26c65e2b3a4ac9e0a52ef6b86a9ebd29e7bd792f
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m256d          dummy_mask,cutoff_mask;
90     __m128           tmpmask0,tmpmask1;
91     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
92     __m256d          one     = _mm256_set1_pd(1.0);
93     __m256d          two     = _mm256_set1_pd(2.0);
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = _mm256_set1_pd(fr->epsfac);
106     charge           = mdatoms->chargeA;
107     krf              = _mm256_set1_pd(fr->ic->k_rf);
108     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
109     crf              = _mm256_set1_pd(fr->ic->c_rf);
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     /* Setup water-specific parameters */
115     inr              = nlist->iinr[0];
116     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
117     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
118     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
119     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157         fix1             = _mm256_setzero_pd();
158         fiy1             = _mm256_setzero_pd();
159         fiz1             = _mm256_setzero_pd();
160         fix2             = _mm256_setzero_pd();
161         fiy2             = _mm256_setzero_pd();
162         fiz2             = _mm256_setzero_pd();
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_pd();
166         vvdwsum          = _mm256_setzero_pd();
167
168         /* Start inner kernel loop */
169         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170         {
171
172             /* Get j neighbor index, and coordinate index */
173             jnrA             = jjnr[jidx];
174             jnrB             = jjnr[jidx+1];
175             jnrC             = jjnr[jidx+2];
176             jnrD             = jjnr[jidx+3];
177             j_coord_offsetA  = DIM*jnrA;
178             j_coord_offsetB  = DIM*jnrB;
179             j_coord_offsetC  = DIM*jnrC;
180             j_coord_offsetD  = DIM*jnrD;
181
182             /* load j atom coordinates */
183             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
184                                                  x+j_coord_offsetC,x+j_coord_offsetD,
185                                                  &jx0,&jy0,&jz0);
186
187             /* Calculate displacement vector */
188             dx00             = _mm256_sub_pd(ix0,jx0);
189             dy00             = _mm256_sub_pd(iy0,jy0);
190             dz00             = _mm256_sub_pd(iz0,jz0);
191             dx10             = _mm256_sub_pd(ix1,jx0);
192             dy10             = _mm256_sub_pd(iy1,jy0);
193             dz10             = _mm256_sub_pd(iz1,jz0);
194             dx20             = _mm256_sub_pd(ix2,jx0);
195             dy20             = _mm256_sub_pd(iy2,jy0);
196             dz20             = _mm256_sub_pd(iz2,jz0);
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
200             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
201             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
202
203             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
204             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
205             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
206
207             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
208             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
209             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
210
211             /* Load parameters for j particles */
212             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
213                                                                  charge+jnrC+0,charge+jnrD+0);
214             vdwjidx0A        = 2*vdwtype[jnrA+0];
215             vdwjidx0B        = 2*vdwtype[jnrB+0];
216             vdwjidx0C        = 2*vdwtype[jnrC+0];
217             vdwjidx0D        = 2*vdwtype[jnrD+0];
218
219             fjx0             = _mm256_setzero_pd();
220             fjy0             = _mm256_setzero_pd();
221             fjz0             = _mm256_setzero_pd();
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             /* Compute parameters for interactions between i and j atoms */
228             qq00             = _mm256_mul_pd(iq0,jq0);
229             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
230                                             vdwioffsetptr0+vdwjidx0B,
231                                             vdwioffsetptr0+vdwjidx0C,
232                                             vdwioffsetptr0+vdwjidx0D,
233                                             &c6_00,&c12_00);
234
235             /* REACTION-FIELD ELECTROSTATICS */
236             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
237             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
238
239             /* LENNARD-JONES DISPERSION/REPULSION */
240
241             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
242             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
243             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
244             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
245             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velecsum         = _mm256_add_pd(velecsum,velec);
249             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
250
251             fscal            = _mm256_add_pd(felec,fvdw);
252
253             /* Calculate temporary vectorial force */
254             tx               = _mm256_mul_pd(fscal,dx00);
255             ty               = _mm256_mul_pd(fscal,dy00);
256             tz               = _mm256_mul_pd(fscal,dz00);
257
258             /* Update vectorial force */
259             fix0             = _mm256_add_pd(fix0,tx);
260             fiy0             = _mm256_add_pd(fiy0,ty);
261             fiz0             = _mm256_add_pd(fiz0,tz);
262
263             fjx0             = _mm256_add_pd(fjx0,tx);
264             fjy0             = _mm256_add_pd(fjy0,ty);
265             fjz0             = _mm256_add_pd(fjz0,tz);
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             /* Compute parameters for interactions between i and j atoms */
272             qq10             = _mm256_mul_pd(iq1,jq0);
273
274             /* REACTION-FIELD ELECTROSTATICS */
275             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
276             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
277
278             /* Update potential sum for this i atom from the interaction with this j atom. */
279             velecsum         = _mm256_add_pd(velecsum,velec);
280
281             fscal            = felec;
282
283             /* Calculate temporary vectorial force */
284             tx               = _mm256_mul_pd(fscal,dx10);
285             ty               = _mm256_mul_pd(fscal,dy10);
286             tz               = _mm256_mul_pd(fscal,dz10);
287
288             /* Update vectorial force */
289             fix1             = _mm256_add_pd(fix1,tx);
290             fiy1             = _mm256_add_pd(fiy1,ty);
291             fiz1             = _mm256_add_pd(fiz1,tz);
292
293             fjx0             = _mm256_add_pd(fjx0,tx);
294             fjy0             = _mm256_add_pd(fjy0,ty);
295             fjz0             = _mm256_add_pd(fjz0,tz);
296
297             /**************************
298              * CALCULATE INTERACTIONS *
299              **************************/
300
301             /* Compute parameters for interactions between i and j atoms */
302             qq20             = _mm256_mul_pd(iq2,jq0);
303
304             /* REACTION-FIELD ELECTROSTATICS */
305             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
306             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm256_add_pd(velecsum,velec);
310
311             fscal            = felec;
312
313             /* Calculate temporary vectorial force */
314             tx               = _mm256_mul_pd(fscal,dx20);
315             ty               = _mm256_mul_pd(fscal,dy20);
316             tz               = _mm256_mul_pd(fscal,dz20);
317
318             /* Update vectorial force */
319             fix2             = _mm256_add_pd(fix2,tx);
320             fiy2             = _mm256_add_pd(fiy2,ty);
321             fiz2             = _mm256_add_pd(fiz2,tz);
322
323             fjx0             = _mm256_add_pd(fjx0,tx);
324             fjy0             = _mm256_add_pd(fjy0,ty);
325             fjz0             = _mm256_add_pd(fjz0,tz);
326
327             fjptrA             = f+j_coord_offsetA;
328             fjptrB             = f+j_coord_offsetB;
329             fjptrC             = f+j_coord_offsetC;
330             fjptrD             = f+j_coord_offsetD;
331
332             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
333
334             /* Inner loop uses 111 flops */
335         }
336
337         if(jidx<j_index_end)
338         {
339
340             /* Get j neighbor index, and coordinate index */
341             jnrlistA         = jjnr[jidx];
342             jnrlistB         = jjnr[jidx+1];
343             jnrlistC         = jjnr[jidx+2];
344             jnrlistD         = jjnr[jidx+3];
345             /* Sign of each element will be negative for non-real atoms.
346              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
347              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
348              */
349             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
350
351             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
352             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
353             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
354
355             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
356             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
357             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
358             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
359             j_coord_offsetA  = DIM*jnrA;
360             j_coord_offsetB  = DIM*jnrB;
361             j_coord_offsetC  = DIM*jnrC;
362             j_coord_offsetD  = DIM*jnrD;
363
364             /* load j atom coordinates */
365             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
366                                                  x+j_coord_offsetC,x+j_coord_offsetD,
367                                                  &jx0,&jy0,&jz0);
368
369             /* Calculate displacement vector */
370             dx00             = _mm256_sub_pd(ix0,jx0);
371             dy00             = _mm256_sub_pd(iy0,jy0);
372             dz00             = _mm256_sub_pd(iz0,jz0);
373             dx10             = _mm256_sub_pd(ix1,jx0);
374             dy10             = _mm256_sub_pd(iy1,jy0);
375             dz10             = _mm256_sub_pd(iz1,jz0);
376             dx20             = _mm256_sub_pd(ix2,jx0);
377             dy20             = _mm256_sub_pd(iy2,jy0);
378             dz20             = _mm256_sub_pd(iz2,jz0);
379
380             /* Calculate squared distance and things based on it */
381             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
382             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
383             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
384
385             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
386             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
387             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
388
389             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
390             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
391             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
392
393             /* Load parameters for j particles */
394             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
395                                                                  charge+jnrC+0,charge+jnrD+0);
396             vdwjidx0A        = 2*vdwtype[jnrA+0];
397             vdwjidx0B        = 2*vdwtype[jnrB+0];
398             vdwjidx0C        = 2*vdwtype[jnrC+0];
399             vdwjidx0D        = 2*vdwtype[jnrD+0];
400
401             fjx0             = _mm256_setzero_pd();
402             fjy0             = _mm256_setzero_pd();
403             fjz0             = _mm256_setzero_pd();
404
405             /**************************
406              * CALCULATE INTERACTIONS *
407              **************************/
408
409             /* Compute parameters for interactions between i and j atoms */
410             qq00             = _mm256_mul_pd(iq0,jq0);
411             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
412                                             vdwioffsetptr0+vdwjidx0B,
413                                             vdwioffsetptr0+vdwjidx0C,
414                                             vdwioffsetptr0+vdwjidx0D,
415                                             &c6_00,&c12_00);
416
417             /* REACTION-FIELD ELECTROSTATICS */
418             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
419             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
420
421             /* LENNARD-JONES DISPERSION/REPULSION */
422
423             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
424             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
425             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
426             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
427             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
428
429             /* Update potential sum for this i atom from the interaction with this j atom. */
430             velec            = _mm256_andnot_pd(dummy_mask,velec);
431             velecsum         = _mm256_add_pd(velecsum,velec);
432             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
433             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
434
435             fscal            = _mm256_add_pd(felec,fvdw);
436
437             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm256_mul_pd(fscal,dx00);
441             ty               = _mm256_mul_pd(fscal,dy00);
442             tz               = _mm256_mul_pd(fscal,dz00);
443
444             /* Update vectorial force */
445             fix0             = _mm256_add_pd(fix0,tx);
446             fiy0             = _mm256_add_pd(fiy0,ty);
447             fiz0             = _mm256_add_pd(fiz0,tz);
448
449             fjx0             = _mm256_add_pd(fjx0,tx);
450             fjy0             = _mm256_add_pd(fjy0,ty);
451             fjz0             = _mm256_add_pd(fjz0,tz);
452
453             /**************************
454              * CALCULATE INTERACTIONS *
455              **************************/
456
457             /* Compute parameters for interactions between i and j atoms */
458             qq10             = _mm256_mul_pd(iq1,jq0);
459
460             /* REACTION-FIELD ELECTROSTATICS */
461             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
462             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
463
464             /* Update potential sum for this i atom from the interaction with this j atom. */
465             velec            = _mm256_andnot_pd(dummy_mask,velec);
466             velecsum         = _mm256_add_pd(velecsum,velec);
467
468             fscal            = felec;
469
470             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
471
472             /* Calculate temporary vectorial force */
473             tx               = _mm256_mul_pd(fscal,dx10);
474             ty               = _mm256_mul_pd(fscal,dy10);
475             tz               = _mm256_mul_pd(fscal,dz10);
476
477             /* Update vectorial force */
478             fix1             = _mm256_add_pd(fix1,tx);
479             fiy1             = _mm256_add_pd(fiy1,ty);
480             fiz1             = _mm256_add_pd(fiz1,tz);
481
482             fjx0             = _mm256_add_pd(fjx0,tx);
483             fjy0             = _mm256_add_pd(fjy0,ty);
484             fjz0             = _mm256_add_pd(fjz0,tz);
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             /* Compute parameters for interactions between i and j atoms */
491             qq20             = _mm256_mul_pd(iq2,jq0);
492
493             /* REACTION-FIELD ELECTROSTATICS */
494             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
495             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
496
497             /* Update potential sum for this i atom from the interaction with this j atom. */
498             velec            = _mm256_andnot_pd(dummy_mask,velec);
499             velecsum         = _mm256_add_pd(velecsum,velec);
500
501             fscal            = felec;
502
503             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm256_mul_pd(fscal,dx20);
507             ty               = _mm256_mul_pd(fscal,dy20);
508             tz               = _mm256_mul_pd(fscal,dz20);
509
510             /* Update vectorial force */
511             fix2             = _mm256_add_pd(fix2,tx);
512             fiy2             = _mm256_add_pd(fiy2,ty);
513             fiz2             = _mm256_add_pd(fiz2,tz);
514
515             fjx0             = _mm256_add_pd(fjx0,tx);
516             fjy0             = _mm256_add_pd(fjy0,ty);
517             fjz0             = _mm256_add_pd(fjz0,tz);
518
519             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
520             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
521             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
522             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
523
524             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
525
526             /* Inner loop uses 111 flops */
527         }
528
529         /* End of innermost loop */
530
531         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
532                                                  f+i_coord_offset,fshift+i_shift_offset);
533
534         ggid                        = gid[iidx];
535         /* Update potential energies */
536         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
537         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
538
539         /* Increment number of inner iterations */
540         inneriter                  += j_index_end - j_index_start;
541
542         /* Outer loop uses 20 flops */
543     }
544
545     /* Increment number of outer iterations */
546     outeriter        += nri;
547
548     /* Update outer/inner flops */
549
550     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*111);
551 }
552 /*
553  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
554  * Electrostatics interaction: ReactionField
555  * VdW interaction:            LennardJones
556  * Geometry:                   Water3-Particle
557  * Calculate force/pot:        Force
558  */
559 void
560 nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_avx_256_double
561                     (t_nblist * gmx_restrict                nlist,
562                      rvec * gmx_restrict                    xx,
563                      rvec * gmx_restrict                    ff,
564                      t_forcerec * gmx_restrict              fr,
565                      t_mdatoms * gmx_restrict               mdatoms,
566                      nb_kernel_data_t * gmx_restrict        kernel_data,
567                      t_nrnb * gmx_restrict                  nrnb)
568 {
569     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
570      * just 0 for non-waters.
571      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
572      * jnr indices corresponding to data put in the four positions in the SIMD register.
573      */
574     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
575     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
576     int              jnrA,jnrB,jnrC,jnrD;
577     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
578     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
579     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
580     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
581     real             rcutoff_scalar;
582     real             *shiftvec,*fshift,*x,*f;
583     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
584     real             scratch[4*DIM];
585     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
586     real *           vdwioffsetptr0;
587     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
588     real *           vdwioffsetptr1;
589     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
590     real *           vdwioffsetptr2;
591     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
592     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
593     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
594     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
595     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
596     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
597     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
598     real             *charge;
599     int              nvdwtype;
600     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
601     int              *vdwtype;
602     real             *vdwparam;
603     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
604     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
605     __m256d          dummy_mask,cutoff_mask;
606     __m128           tmpmask0,tmpmask1;
607     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
608     __m256d          one     = _mm256_set1_pd(1.0);
609     __m256d          two     = _mm256_set1_pd(2.0);
610     x                = xx[0];
611     f                = ff[0];
612
613     nri              = nlist->nri;
614     iinr             = nlist->iinr;
615     jindex           = nlist->jindex;
616     jjnr             = nlist->jjnr;
617     shiftidx         = nlist->shift;
618     gid              = nlist->gid;
619     shiftvec         = fr->shift_vec[0];
620     fshift           = fr->fshift[0];
621     facel            = _mm256_set1_pd(fr->epsfac);
622     charge           = mdatoms->chargeA;
623     krf              = _mm256_set1_pd(fr->ic->k_rf);
624     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
625     crf              = _mm256_set1_pd(fr->ic->c_rf);
626     nvdwtype         = fr->ntype;
627     vdwparam         = fr->nbfp;
628     vdwtype          = mdatoms->typeA;
629
630     /* Setup water-specific parameters */
631     inr              = nlist->iinr[0];
632     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
633     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
634     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
635     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
636
637     /* Avoid stupid compiler warnings */
638     jnrA = jnrB = jnrC = jnrD = 0;
639     j_coord_offsetA = 0;
640     j_coord_offsetB = 0;
641     j_coord_offsetC = 0;
642     j_coord_offsetD = 0;
643
644     outeriter        = 0;
645     inneriter        = 0;
646
647     for(iidx=0;iidx<4*DIM;iidx++)
648     {
649         scratch[iidx] = 0.0;
650     }
651
652     /* Start outer loop over neighborlists */
653     for(iidx=0; iidx<nri; iidx++)
654     {
655         /* Load shift vector for this list */
656         i_shift_offset   = DIM*shiftidx[iidx];
657
658         /* Load limits for loop over neighbors */
659         j_index_start    = jindex[iidx];
660         j_index_end      = jindex[iidx+1];
661
662         /* Get outer coordinate index */
663         inr              = iinr[iidx];
664         i_coord_offset   = DIM*inr;
665
666         /* Load i particle coords and add shift vector */
667         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
668                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
669
670         fix0             = _mm256_setzero_pd();
671         fiy0             = _mm256_setzero_pd();
672         fiz0             = _mm256_setzero_pd();
673         fix1             = _mm256_setzero_pd();
674         fiy1             = _mm256_setzero_pd();
675         fiz1             = _mm256_setzero_pd();
676         fix2             = _mm256_setzero_pd();
677         fiy2             = _mm256_setzero_pd();
678         fiz2             = _mm256_setzero_pd();
679
680         /* Start inner kernel loop */
681         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
682         {
683
684             /* Get j neighbor index, and coordinate index */
685             jnrA             = jjnr[jidx];
686             jnrB             = jjnr[jidx+1];
687             jnrC             = jjnr[jidx+2];
688             jnrD             = jjnr[jidx+3];
689             j_coord_offsetA  = DIM*jnrA;
690             j_coord_offsetB  = DIM*jnrB;
691             j_coord_offsetC  = DIM*jnrC;
692             j_coord_offsetD  = DIM*jnrD;
693
694             /* load j atom coordinates */
695             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
696                                                  x+j_coord_offsetC,x+j_coord_offsetD,
697                                                  &jx0,&jy0,&jz0);
698
699             /* Calculate displacement vector */
700             dx00             = _mm256_sub_pd(ix0,jx0);
701             dy00             = _mm256_sub_pd(iy0,jy0);
702             dz00             = _mm256_sub_pd(iz0,jz0);
703             dx10             = _mm256_sub_pd(ix1,jx0);
704             dy10             = _mm256_sub_pd(iy1,jy0);
705             dz10             = _mm256_sub_pd(iz1,jz0);
706             dx20             = _mm256_sub_pd(ix2,jx0);
707             dy20             = _mm256_sub_pd(iy2,jy0);
708             dz20             = _mm256_sub_pd(iz2,jz0);
709
710             /* Calculate squared distance and things based on it */
711             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
712             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
713             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
714
715             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
716             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
717             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
718
719             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
720             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
721             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
722
723             /* Load parameters for j particles */
724             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
725                                                                  charge+jnrC+0,charge+jnrD+0);
726             vdwjidx0A        = 2*vdwtype[jnrA+0];
727             vdwjidx0B        = 2*vdwtype[jnrB+0];
728             vdwjidx0C        = 2*vdwtype[jnrC+0];
729             vdwjidx0D        = 2*vdwtype[jnrD+0];
730
731             fjx0             = _mm256_setzero_pd();
732             fjy0             = _mm256_setzero_pd();
733             fjz0             = _mm256_setzero_pd();
734
735             /**************************
736              * CALCULATE INTERACTIONS *
737              **************************/
738
739             /* Compute parameters for interactions between i and j atoms */
740             qq00             = _mm256_mul_pd(iq0,jq0);
741             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
742                                             vdwioffsetptr0+vdwjidx0B,
743                                             vdwioffsetptr0+vdwjidx0C,
744                                             vdwioffsetptr0+vdwjidx0D,
745                                             &c6_00,&c12_00);
746
747             /* REACTION-FIELD ELECTROSTATICS */
748             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
749
750             /* LENNARD-JONES DISPERSION/REPULSION */
751
752             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
753             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
754
755             fscal            = _mm256_add_pd(felec,fvdw);
756
757             /* Calculate temporary vectorial force */
758             tx               = _mm256_mul_pd(fscal,dx00);
759             ty               = _mm256_mul_pd(fscal,dy00);
760             tz               = _mm256_mul_pd(fscal,dz00);
761
762             /* Update vectorial force */
763             fix0             = _mm256_add_pd(fix0,tx);
764             fiy0             = _mm256_add_pd(fiy0,ty);
765             fiz0             = _mm256_add_pd(fiz0,tz);
766
767             fjx0             = _mm256_add_pd(fjx0,tx);
768             fjy0             = _mm256_add_pd(fjy0,ty);
769             fjz0             = _mm256_add_pd(fjz0,tz);
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             /* Compute parameters for interactions between i and j atoms */
776             qq10             = _mm256_mul_pd(iq1,jq0);
777
778             /* REACTION-FIELD ELECTROSTATICS */
779             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
780
781             fscal            = felec;
782
783             /* Calculate temporary vectorial force */
784             tx               = _mm256_mul_pd(fscal,dx10);
785             ty               = _mm256_mul_pd(fscal,dy10);
786             tz               = _mm256_mul_pd(fscal,dz10);
787
788             /* Update vectorial force */
789             fix1             = _mm256_add_pd(fix1,tx);
790             fiy1             = _mm256_add_pd(fiy1,ty);
791             fiz1             = _mm256_add_pd(fiz1,tz);
792
793             fjx0             = _mm256_add_pd(fjx0,tx);
794             fjy0             = _mm256_add_pd(fjy0,ty);
795             fjz0             = _mm256_add_pd(fjz0,tz);
796
797             /**************************
798              * CALCULATE INTERACTIONS *
799              **************************/
800
801             /* Compute parameters for interactions between i and j atoms */
802             qq20             = _mm256_mul_pd(iq2,jq0);
803
804             /* REACTION-FIELD ELECTROSTATICS */
805             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
806
807             fscal            = felec;
808
809             /* Calculate temporary vectorial force */
810             tx               = _mm256_mul_pd(fscal,dx20);
811             ty               = _mm256_mul_pd(fscal,dy20);
812             tz               = _mm256_mul_pd(fscal,dz20);
813
814             /* Update vectorial force */
815             fix2             = _mm256_add_pd(fix2,tx);
816             fiy2             = _mm256_add_pd(fiy2,ty);
817             fiz2             = _mm256_add_pd(fiz2,tz);
818
819             fjx0             = _mm256_add_pd(fjx0,tx);
820             fjy0             = _mm256_add_pd(fjy0,ty);
821             fjz0             = _mm256_add_pd(fjz0,tz);
822
823             fjptrA             = f+j_coord_offsetA;
824             fjptrB             = f+j_coord_offsetB;
825             fjptrC             = f+j_coord_offsetC;
826             fjptrD             = f+j_coord_offsetD;
827
828             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
829
830             /* Inner loop uses 91 flops */
831         }
832
833         if(jidx<j_index_end)
834         {
835
836             /* Get j neighbor index, and coordinate index */
837             jnrlistA         = jjnr[jidx];
838             jnrlistB         = jjnr[jidx+1];
839             jnrlistC         = jjnr[jidx+2];
840             jnrlistD         = jjnr[jidx+3];
841             /* Sign of each element will be negative for non-real atoms.
842              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
843              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
844              */
845             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
846
847             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
848             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
849             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
850
851             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
852             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
853             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
854             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
855             j_coord_offsetA  = DIM*jnrA;
856             j_coord_offsetB  = DIM*jnrB;
857             j_coord_offsetC  = DIM*jnrC;
858             j_coord_offsetD  = DIM*jnrD;
859
860             /* load j atom coordinates */
861             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
862                                                  x+j_coord_offsetC,x+j_coord_offsetD,
863                                                  &jx0,&jy0,&jz0);
864
865             /* Calculate displacement vector */
866             dx00             = _mm256_sub_pd(ix0,jx0);
867             dy00             = _mm256_sub_pd(iy0,jy0);
868             dz00             = _mm256_sub_pd(iz0,jz0);
869             dx10             = _mm256_sub_pd(ix1,jx0);
870             dy10             = _mm256_sub_pd(iy1,jy0);
871             dz10             = _mm256_sub_pd(iz1,jz0);
872             dx20             = _mm256_sub_pd(ix2,jx0);
873             dy20             = _mm256_sub_pd(iy2,jy0);
874             dz20             = _mm256_sub_pd(iz2,jz0);
875
876             /* Calculate squared distance and things based on it */
877             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
878             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
879             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
880
881             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
882             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
883             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
884
885             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
886             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
887             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
888
889             /* Load parameters for j particles */
890             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
891                                                                  charge+jnrC+0,charge+jnrD+0);
892             vdwjidx0A        = 2*vdwtype[jnrA+0];
893             vdwjidx0B        = 2*vdwtype[jnrB+0];
894             vdwjidx0C        = 2*vdwtype[jnrC+0];
895             vdwjidx0D        = 2*vdwtype[jnrD+0];
896
897             fjx0             = _mm256_setzero_pd();
898             fjy0             = _mm256_setzero_pd();
899             fjz0             = _mm256_setzero_pd();
900
901             /**************************
902              * CALCULATE INTERACTIONS *
903              **************************/
904
905             /* Compute parameters for interactions between i and j atoms */
906             qq00             = _mm256_mul_pd(iq0,jq0);
907             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
908                                             vdwioffsetptr0+vdwjidx0B,
909                                             vdwioffsetptr0+vdwjidx0C,
910                                             vdwioffsetptr0+vdwjidx0D,
911                                             &c6_00,&c12_00);
912
913             /* REACTION-FIELD ELECTROSTATICS */
914             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
915
916             /* LENNARD-JONES DISPERSION/REPULSION */
917
918             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
919             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
920
921             fscal            = _mm256_add_pd(felec,fvdw);
922
923             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
924
925             /* Calculate temporary vectorial force */
926             tx               = _mm256_mul_pd(fscal,dx00);
927             ty               = _mm256_mul_pd(fscal,dy00);
928             tz               = _mm256_mul_pd(fscal,dz00);
929
930             /* Update vectorial force */
931             fix0             = _mm256_add_pd(fix0,tx);
932             fiy0             = _mm256_add_pd(fiy0,ty);
933             fiz0             = _mm256_add_pd(fiz0,tz);
934
935             fjx0             = _mm256_add_pd(fjx0,tx);
936             fjy0             = _mm256_add_pd(fjy0,ty);
937             fjz0             = _mm256_add_pd(fjz0,tz);
938
939             /**************************
940              * CALCULATE INTERACTIONS *
941              **************************/
942
943             /* Compute parameters for interactions between i and j atoms */
944             qq10             = _mm256_mul_pd(iq1,jq0);
945
946             /* REACTION-FIELD ELECTROSTATICS */
947             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
948
949             fscal            = felec;
950
951             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
952
953             /* Calculate temporary vectorial force */
954             tx               = _mm256_mul_pd(fscal,dx10);
955             ty               = _mm256_mul_pd(fscal,dy10);
956             tz               = _mm256_mul_pd(fscal,dz10);
957
958             /* Update vectorial force */
959             fix1             = _mm256_add_pd(fix1,tx);
960             fiy1             = _mm256_add_pd(fiy1,ty);
961             fiz1             = _mm256_add_pd(fiz1,tz);
962
963             fjx0             = _mm256_add_pd(fjx0,tx);
964             fjy0             = _mm256_add_pd(fjy0,ty);
965             fjz0             = _mm256_add_pd(fjz0,tz);
966
967             /**************************
968              * CALCULATE INTERACTIONS *
969              **************************/
970
971             /* Compute parameters for interactions between i and j atoms */
972             qq20             = _mm256_mul_pd(iq2,jq0);
973
974             /* REACTION-FIELD ELECTROSTATICS */
975             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
976
977             fscal            = felec;
978
979             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
980
981             /* Calculate temporary vectorial force */
982             tx               = _mm256_mul_pd(fscal,dx20);
983             ty               = _mm256_mul_pd(fscal,dy20);
984             tz               = _mm256_mul_pd(fscal,dz20);
985
986             /* Update vectorial force */
987             fix2             = _mm256_add_pd(fix2,tx);
988             fiy2             = _mm256_add_pd(fiy2,ty);
989             fiz2             = _mm256_add_pd(fiz2,tz);
990
991             fjx0             = _mm256_add_pd(fjx0,tx);
992             fjy0             = _mm256_add_pd(fjy0,ty);
993             fjz0             = _mm256_add_pd(fjz0,tz);
994
995             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
996             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
997             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
998             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
999
1000             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1001
1002             /* Inner loop uses 91 flops */
1003         }
1004
1005         /* End of innermost loop */
1006
1007         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1008                                                  f+i_coord_offset,fshift+i_shift_offset);
1009
1010         /* Increment number of inner iterations */
1011         inneriter                  += j_index_end - j_index_start;
1012
1013         /* Outer loop uses 18 flops */
1014     }
1015
1016     /* Increment number of outer iterations */
1017     outeriter        += nri;
1018
1019     /* Update outer/inner flops */
1020
1021     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*91);
1022 }