzero_pd();
172         vvdwsum          = _mm256_setzero_pd();
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176         {
177
178             /* Get j neighbor index, and coordinate index */
179             jnrA             = jjnr[jidx];
180             jnrB             = jjnr[jidx+1];
181             jnrC             = jjnr[jidx+2];
182             jnrD             = jjnr[jidx+3];
183             j_coord_offsetA  = DIM*jnrA;
184             j_coord_offsetB  = DIM*jnrB;
185             j_coord_offsetC  = DIM*jnrC;
186             j_coord_offsetD  = DIM*jnrD;
187
188             /* load j atom coordinates */
189             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
190                                                  x+j_coord_offsetC,x+j_coord_offsetD,
191                                                  &jx0,&jy0,&jz0);
192
193             /* Calculate displacement vector */
194             dx00             = _mm256_sub_pd(ix0,jx0);
195             dy00             = _mm256_sub_pd(iy0,jy0);
196             dz00             = _mm256_sub_pd(iz0,jz0);
197             dx10             = _mm256_sub_pd(ix1,jx0);
198             dy10             = _mm256_sub_pd(iy1,jy0);
199             dz10             = _mm256_sub_pd(iz1,jz0);
200             dx20             = _mm256_sub_pd(ix2,jx0);
201             dy20             = _mm256_sub_pd(iy2,jy0);
202             dz20             = _mm256_sub_pd(iz2,jz0);
203             dx30             = _mm256_sub_pd(ix3,jx0);
204             dy30             = _mm256_sub_pd(iy3,jy0);
205             dz30             = _mm256_sub_pd(iz3,jz0);
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
209             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
210             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
211             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
212
213             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
214             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
215             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
216
217             rinvsq00         = gmx_mm256_inv_pd(rsq00);
218             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
219             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
220             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
221
222             /* Load parameters for j particles */
223             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
224                                                                  charge+jnrC+0,charge+jnrD+0);
225             vdwjidx0A        = 2*vdwtype[jnrA+0];
226             vdwjidx0B        = 2*vdwtype[jnrB+0];
227             vdwjidx0C        = 2*vdwtype[jnrC+0];
228             vdwjidx0D        = 2*vdwtype[jnrD+0];
229
230             fjx0             = _mm256_setzero_pd();
231             fjy0             = _mm256_setzero_pd();
232             fjz0             = _mm256_setzero_pd();
233
234             /**************************
235              * CALCULATE INTERACTIONS *
236              **************************/
237
238             /* Compute parameters for interactions between i and j atoms */
239             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
240                                             vdwioffsetptr0+vdwjidx0B,
241                                             vdwioffsetptr0+vdwjidx0C,
242                                             vdwioffsetptr0+vdwjidx0D,
243                                             &c6_00,&c12_00);
244
245             /* LENNARD-JONES DISPERSION/REPULSION */
246
247             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
248             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
249             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
250             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
251             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
252
253             /* Update potential sum for this i atom from the interaction with this j atom. */
254             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
255
256             fscal            = fvdw;
257
258             /* Calculate temporary vectorial force */
259             tx               = _mm256_mul_pd(fscal,dx00);
260             ty               = _mm256_mul_pd(fscal,dy00);
261             tz               = _mm256_mul_pd(fscal,dz00);
262
263             /* Update vectorial force */
264             fix0             = _mm256_add_pd(fix0,tx);
265             fiy0             = _mm256_add_pd(fiy0,ty);
266             fiz0             = _mm256_add_pd(fiz0,tz);
267
268             fjx0             = _mm256_add_pd(fjx0,tx);
269             fjy0             = _mm256_add_pd(fjy0,ty);
270             fjz0             = _mm256_add_pd(fjz0,tz);
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             /* Compute parameters for interactions between i and j atoms */
277             qq10             = _mm256_mul_pd(iq1,jq0);
278
279             /* REACTION-FIELD ELECTROSTATICS */
280             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
281             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
282
283             /* Update potential sum for this i atom from the interaction with this j atom. */
284             velecsum         = _mm256_add_pd(velecsum,velec);
285
286             fscal            = felec;
287
288             /* Calculate temporary vectorial force */
289             tx               = _mm256_mul_pd(fscal,dx10);
290             ty               = _mm256_mul_pd(fscal,dy10);
291             tz               = _mm256_mul_pd(fscal,dz10);
292
293             /* Update vectorial force */
294             fix1             = _mm256_add_pd(fix1,tx);
295             fiy1             = _mm256_add_pd(fiy1,ty);
296             fiz1             = _mm256_add_pd(fiz1,tz);
297
298             fjx0             = _mm256_add_pd(fjx0,tx);
299             fjy0             = _mm256_add_pd(fjy0,ty);
300             fjz0             = _mm256_add_pd(fjz0,tz);
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             /* Compute parameters for interactions between i and j atoms */
307             qq20             = _mm256_mul_pd(iq2,jq0);
308
309             /* REACTION-FIELD ELECTROSTATICS */
310             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
311             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velecsum         = _mm256_add_pd(velecsum,velec);
315
316             fscal            = felec;
317
318             /* Calculate temporary vectorial force */
319             tx               = _mm256_mul_pd(fscal,dx20);
320             ty               = _mm256_mul_pd(fscal,dy20);
321             tz               = _mm256_mul_pd(fscal,dz20);
322
323             /* Update vectorial force */
324             fix2             = _mm256_add_pd(fix2,tx);
325             fiy2             = _mm256_add_pd(fiy2,ty);
326             fiz2             = _mm256_add_pd(fiz2,tz);
327
328             fjx0             = _mm256_add_pd(fjx0,tx);
329             fjy0             = _mm256_add_pd(fjy0,ty);
330             fjz0             = _mm256_add_pd(fjz0,tz);
331
332             /**************************
333              * CALCULATE INTERACTIONS *
334              **************************/
335
336             /* Compute parameters for interactions between i and j atoms */
337             qq30             = _mm256_mul_pd(iq3,jq0);
338
339             /* REACTION-FIELD ELECTROSTATICS */
340             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
341             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velecsum         = _mm256_add_pd(velecsum,velec);
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = _mm256_mul_pd(fscal,dx30);
350             ty               = _mm256_mul_pd(fscal,dy30);
351             tz               = _mm256_mul_pd(fscal,dz30);
352
353             /* Update vectorial force */
354             fix3             = _mm256_add_pd(fix3,tx);
355             fiy3             = _mm256_add_pd(fiy3,ty);
356             fiz3             = _mm256_add_pd(fiz3,tz);
357
358             fjx0             = _mm256_add_pd(fjx0,tx);
359             fjy0             = _mm256_add_pd(fjy0,ty);
360             fjz0             = _mm256_add_pd(fjz0,tz);
361
362             fjptrA             = f+j_coord_offsetA;
363             fjptrB             = f+j_coord_offsetB;
364             fjptrC             = f+j_coord_offsetC;
365             fjptrD             = f+j_coord_offsetD;
366
367             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
368
369             /* Inner loop uses 131 flops */
370         }
371
372         if(jidx<j_index_end)
373         {
374
375             /* Get j neighbor index, and coordinate index */
376             jnrlistA         = jjnr[jidx];
377             jnrlistB         = jjnr[jidx+1];
378             jnrlistC         = jjnr[jidx+2];
379             jnrlistD         = jjnr[jidx+3];
380             /* Sign of each element will be negative for non-real atoms.
381              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
382              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
383              */
384             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
385
386             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
387             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
388             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
389
390             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
391             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
392             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
393             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
394             j_coord_offsetA  = DIM*jnrA;
395             j_coord_offsetB  = DIM*jnrB;
396             j_coord_offsetC  = DIM*jnrC;
397             j_coord_offsetD  = DIM*jnrD;
398
399             /* load j atom coordinates */
400             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
401                                                  x+j_coord_offsetC,x+j_coord_offsetD,
402                                                  &jx0,&jy0,&jz0);
403
404             /* Calculate displacement vector */
405             dx00             = _mm256_sub_pd(ix0,jx0);
406             dy00             = _mm256_sub_pd(iy0,jy0);
407             dz00             = _mm256_sub_pd(iz0,jz0);
408             dx10             = _mm256_sub_pd(ix1,jx0);
409             dy10             = _mm256_sub_pd(iy1,jy0);
410             dz10             = _mm256_sub_pd(iz1,jz0);
411             dx20             = _mm256_sub_pd(ix2,jx0);
412             dy20             = _mm256_sub_pd(iy2,jy0);
413             dz20             = _mm256_sub_pd(iz2,jz0);
414             dx30             = _mm256_sub_pd(ix3,jx0);
415             dy30             = _mm256_sub_pd(iy3,jy0);
416             dz30             = _mm256_sub_pd(iz3,jz0);
417
418             /* Calculate squared distance and things based on it */
419             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
420             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
421             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
422             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
423
424             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
425             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
426             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
427
428             rinvsq00         = gmx_mm256_inv_pd(rsq00);
429             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
430             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
431             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
432
433             /* Load parameters for j particles */
434             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
435                                                                  charge+jnrC+0,charge+jnrD+0);
436             vdwjidx0A        = 2*vdwtype[jnrA+0];
437             vdwjidx0B        = 2*vdwtype[jnrB+0];
438             vdwjidx0C        = 2*vdwtype[jnrC+0];
439             vdwjidx0D        = 2*vdwtype[jnrD+0];
440
441             fjx0             = _mm256_setzero_pd();
442             fjy0             = _mm256_setzero_pd();
443             fjz0             = _mm256_setzero_pd();
444
445             /**************************
446              * CALCULATE INTERACTIONS *
447              **************************/
448
449             /* Compute parameters for interactions between i and j atoms */
450             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
451                                             vdwioffsetptr0+vdwjidx0B,
452                                             vdwioffsetptr0+vdwjidx0C,
453                                             vdwioffsetptr0+vdwjidx0D,
454                                             &c6_00,&c12_00);
455
456             /* LENNARD-JONES DISPERSION/REPULSION */
457
458             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
459             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
460             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
461             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
462             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
463
464             /* Update potential sum for this i atom from the interaction with this j atom. */
465             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
466             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
467
468             fscal            = fvdw;
469
470             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm256_mul_pd(fscal,dx00);
474             ty               = _mm256_mul_pd(fscal,dy00);
475             tz               = _mm256_mul_pd(fscal,dz00);
476
477             /* Update vectorial force */
478             fix0             = _mm256_add_pd(fix0,tx);
479             fiy0             = _mm256_add_pd(fiy0,ty);
480             fiz0             = _mm256_add_pd(fiz0,tz);
481
482             fjx0             = _mm256_add_pd(fjx0,tx);
483             fjy0             = _mm256_add_pd(fjy0,ty);
484             fjz0             = _mm256_add_pd(fjz0,tz);
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq10             = _mm256_mul_pd(iq1,jq0);
492
493             /* REACTION-FIELD ELECTROSTATICS */
494             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
495             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm256_andnot_pd(dummy_mask,velec);
499             velecsum         = _mm256_add_pd(velecsum,velec);
500
501             fscal            = felec;
502
503             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm256_mul_pd(fscal,dx10);
507             ty               = _mm256_mul_pd(fscal,dy10);
508             tz               = _mm256_mul_pd(fscal,dz10);
509
510             /* Update vectorial force */
511             fix1             = _mm256_add_pd(fix1,tx);
512             fiy1             = _mm256_add_pd(fiy1,ty);
513             fiz1             = _mm256_add_pd(fiz1,tz);
514
515             fjx0             = _mm256_add_pd(fjx0,tx);
516             fjy0             = _mm256_add_pd(fjy0,ty);
517             fjz0             = _mm256_add_pd(fjz0,tz);
518
519             /**************************
520              * CALCULATE INTERACTIONS *
521              **************************/
522
523             /* Compute parameters for interactions between i and j atoms */
524             qq20             = _mm256_mul_pd(iq2,jq0);
525
526             /* REACTION-FIELD ELECTROSTATICS */
527             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
528             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
529
530             /* Update potential sum for this i atom from the interaction with this j atom. */
531             velec            = _mm256_andnot_pd(dummy_mask,velec);
532             velecsum         = _mm256_add_pd(velecsum,velec);
533
534             fscal            = felec;
535
536             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
537
538             /* Calculate temporary vectorial force */
539             tx               = _mm256_mul_pd(fscal,dx20);
540             ty               = _mm256_mul_pd(fscal,dy20);
541             tz               = _mm256_mul_pd(fscal,dz20);
542
543             /* Update vectorial force */
544             fix2             = _mm256_add_pd(fix2,tx);
545             fiy2             = _mm256_add_pd(fiy2,ty);
546             fiz2             = _mm256_add_pd(fiz2,tz);
547
548             fjx0             = _mm256_add_pd(fjx0,tx);
549             fjy0             = _mm256_add_pd(fjy0,ty);
550             fjz0             = _mm256_add_pd(fjz0,tz);
551
552             /**************************
553              * CALCULATE INTERACTIONS *
554              **************************/
555
556             /* Compute parameters for interactions between i and j atoms */
557             qq30             = _mm256_mul_pd(iq3,jq0);
558
559             /* REACTION-FIELD ELECTROSTATICS */
560             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_add_pd(rinv30,_mm256_mul_pd(krf,rsq30)),crf));
561             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
562
563             /* Update potential sum for this i atom from the interaction with this j atom. */
564             velec            = _mm256_andnot_pd(dummy_mask,velec);
565             velecsum         = _mm256_add_pd(velecsum,velec);
566
567             fscal            = felec;
568
569             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
570
571             /* Calculate temporary vectorial force */
572             tx               = _mm256_mul_pd(fscal,dx30);
573             ty               = _mm256_mul_pd(fscal,dy30);
574             tz               = _mm256_mul_pd(fscal,dz30);
575
576             /* Update vectorial force */
577             fix3             = _mm256_add_pd(fix3,tx);
578             fiy3             = _mm256_add_pd(fiy3,ty);
579             fiz3             = _mm256_add_pd(fiz3,tz);
580
581             fjx0             = _mm256_add_pd(fjx0,tx);
582             fjy0             = _mm256_add_pd(fjy0,ty);
583             fjz0             = _mm256_add_pd(fjz0,tz);
584
585             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
586             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
587             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
588             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
589
590             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
591
592             /* Inner loop uses 131 flops */
593         }
594
595         /* End of innermost loop */
596
597         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
598                                                  f+i_coord_offset,fshift+i_shift_offset);
599
600         ggid                        = gid[iidx];
601         /* Update potential energies */
602         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
603         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 26 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*131);
617 }
618 /*
619  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
620  * Electrostatics interaction: ReactionField
621  * VdW interaction:            LennardJones
622  * Geometry:                   Water4-Particle
623  * Calculate force/pot:        Force
624  */
625 void
626 nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_avx_256_double
627                     (t_nblist * gmx_restrict                nlist,
628                      rvec * gmx_restrict                    xx,
629                      rvec * gmx_restrict                    ff,
630                      t_forcerec * gmx_restrict              fr,
631                      t_mdatoms * gmx_restrict               mdatoms,
632                      nb_kernel_data_t * gmx_restrict        kernel_data,
633                      t_nrnb * gmx_restrict                  nrnb)
634 {
635     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
636      * just 0 for non-waters.
637      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
638      * jnr indices corresponding to data put in the four positions in the SIMD register.
639      */
640     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
641     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
642     int              jnrA,jnrB,jnrC,jnrD;
643     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
644     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
645     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
646     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
647     real             rcutoff_scalar;
648     real             *shiftvec,*fshift,*x,*f;
649     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
650     real             scratch[4*DIM];
651     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
652     real *           vdwioffsetptr0;
653     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
654     real *           vdwioffsetptr1;
655     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
656     real *           vdwioffsetptr2;
657     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
658     real *           vdwioffsetptr3;
659     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
660     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
661     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
662     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
663     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
664     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
665     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
666     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
667     real             *charge;
668     int              nvdwtype;
669     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
670     int              *vdwtype;
671     real             *vdwparam;
672     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
673     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
674     __m256d          dummy_mask,cutoff_mask;
675     __m128           tmpmask0,tmpmask1;
676     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
677     __m256d          one     = _mm256_set1_pd(1.0);
678     __m256d          two     = _mm256_set1_pd(2.0);
679     x                = xx[0];
680     f                = ff[0];
681
682     nri              = nlist->nri;
683     iinr             = nlist->iinr;
684     jindex           = nlist->jindex;
685     jjnr             = nlist->jjnr;
686     shiftidx         = nlist->shift;
687     gid              = nlist->gid;
688     shiftvec         = fr->shift_vec[0];
689     fshift           = fr->fshift[0];
690     facel            = _mm256_set1_pd(fr->epsfac);
691     charge           = mdatoms->chargeA;
692     krf              = _mm256_set1_pd(fr->ic->k_rf);
693     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
694     crf              = _mm256_set1_pd(fr->ic->c_rf);
695     nvdwtype         = fr->ntype;
696     vdwparam         = fr->nbfp;
697     vdwtype          = mdatoms->typeA;
698
699     /* Setup water-specific parameters */
700     inr              = nlist->iinr[0];
701     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
702     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
703     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
704     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
705
706     /* Avoid stupid compiler warnings */
707     jnrA = jnrB = jnrC = jnrD = 0;
708     j_coord_offsetA = 0;
709     j_coord_offsetB = 0;
710     j_coord_offsetC = 0;
711     j_coord_offsetD = 0;
712
713     outeriter        = 0;
714     inneriter        = 0;
715
716     for(iidx=0;iidx<4*DIM;iidx++)
717     {
718         scratch[iidx] = 0.0;
719     }
720
721     /* Start outer loop over neighborlists */
722     for(iidx=0; iidx<nri; iidx++)
723     {
724         /* Load shift vector for this list */
725         i_shift_offset   = DIM*shiftidx[iidx];
726
727         /* Load limits for loop over neighbors */
728         j_index_start    = jindex[iidx];
729         j_index_end      = jindex[iidx+1];
730
731         /* Get outer coordinate index */
732         inr              = iinr[iidx];
733         i_coord_offset   = DIM*inr;
734
735         /* Load i particle coords and add shift vector */
736         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
737                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
738
739         fix0             = _mm256_setzero_pd();
740         fiy0             = _mm256_setzero_pd();
741         fiz0             = _mm256_setzero_pd();
742         fix1             = _mm256_setzero_pd();
743         fiy1             = _mm256_setzero_pd();
744         fiz1             = _mm256_setzero_pd();
745         fix2             = _mm256_setzero_pd();
746         fiy2             = _mm256_setzero_pd();
747         fiz2             = _mm256_setzero_pd();
748         fix3             = _mm256_setzero_pd();
749         fiy3             = _mm256_setzero_pd();
750         fiz3             = _mm256_setzero_pd();
751
752         /* Start inner kernel loop */
753         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
754         {
755
756             /* Get j neighbor index, and coordinate index */
757             jnrA             = jjnr[jidx];
758             jnrB             = jjnr[jidx+1];
759             jnrC             = jjnr[jidx+2];
760             jnrD             = jjnr[jidx+3];
761             j_coord_offsetA  = DIM*jnrA;
762             j_coord_offsetB  = DIM*jnrB;
763             j_coord_offsetC  = DIM*jnrC;
764             j_coord_offsetD  = DIM*jnrD;
765
766             /* load j atom coordinates */
767             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
768                                                  x+j_coord_offsetC,x+j_coord_offsetD,
769                                                  &jx0,&jy0,&jz0);
770
771             /* Calculate displacement vector */
772             dx00             = _mm256_sub_pd(ix0,jx0);
773             dy00             = _mm256_sub_pd(iy0,jy0);
774             dz00             = _mm256_sub_pd(iz0,jz0);
775             dx10             = _mm256_sub_pd(ix1,jx0);
776             dy10             = _mm256_sub_pd(iy1,jy0);
777             dz10             = _mm256_sub_pd(iz1,jz0);
778             dx20             = _mm256_sub_pd(ix2,jx0);
779             dy20             = _mm256_sub_pd(iy2,jy0);
780             dz20             = _mm256_sub_pd(iz2,jz0);
781             dx30             = _mm256_sub_pd(ix3,jx0);
782             dy30             = _mm256_sub_pd(iy3,jy0);
783             dz30             = _mm256_sub_pd(iz3,jz0);
784
785             /* Calculate squared distance and things based on it */
786             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
787             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
788             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
789             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
790
791             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
792             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
793             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
794
795             rinvsq00         = gmx_mm256_inv_pd(rsq00);
796             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
797             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
798             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
799
800             /* Load parameters for j particles */
801             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
802                                                                  charge+jnrC+0,charge+jnrD+0);
803             vdwjidx0A        = 2*vdwtype[jnrA+0];
804             vdwjidx0B        = 2*vdwtype[jnrB+0];
805             vdwjidx0C        = 2*vdwtype[jnrC+0];
806             vdwjidx0D        = 2*vdwtype[jnrD+0];
807
808             fjx0             = _mm256_setzero_pd();
809             fjy0             = _mm256_setzero_pd();
810             fjz0             = _mm256_setzero_pd();
811
812             /**************************
813              * CALCULATE INTERACTIONS *
814              **************************/
815
816             /* Compute parameters for interactions between i and j atoms */
817             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
818                                             vdwioffsetptr0+vdwjidx0B,
819                                             vdwioffsetptr0+vdwjidx0C,
820                                             vdwioffsetptr0+vdwjidx0D,
821                                             &c6_00,&c12_00);
822
823             /* LENNARD-JONES DISPERSION/REPULSION */
824
825             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
826             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
827
828             fscal            = fvdw;
829
830             /* Calculate temporary vectorial force */
831             tx               = _mm256_mul_pd(fscal,dx00);
832             ty               = _mm256_mul_pd(fscal,dy00);
833             tz               = _mm256_mul_pd(fscal,dz00);
834
835             /* Update vectorial force */
836             fix0             = _mm256_add_pd(fix0,tx);
837             fiy0             = _mm256_add_pd(fiy0,ty);
838             fiz0             = _mm256_add_pd(fiz0,tz);
839
840             fjx0             = _mm256_add_pd(fjx0,tx);
841             fjy0             = _mm256_add_pd(fjy0,ty);
842             fjz0             = _mm256_add_pd(fjz0,tz);
843
844             /**************************
845              * CALCULATE INTERACTIONS *
846              **************************/
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq10             = _mm256_mul_pd(iq1,jq0);
850
851             /* REACTION-FIELD ELECTROSTATICS */
852             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
853
854             fscal            = felec;
855
856             /* Calculate temporary vectorial force */
857             tx               = _mm256_mul_pd(fscal,dx10);
858             ty               = _mm256_mul_pd(fscal,dy10);
859             tz               = _mm256_mul_pd(fscal,dz10);
860
861             /* Update vectorial force */
862             fix1             = _mm256_add_pd(fix1,tx);
863             fiy1             = _mm256_add_pd(fiy1,ty);
864             fiz1             = _mm256_add_pd(fiz1,tz);
865
866             fjx0             = _mm256_add_pd(fjx0,tx);
867             fjy0             = _mm256_add_pd(fjy0,ty);
868             fjz0             = _mm256_add_pd(fjz0,tz);
869
870             /**************************
871              * CALCULATE INTERACTIONS *
872              **************************/
873
874             /* Compute parameters for interactions between i and j atoms */
875             qq20             = _mm256_mul_pd(iq2,jq0);
876
877             /* REACTION-FIELD ELECTROSTATICS */
878             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
879
880             fscal            = felec;
881
882             /* Calculate temporary vectorial force */
883             tx               = _mm256_mul_pd(fscal,dx20);
884             ty               = _mm256_mul_pd(fscal,dy20);
885             tz               = _mm256_mul_pd(fscal,dz20);
886
887             /* Update vectorial force */
888             fix2             = _mm256_add_pd(fix2,tx);
889             fiy2             = _mm256_add_pd(fiy2,ty);
890             fiz2             = _mm256_add_pd(fiz2,tz);
891
892             fjx0             = _mm256_add_pd(fjx0,tx);
893             fjy0             = _mm256_add_pd(fjy0,ty);
894             fjz0             = _mm256_add_pd(fjz0,tz);
895
896             /**************************
897              * CALCULATE INTERACTIONS *
898              **************************/
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq30             = _mm256_mul_pd(iq3,jq0);
902
903             /* REACTION-FIELD ELECTROSTATICS */
904             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
905
906             fscal            = felec;
907
908             /* Calculate temporary vectorial force */
909             tx               = _mm256_mul_pd(fscal,dx30);
910             ty               = _mm256_mul_pd(fscal,dy30);
911             tz               = _mm256_mul_pd(fscal,dz30);
912
913             /* Update vectorial force */
914             fix3             = _mm256_add_pd(fix3,tx);
915             fiy3             = _mm256_add_pd(fiy3,ty);
916             fiz3             = _mm256_add_pd(fiz3,tz);
917
918             fjx0             = _mm256_add_pd(fjx0,tx);
919             fjy0             = _mm256_add_pd(fjy0,ty);
920             fjz0             = _mm256_add_pd(fjz0,tz);
921
922             fjptrA             = f+j_coord_offsetA;
923             fjptrB             = f+j_coord_offsetB;
924             fjptrC             = f+j_coord_offsetC;
925             fjptrD             = f+j_coord_offsetD;
926
927             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
928
929             /* Inner loop uses 111 flops */
930         }
931
932         if(jidx<j_index_end)
933         {
934
935             /* Get j neighbor index, and coordinate index */
936             jnrlistA         = jjnr[jidx];
937             jnrlistB         = jjnr[jidx+1];
938             jnrlistC         = jjnr[jidx+2];
939             jnrlistD         = jjnr[jidx+3];
940             /* Sign of each element will be negative for non-real atoms.
941              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
942              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
943              */
944             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
945
946             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
947             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
948             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
949
950             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
951             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
952             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
953             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
954             j_coord_offsetA  = DIM*jnrA;
955             j_coord_offsetB  = DIM*jnrB;
956             j_coord_offsetC  = DIM*jnrC;
957             j_coord_offsetD  = DIM*jnrD;
958
959             /* load j atom coordinates */
960             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
961                                                  x+j_coord_offsetC,x+j_coord_offsetD,
962                                                  &jx0,&jy0,&jz0);
963
964             /* Calculate displacement vector */
965             dx00             = _mm256_sub_pd(ix0,jx0);
966             dy00             = _mm256_sub_pd(iy0,jy0);
967             dz00             = _mm256_sub_pd(iz0,jz0);
968             dx10             = _mm256_sub_pd(ix1,jx0);
969             dy10             = _mm256_sub_pd(iy1,jy0);
970             dz10             = _mm256_sub_pd(iz1,jz0);
971             dx20             = _mm256_sub_pd(ix2,jx0);
972             dy20             = _mm256_sub_pd(iy2,jy0);
973             dz20             = _mm256_sub_pd(iz2,jz0);
974             dx30             = _mm256_sub_pd(ix3,jx0);
975             dy30             = _mm256_sub_pd(iy3,jy0);
976             dz30             = _mm256_sub_pd(iz3,jz0);
977
978             /* Calculate squared distance and things based on it */
979             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
980             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
981             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
982             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
983
984             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
985             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
986             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
987
988             rinvsq00         = gmx_mm256_inv_pd(rsq00);
989             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
990             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
991             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
992
993             /* Load parameters for j particles */
994             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
995                                                                  charge+jnrC+0,charge+jnrD+0);
996             vdwjidx0A        = 2*vdwtype[jnrA+0];
997             vdwjidx0B        = 2*vdwtype[jnrB+0];
998             vdwjidx0C        = 2*vdwtype[jnrC+0];
999             vdwjidx0D        = 2*vdwtype[jnrD+0];
1000
1001             fjx0             = _mm256_setzero_pd();
1002             fjy0             = _mm256_setzero_pd();
1003             fjz0             = _mm256_setzero_pd();
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             /* Compute parameters for interactions between i and j atoms */
1010             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1011                                             vdwioffsetptr0+vdwjidx0B,
1012                                             vdwioffsetptr0+vdwjidx0C,
1013                                             vdwioffsetptr0+vdwjidx0D,
1014                                             &c6_00,&c12_00);
1015
1016             /* LENNARD-JONES DISPERSION/REPULSION */
1017
1018             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1019             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1020
1021             fscal            = fvdw;
1022
1023             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1024
1025             /* Calculate temporary vectorial force */
1026             tx               = _mm256_mul_pd(fscal,dx00);
1027             ty               = _mm256_mul_pd(fscal,dy00);
1028             tz               = _mm256_mul_pd(fscal,dz00);
1029
1030             /* Update vectorial force */
1031             fix0             = _mm256_add_pd(fix0,tx);
1032             fiy0             = _mm256_add_pd(fiy0,ty);
1033             fiz0             = _mm256_add_pd(fiz0,tz);
1034
1035             fjx0             = _mm256_add_pd(fjx0,tx);
1036             fjy0             = _mm256_add_pd(fjy0,ty);
1037             fjz0             = _mm256_add_pd(fjz0,tz);
1038
1039             /**************************
1040              * CALCULATE INTERACTIONS *
1041              **************************/
1042
1043             /* Compute parameters for interactions between i and j atoms */
1044             qq10             = _mm256_mul_pd(iq1,jq0);
1045
1046             /* REACTION-FIELD ELECTROSTATICS */
1047             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1048
1049             fscal            = felec;
1050
1051             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = _mm256_mul_pd(fscal,dx10);
1055             ty               = _mm256_mul_pd(fscal,dy10);
1056             tz               = _mm256_mul_pd(fscal,dz10);
1057
1058             /* Update vectorial force */
1059             fix1             = _mm256_add_pd(fix1,tx);
1060             fiy1             = _mm256_add_pd(fiy1,ty);
1061             fiz1             = _mm256_add_pd(fiz1,tz);
1062
1063             fjx0             = _mm256_add_pd(fjx0,tx);
1064             fjy0             = _mm256_add_pd(fjy0,ty);
1065             fjz0             = _mm256_add_pd(fjz0,tz);
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             /* Compute parameters for interactions between i and j atoms */
1072             qq20             = _mm256_mul_pd(iq2,jq0);
1073
1074             /* REACTION-FIELD ELECTROSTATICS */
1075             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1076
1077             fscal            = felec;
1078
1079             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = _mm256_mul_pd(fscal,dx20);
1083             ty               = _mm256_mul_pd(fscal,dy20);
1084             tz               = _mm256_mul_pd(fscal,dz20);
1085
1086             /* Update vectorial force */
1087             fix2             = _mm256_add_pd(fix2,tx);
1088             fiy2             = _mm256_add_pd(fiy2,ty);
1089             fiz2             = _mm256_add_pd(fiz2,tz);
1090
1091             fjx0             = _mm256_add_pd(fjx0,tx);
1092             fjy0             = _mm256_add_pd(fjy0,ty);
1093             fjz0             = _mm256_add_pd(fjz0,tz);
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             /* Compute parameters for interactions between i and j atoms */
1100             qq30             = _mm256_mul_pd(iq3,jq0);
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_mul_pd(rinv30,rinvsq30),krf2));
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm256_mul_pd(fscal,dx30);
1111             ty               = _mm256_mul_pd(fscal,dy30);
1112             tz               = _mm256_mul_pd(fscal,dz30);
1113
1114             /* Update vectorial force */
1115             fix3             = _mm256_add_pd(fix3,tx);
1116             fiy3             = _mm256_add_pd(fiy3,ty);
1117             fiz3             = _mm256_add_pd(fiz3,tz);
1118
1119             fjx0             = _mm256_add_pd(fjx0,tx);
1120             fjy0             = _mm256_add_pd(fjy0,ty);
1121             fjz0             = _mm256_add_pd(fjz0,tz);
1122
1123             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1127
1128             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 111 flops */
1131         }
1132
1133         /* End of innermost loop */
1134
1135         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1136                                                  f+i_coord_offset,fshift+i_shift_offset);
1137
1138         /* Increment number of inner iterations */
1139         inneriter                  += j_index_end - j_index_start;
1140
1141         /* Outer loop uses 24 flops */
1142     }
1143
1144     /* Increment number of outer iterations */
1145     outeriter        += nri;
1146
1147     /* Update outer/inner flops */
1148
1149     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*111);
1150 }