f69ca59c46607ca930c87d40c4de6c00f5f571a1
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRF_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     krf              = _mm256_set1_pd(fr->ic->k_rf);
106     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
107     crf              = _mm256_set1_pd(fr->ic->c_rf);
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     vftab            = kernel_data->table_vdw->data;
113     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
114
115     /* Avoid stupid compiler warnings */
116     jnrA = jnrB = jnrC = jnrD = 0;
117     j_coord_offsetA = 0;
118     j_coord_offsetB = 0;
119     j_coord_offsetC = 0;
120     j_coord_offsetD = 0;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     for(iidx=0;iidx<4*DIM;iidx++)
126     {
127         scratch[iidx] = 0.0;
128     }
129
130     /* Start outer loop over neighborlists */
131     for(iidx=0; iidx<nri; iidx++)
132     {
133         /* Load shift vector for this list */
134         i_shift_offset   = DIM*shiftidx[iidx];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
146
147         fix0             = _mm256_setzero_pd();
148         fiy0             = _mm256_setzero_pd();
149         fiz0             = _mm256_setzero_pd();
150
151         /* Load parameters for i particles */
152         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
153         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = _mm256_setzero_pd();
157         vvdwsum          = _mm256_setzero_pd();
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
161         {
162
163             /* Get j neighbor index, and coordinate index */
164             jnrA             = jjnr[jidx];
165             jnrB             = jjnr[jidx+1];
166             jnrC             = jjnr[jidx+2];
167             jnrD             = jjnr[jidx+3];
168             j_coord_offsetA  = DIM*jnrA;
169             j_coord_offsetB  = DIM*jnrB;
170             j_coord_offsetC  = DIM*jnrC;
171             j_coord_offsetD  = DIM*jnrD;
172
173             /* load j atom coordinates */
174             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
175                                                  x+j_coord_offsetC,x+j_coord_offsetD,
176                                                  &jx0,&jy0,&jz0);
177
178             /* Calculate displacement vector */
179             dx00             = _mm256_sub_pd(ix0,jx0);
180             dy00             = _mm256_sub_pd(iy0,jy0);
181             dz00             = _mm256_sub_pd(iz0,jz0);
182
183             /* Calculate squared distance and things based on it */
184             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
185
186             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
187
188             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
189
190             /* Load parameters for j particles */
191             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
192                                                                  charge+jnrC+0,charge+jnrD+0);
193             vdwjidx0A        = 2*vdwtype[jnrA+0];
194             vdwjidx0B        = 2*vdwtype[jnrB+0];
195             vdwjidx0C        = 2*vdwtype[jnrC+0];
196             vdwjidx0D        = 2*vdwtype[jnrD+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             r00              = _mm256_mul_pd(rsq00,rinv00);
203
204             /* Compute parameters for interactions between i and j atoms */
205             qq00             = _mm256_mul_pd(iq0,jq0);
206             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
207                                             vdwioffsetptr0+vdwjidx0B,
208                                             vdwioffsetptr0+vdwjidx0C,
209                                             vdwioffsetptr0+vdwjidx0D,
210                                             &c6_00,&c12_00);
211
212             /* Calculate table index by multiplying r with table scale and truncate to integer */
213             rt               = _mm256_mul_pd(r00,vftabscale);
214             vfitab           = _mm256_cvttpd_epi32(rt);
215             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
216             vfitab           = _mm_slli_epi32(vfitab,3);
217
218             /* REACTION-FIELD ELECTROSTATICS */
219             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
220             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
221
222             /* CUBIC SPLINE TABLE DISPERSION */
223             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
224             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
225             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
226             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
227             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
228             Heps             = _mm256_mul_pd(vfeps,H);
229             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
230             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
231             vvdw6            = _mm256_mul_pd(c6_00,VV);
232             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
233             fvdw6            = _mm256_mul_pd(c6_00,FF);
234
235             /* CUBIC SPLINE TABLE REPULSION */
236             vfitab           = _mm_add_epi32(vfitab,ifour);
237             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
238             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
239             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
240             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
241             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
242             Heps             = _mm256_mul_pd(vfeps,H);
243             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
244             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
245             vvdw12           = _mm256_mul_pd(c12_00,VV);
246             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
247             fvdw12           = _mm256_mul_pd(c12_00,FF);
248             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
249             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
250
251             /* Update potential sum for this i atom from the interaction with this j atom. */
252             velecsum         = _mm256_add_pd(velecsum,velec);
253             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
254
255             fscal            = _mm256_add_pd(felec,fvdw);
256
257             /* Calculate temporary vectorial force */
258             tx               = _mm256_mul_pd(fscal,dx00);
259             ty               = _mm256_mul_pd(fscal,dy00);
260             tz               = _mm256_mul_pd(fscal,dz00);
261
262             /* Update vectorial force */
263             fix0             = _mm256_add_pd(fix0,tx);
264             fiy0             = _mm256_add_pd(fiy0,ty);
265             fiz0             = _mm256_add_pd(fiz0,tz);
266
267             fjptrA             = f+j_coord_offsetA;
268             fjptrB             = f+j_coord_offsetB;
269             fjptrC             = f+j_coord_offsetC;
270             fjptrD             = f+j_coord_offsetD;
271             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
272
273             /* Inner loop uses 67 flops */
274         }
275
276         if(jidx<j_index_end)
277         {
278
279             /* Get j neighbor index, and coordinate index */
280             jnrlistA         = jjnr[jidx];
281             jnrlistB         = jjnr[jidx+1];
282             jnrlistC         = jjnr[jidx+2];
283             jnrlistD         = jjnr[jidx+3];
284             /* Sign of each element will be negative for non-real atoms.
285              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
286              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
287              */
288             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
289
290             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
291             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
292             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
293
294             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
295             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
296             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
297             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
298             j_coord_offsetA  = DIM*jnrA;
299             j_coord_offsetB  = DIM*jnrB;
300             j_coord_offsetC  = DIM*jnrC;
301             j_coord_offsetD  = DIM*jnrD;
302
303             /* load j atom coordinates */
304             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
305                                                  x+j_coord_offsetC,x+j_coord_offsetD,
306                                                  &jx0,&jy0,&jz0);
307
308             /* Calculate displacement vector */
309             dx00             = _mm256_sub_pd(ix0,jx0);
310             dy00             = _mm256_sub_pd(iy0,jy0);
311             dz00             = _mm256_sub_pd(iz0,jz0);
312
313             /* Calculate squared distance and things based on it */
314             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
315
316             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
317
318             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
319
320             /* Load parameters for j particles */
321             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
322                                                                  charge+jnrC+0,charge+jnrD+0);
323             vdwjidx0A        = 2*vdwtype[jnrA+0];
324             vdwjidx0B        = 2*vdwtype[jnrB+0];
325             vdwjidx0C        = 2*vdwtype[jnrC+0];
326             vdwjidx0D        = 2*vdwtype[jnrD+0];
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             r00              = _mm256_mul_pd(rsq00,rinv00);
333             r00              = _mm256_andnot_pd(dummy_mask,r00);
334
335             /* Compute parameters for interactions between i and j atoms */
336             qq00             = _mm256_mul_pd(iq0,jq0);
337             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
338                                             vdwioffsetptr0+vdwjidx0B,
339                                             vdwioffsetptr0+vdwjidx0C,
340                                             vdwioffsetptr0+vdwjidx0D,
341                                             &c6_00,&c12_00);
342
343             /* Calculate table index by multiplying r with table scale and truncate to integer */
344             rt               = _mm256_mul_pd(r00,vftabscale);
345             vfitab           = _mm256_cvttpd_epi32(rt);
346             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
347             vfitab           = _mm_slli_epi32(vfitab,3);
348
349             /* REACTION-FIELD ELECTROSTATICS */
350             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
351             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
352
353             /* CUBIC SPLINE TABLE DISPERSION */
354             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
355             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
356             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
357             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
358             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
359             Heps             = _mm256_mul_pd(vfeps,H);
360             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
361             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
362             vvdw6            = _mm256_mul_pd(c6_00,VV);
363             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
364             fvdw6            = _mm256_mul_pd(c6_00,FF);
365
366             /* CUBIC SPLINE TABLE REPULSION */
367             vfitab           = _mm_add_epi32(vfitab,ifour);
368             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
369             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
370             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
371             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
372             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
373             Heps             = _mm256_mul_pd(vfeps,H);
374             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
375             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
376             vvdw12           = _mm256_mul_pd(c12_00,VV);
377             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
378             fvdw12           = _mm256_mul_pd(c12_00,FF);
379             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
380             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
381
382             /* Update potential sum for this i atom from the interaction with this j atom. */
383             velec            = _mm256_andnot_pd(dummy_mask,velec);
384             velecsum         = _mm256_add_pd(velecsum,velec);
385             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
386             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
387
388             fscal            = _mm256_add_pd(felec,fvdw);
389
390             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm256_mul_pd(fscal,dx00);
394             ty               = _mm256_mul_pd(fscal,dy00);
395             tz               = _mm256_mul_pd(fscal,dz00);
396
397             /* Update vectorial force */
398             fix0             = _mm256_add_pd(fix0,tx);
399             fiy0             = _mm256_add_pd(fiy0,ty);
400             fiz0             = _mm256_add_pd(fiz0,tz);
401
402             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
403             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
404             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
405             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
406             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
407
408             /* Inner loop uses 68 flops */
409         }
410
411         /* End of innermost loop */
412
413         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
414                                                  f+i_coord_offset,fshift+i_shift_offset);
415
416         ggid                        = gid[iidx];
417         /* Update potential energies */
418         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
419         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
420
421         /* Increment number of inner iterations */
422         inneriter                  += j_index_end - j_index_start;
423
424         /* Outer loop uses 9 flops */
425     }
426
427     /* Increment number of outer iterations */
428     outeriter        += nri;
429
430     /* Update outer/inner flops */
431
432     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*68);
433 }
434 /*
435  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_double
436  * Electrostatics interaction: ReactionField
437  * VdW interaction:            CubicSplineTable
438  * Geometry:                   Particle-Particle
439  * Calculate force/pot:        Force
440  */
441 void
442 nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_avx_256_double
443                     (t_nblist * gmx_restrict                nlist,
444                      rvec * gmx_restrict                    xx,
445                      rvec * gmx_restrict                    ff,
446                      t_forcerec * gmx_restrict              fr,
447                      t_mdatoms * gmx_restrict               mdatoms,
448                      nb_kernel_data_t * gmx_restrict        kernel_data,
449                      t_nrnb * gmx_restrict                  nrnb)
450 {
451     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
452      * just 0 for non-waters.
453      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
454      * jnr indices corresponding to data put in the four positions in the SIMD register.
455      */
456     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
457     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
458     int              jnrA,jnrB,jnrC,jnrD;
459     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
460     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
461     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
462     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
463     real             rcutoff_scalar;
464     real             *shiftvec,*fshift,*x,*f;
465     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
466     real             scratch[4*DIM];
467     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
468     real *           vdwioffsetptr0;
469     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
470     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
471     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
472     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
473     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
474     real             *charge;
475     int              nvdwtype;
476     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
477     int              *vdwtype;
478     real             *vdwparam;
479     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
480     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
481     __m128i          vfitab;
482     __m128i          ifour       = _mm_set1_epi32(4);
483     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
484     real             *vftab;
485     __m256d          dummy_mask,cutoff_mask;
486     __m128           tmpmask0,tmpmask1;
487     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
488     __m256d          one     = _mm256_set1_pd(1.0);
489     __m256d          two     = _mm256_set1_pd(2.0);
490     x                = xx[0];
491     f                = ff[0];
492
493     nri              = nlist->nri;
494     iinr             = nlist->iinr;
495     jindex           = nlist->jindex;
496     jjnr             = nlist->jjnr;
497     shiftidx         = nlist->shift;
498     gid              = nlist->gid;
499     shiftvec         = fr->shift_vec[0];
500     fshift           = fr->fshift[0];
501     facel            = _mm256_set1_pd(fr->epsfac);
502     charge           = mdatoms->chargeA;
503     krf              = _mm256_set1_pd(fr->ic->k_rf);
504     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
505     crf              = _mm256_set1_pd(fr->ic->c_rf);
506     nvdwtype         = fr->ntype;
507     vdwparam         = fr->nbfp;
508     vdwtype          = mdatoms->typeA;
509
510     vftab            = kernel_data->table_vdw->data;
511     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
512
513     /* Avoid stupid compiler warnings */
514     jnrA = jnrB = jnrC = jnrD = 0;
515     j_coord_offsetA = 0;
516     j_coord_offsetB = 0;
517     j_coord_offsetC = 0;
518     j_coord_offsetD = 0;
519
520     outeriter        = 0;
521     inneriter        = 0;
522
523     for(iidx=0;iidx<4*DIM;iidx++)
524     {
525         scratch[iidx] = 0.0;
526     }
527
528     /* Start outer loop over neighborlists */
529     for(iidx=0; iidx<nri; iidx++)
530     {
531         /* Load shift vector for this list */
532         i_shift_offset   = DIM*shiftidx[iidx];
533
534         /* Load limits for loop over neighbors */
535         j_index_start    = jindex[iidx];
536         j_index_end      = jindex[iidx+1];
537
538         /* Get outer coordinate index */
539         inr              = iinr[iidx];
540         i_coord_offset   = DIM*inr;
541
542         /* Load i particle coords and add shift vector */
543         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
544
545         fix0             = _mm256_setzero_pd();
546         fiy0             = _mm256_setzero_pd();
547         fiz0             = _mm256_setzero_pd();
548
549         /* Load parameters for i particles */
550         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
551         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
552
553         /* Start inner kernel loop */
554         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
555         {
556
557             /* Get j neighbor index, and coordinate index */
558             jnrA             = jjnr[jidx];
559             jnrB             = jjnr[jidx+1];
560             jnrC             = jjnr[jidx+2];
561             jnrD             = jjnr[jidx+3];
562             j_coord_offsetA  = DIM*jnrA;
563             j_coord_offsetB  = DIM*jnrB;
564             j_coord_offsetC  = DIM*jnrC;
565             j_coord_offsetD  = DIM*jnrD;
566
567             /* load j atom coordinates */
568             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
569                                                  x+j_coord_offsetC,x+j_coord_offsetD,
570                                                  &jx0,&jy0,&jz0);
571
572             /* Calculate displacement vector */
573             dx00             = _mm256_sub_pd(ix0,jx0);
574             dy00             = _mm256_sub_pd(iy0,jy0);
575             dz00             = _mm256_sub_pd(iz0,jz0);
576
577             /* Calculate squared distance and things based on it */
578             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
579
580             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
581
582             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
583
584             /* Load parameters for j particles */
585             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
586                                                                  charge+jnrC+0,charge+jnrD+0);
587             vdwjidx0A        = 2*vdwtype[jnrA+0];
588             vdwjidx0B        = 2*vdwtype[jnrB+0];
589             vdwjidx0C        = 2*vdwtype[jnrC+0];
590             vdwjidx0D        = 2*vdwtype[jnrD+0];
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             r00              = _mm256_mul_pd(rsq00,rinv00);
597
598             /* Compute parameters for interactions between i and j atoms */
599             qq00             = _mm256_mul_pd(iq0,jq0);
600             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
601                                             vdwioffsetptr0+vdwjidx0B,
602                                             vdwioffsetptr0+vdwjidx0C,
603                                             vdwioffsetptr0+vdwjidx0D,
604                                             &c6_00,&c12_00);
605
606             /* Calculate table index by multiplying r with table scale and truncate to integer */
607             rt               = _mm256_mul_pd(r00,vftabscale);
608             vfitab           = _mm256_cvttpd_epi32(rt);
609             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
610             vfitab           = _mm_slli_epi32(vfitab,3);
611
612             /* REACTION-FIELD ELECTROSTATICS */
613             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
614
615             /* CUBIC SPLINE TABLE DISPERSION */
616             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
617             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
618             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
619             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
620             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
621             Heps             = _mm256_mul_pd(vfeps,H);
622             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
623             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
624             fvdw6            = _mm256_mul_pd(c6_00,FF);
625
626             /* CUBIC SPLINE TABLE REPULSION */
627             vfitab           = _mm_add_epi32(vfitab,ifour);
628             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
629             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
630             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
631             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
632             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
633             Heps             = _mm256_mul_pd(vfeps,H);
634             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
635             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
636             fvdw12           = _mm256_mul_pd(c12_00,FF);
637             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
638
639             fscal            = _mm256_add_pd(felec,fvdw);
640
641             /* Calculate temporary vectorial force */
642             tx               = _mm256_mul_pd(fscal,dx00);
643             ty               = _mm256_mul_pd(fscal,dy00);
644             tz               = _mm256_mul_pd(fscal,dz00);
645
646             /* Update vectorial force */
647             fix0             = _mm256_add_pd(fix0,tx);
648             fiy0             = _mm256_add_pd(fiy0,ty);
649             fiz0             = _mm256_add_pd(fiz0,tz);
650
651             fjptrA             = f+j_coord_offsetA;
652             fjptrB             = f+j_coord_offsetB;
653             fjptrC             = f+j_coord_offsetC;
654             fjptrD             = f+j_coord_offsetD;
655             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
656
657             /* Inner loop uses 54 flops */
658         }
659
660         if(jidx<j_index_end)
661         {
662
663             /* Get j neighbor index, and coordinate index */
664             jnrlistA         = jjnr[jidx];
665             jnrlistB         = jjnr[jidx+1];
666             jnrlistC         = jjnr[jidx+2];
667             jnrlistD         = jjnr[jidx+3];
668             /* Sign of each element will be negative for non-real atoms.
669              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
670              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
671              */
672             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
673
674             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
675             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
676             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
677
678             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
679             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
680             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
681             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
682             j_coord_offsetA  = DIM*jnrA;
683             j_coord_offsetB  = DIM*jnrB;
684             j_coord_offsetC  = DIM*jnrC;
685             j_coord_offsetD  = DIM*jnrD;
686
687             /* load j atom coordinates */
688             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
689                                                  x+j_coord_offsetC,x+j_coord_offsetD,
690                                                  &jx0,&jy0,&jz0);
691
692             /* Calculate displacement vector */
693             dx00             = _mm256_sub_pd(ix0,jx0);
694             dy00             = _mm256_sub_pd(iy0,jy0);
695             dz00             = _mm256_sub_pd(iz0,jz0);
696
697             /* Calculate squared distance and things based on it */
698             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
699
700             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
701
702             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
703
704             /* Load parameters for j particles */
705             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
706                                                                  charge+jnrC+0,charge+jnrD+0);
707             vdwjidx0A        = 2*vdwtype[jnrA+0];
708             vdwjidx0B        = 2*vdwtype[jnrB+0];
709             vdwjidx0C        = 2*vdwtype[jnrC+0];
710             vdwjidx0D        = 2*vdwtype[jnrD+0];
711
712             /**************************
713              * CALCULATE INTERACTIONS *
714              **************************/
715
716             r00              = _mm256_mul_pd(rsq00,rinv00);
717             r00              = _mm256_andnot_pd(dummy_mask,r00);
718
719             /* Compute parameters for interactions between i and j atoms */
720             qq00             = _mm256_mul_pd(iq0,jq0);
721             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
722                                             vdwioffsetptr0+vdwjidx0B,
723                                             vdwioffsetptr0+vdwjidx0C,
724                                             vdwioffsetptr0+vdwjidx0D,
725                                             &c6_00,&c12_00);
726
727             /* Calculate table index by multiplying r with table scale and truncate to integer */
728             rt               = _mm256_mul_pd(r00,vftabscale);
729             vfitab           = _mm256_cvttpd_epi32(rt);
730             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
731             vfitab           = _mm_slli_epi32(vfitab,3);
732
733             /* REACTION-FIELD ELECTROSTATICS */
734             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
735
736             /* CUBIC SPLINE TABLE DISPERSION */
737             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
738             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
739             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
740             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
741             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
742             Heps             = _mm256_mul_pd(vfeps,H);
743             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
744             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
745             fvdw6            = _mm256_mul_pd(c6_00,FF);
746
747             /* CUBIC SPLINE TABLE REPULSION */
748             vfitab           = _mm_add_epi32(vfitab,ifour);
749             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
750             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
751             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
752             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
753             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
754             Heps             = _mm256_mul_pd(vfeps,H);
755             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
756             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
757             fvdw12           = _mm256_mul_pd(c12_00,FF);
758             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
759
760             fscal            = _mm256_add_pd(felec,fvdw);
761
762             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
763
764             /* Calculate temporary vectorial force */
765             tx               = _mm256_mul_pd(fscal,dx00);
766             ty               = _mm256_mul_pd(fscal,dy00);
767             tz               = _mm256_mul_pd(fscal,dz00);
768
769             /* Update vectorial force */
770             fix0             = _mm256_add_pd(fix0,tx);
771             fiy0             = _mm256_add_pd(fiy0,ty);
772             fiz0             = _mm256_add_pd(fiz0,tz);
773
774             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
775             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
776             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
777             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
778             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
779
780             /* Inner loop uses 55 flops */
781         }
782
783         /* End of innermost loop */
784
785         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
786                                                  f+i_coord_offset,fshift+i_shift_offset);
787
788         /* Increment number of inner iterations */
789         inneriter                  += j_index_end - j_index_start;
790
791         /* Outer loop uses 7 flops */
792     }
793
794     /* Increment number of outer iterations */
795     outeriter        += nri;
796
797     /* Update outer/inner flops */
798
799     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*55);
800 }