made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m256d          dummy_mask,cutoff_mask;
78     __m128           tmpmask0,tmpmask1;
79     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
80     __m256d          one     = _mm256_set1_pd(1.0);
81     __m256d          two     = _mm256_set1_pd(2.0);
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = _mm256_set1_pd(fr->epsfac);
94     charge           = mdatoms->chargeA;
95     krf              = _mm256_set1_pd(fr->ic->k_rf);
96     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
97     crf              = _mm256_set1_pd(fr->ic->c_rf);
98
99     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
100     rcutoff_scalar   = fr->rcoulomb;
101     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
102     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
103
104     /* Avoid stupid compiler warnings */
105     jnrA = jnrB = jnrC = jnrD = 0;
106     j_coord_offsetA = 0;
107     j_coord_offsetB = 0;
108     j_coord_offsetC = 0;
109     j_coord_offsetD = 0;
110
111     outeriter        = 0;
112     inneriter        = 0;
113
114     for(iidx=0;iidx<4*DIM;iidx++)
115     {
116         scratch[iidx] = 0.0;
117     }
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124
125         /* Load limits for loop over neighbors */
126         j_index_start    = jindex[iidx];
127         j_index_end      = jindex[iidx+1];
128
129         /* Get outer coordinate index */
130         inr              = iinr[iidx];
131         i_coord_offset   = DIM*inr;
132
133         /* Load i particle coords and add shift vector */
134         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
135
136         fix0             = _mm256_setzero_pd();
137         fiy0             = _mm256_setzero_pd();
138         fiz0             = _mm256_setzero_pd();
139
140         /* Load parameters for i particles */
141         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
142
143         /* Reset potential sums */
144         velecsum         = _mm256_setzero_pd();
145
146         /* Start inner kernel loop */
147         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
148         {
149
150             /* Get j neighbor index, and coordinate index */
151             jnrA             = jjnr[jidx];
152             jnrB             = jjnr[jidx+1];
153             jnrC             = jjnr[jidx+2];
154             jnrD             = jjnr[jidx+3];
155             j_coord_offsetA  = DIM*jnrA;
156             j_coord_offsetB  = DIM*jnrB;
157             j_coord_offsetC  = DIM*jnrC;
158             j_coord_offsetD  = DIM*jnrD;
159
160             /* load j atom coordinates */
161             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
162                                                  x+j_coord_offsetC,x+j_coord_offsetD,
163                                                  &jx0,&jy0,&jz0);
164
165             /* Calculate displacement vector */
166             dx00             = _mm256_sub_pd(ix0,jx0);
167             dy00             = _mm256_sub_pd(iy0,jy0);
168             dz00             = _mm256_sub_pd(iz0,jz0);
169
170             /* Calculate squared distance and things based on it */
171             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
172
173             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
174
175             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
176
177             /* Load parameters for j particles */
178             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
179                                                                  charge+jnrC+0,charge+jnrD+0);
180
181             /**************************
182              * CALCULATE INTERACTIONS *
183              **************************/
184
185             if (gmx_mm256_any_lt(rsq00,rcutoff2))
186             {
187
188             /* Compute parameters for interactions between i and j atoms */
189             qq00             = _mm256_mul_pd(iq0,jq0);
190
191             /* REACTION-FIELD ELECTROSTATICS */
192             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
193             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
194
195             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
196
197             /* Update potential sum for this i atom from the interaction with this j atom. */
198             velec            = _mm256_and_pd(velec,cutoff_mask);
199             velecsum         = _mm256_add_pd(velecsum,velec);
200
201             fscal            = felec;
202
203             fscal            = _mm256_and_pd(fscal,cutoff_mask);
204
205             /* Calculate temporary vectorial force */
206             tx               = _mm256_mul_pd(fscal,dx00);
207             ty               = _mm256_mul_pd(fscal,dy00);
208             tz               = _mm256_mul_pd(fscal,dz00);
209
210             /* Update vectorial force */
211             fix0             = _mm256_add_pd(fix0,tx);
212             fiy0             = _mm256_add_pd(fiy0,ty);
213             fiz0             = _mm256_add_pd(fiz0,tz);
214
215             fjptrA             = f+j_coord_offsetA;
216             fjptrB             = f+j_coord_offsetB;
217             fjptrC             = f+j_coord_offsetC;
218             fjptrD             = f+j_coord_offsetD;
219             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
220
221             }
222
223             /* Inner loop uses 36 flops */
224         }
225
226         if(jidx<j_index_end)
227         {
228
229             /* Get j neighbor index, and coordinate index */
230             jnrlistA         = jjnr[jidx];
231             jnrlistB         = jjnr[jidx+1];
232             jnrlistC         = jjnr[jidx+2];
233             jnrlistD         = jjnr[jidx+3];
234             /* Sign of each element will be negative for non-real atoms.
235              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
236              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
237              */
238             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
239
240             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
241             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
242             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
243
244             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
245             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
246             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
247             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
248             j_coord_offsetA  = DIM*jnrA;
249             j_coord_offsetB  = DIM*jnrB;
250             j_coord_offsetC  = DIM*jnrC;
251             j_coord_offsetD  = DIM*jnrD;
252
253             /* load j atom coordinates */
254             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
255                                                  x+j_coord_offsetC,x+j_coord_offsetD,
256                                                  &jx0,&jy0,&jz0);
257
258             /* Calculate displacement vector */
259             dx00             = _mm256_sub_pd(ix0,jx0);
260             dy00             = _mm256_sub_pd(iy0,jy0);
261             dz00             = _mm256_sub_pd(iz0,jz0);
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
265
266             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
267
268             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
269
270             /* Load parameters for j particles */
271             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
272                                                                  charge+jnrC+0,charge+jnrD+0);
273
274             /**************************
275              * CALCULATE INTERACTIONS *
276              **************************/
277
278             if (gmx_mm256_any_lt(rsq00,rcutoff2))
279             {
280
281             /* Compute parameters for interactions between i and j atoms */
282             qq00             = _mm256_mul_pd(iq0,jq0);
283
284             /* REACTION-FIELD ELECTROSTATICS */
285             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
286             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
287
288             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
289
290             /* Update potential sum for this i atom from the interaction with this j atom. */
291             velec            = _mm256_and_pd(velec,cutoff_mask);
292             velec            = _mm256_andnot_pd(dummy_mask,velec);
293             velecsum         = _mm256_add_pd(velecsum,velec);
294
295             fscal            = felec;
296
297             fscal            = _mm256_and_pd(fscal,cutoff_mask);
298
299             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
300
301             /* Calculate temporary vectorial force */
302             tx               = _mm256_mul_pd(fscal,dx00);
303             ty               = _mm256_mul_pd(fscal,dy00);
304             tz               = _mm256_mul_pd(fscal,dz00);
305
306             /* Update vectorial force */
307             fix0             = _mm256_add_pd(fix0,tx);
308             fiy0             = _mm256_add_pd(fiy0,ty);
309             fiz0             = _mm256_add_pd(fiz0,tz);
310
311             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
312             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
313             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
314             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
315             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
316
317             }
318
319             /* Inner loop uses 36 flops */
320         }
321
322         /* End of innermost loop */
323
324         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
325                                                  f+i_coord_offset,fshift+i_shift_offset);
326
327         ggid                        = gid[iidx];
328         /* Update potential energies */
329         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
330
331         /* Increment number of inner iterations */
332         inneriter                  += j_index_end - j_index_start;
333
334         /* Outer loop uses 8 flops */
335     }
336
337     /* Increment number of outer iterations */
338     outeriter        += nri;
339
340     /* Update outer/inner flops */
341
342     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
343 }
344 /*
345  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_double
346  * Electrostatics interaction: ReactionField
347  * VdW interaction:            None
348  * Geometry:                   Particle-Particle
349  * Calculate force/pot:        Force
350  */
351 void
352 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_double
353                     (t_nblist * gmx_restrict                nlist,
354                      rvec * gmx_restrict                    xx,
355                      rvec * gmx_restrict                    ff,
356                      t_forcerec * gmx_restrict              fr,
357                      t_mdatoms * gmx_restrict               mdatoms,
358                      nb_kernel_data_t * gmx_restrict        kernel_data,
359                      t_nrnb * gmx_restrict                  nrnb)
360 {
361     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
362      * just 0 for non-waters.
363      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
364      * jnr indices corresponding to data put in the four positions in the SIMD register.
365      */
366     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
367     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
368     int              jnrA,jnrB,jnrC,jnrD;
369     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
370     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
371     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
372     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
373     real             rcutoff_scalar;
374     real             *shiftvec,*fshift,*x,*f;
375     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
376     real             scratch[4*DIM];
377     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
378     real *           vdwioffsetptr0;
379     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
380     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
381     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
382     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
383     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
384     real             *charge;
385     __m256d          dummy_mask,cutoff_mask;
386     __m128           tmpmask0,tmpmask1;
387     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
388     __m256d          one     = _mm256_set1_pd(1.0);
389     __m256d          two     = _mm256_set1_pd(2.0);
390     x                = xx[0];
391     f                = ff[0];
392
393     nri              = nlist->nri;
394     iinr             = nlist->iinr;
395     jindex           = nlist->jindex;
396     jjnr             = nlist->jjnr;
397     shiftidx         = nlist->shift;
398     gid              = nlist->gid;
399     shiftvec         = fr->shift_vec[0];
400     fshift           = fr->fshift[0];
401     facel            = _mm256_set1_pd(fr->epsfac);
402     charge           = mdatoms->chargeA;
403     krf              = _mm256_set1_pd(fr->ic->k_rf);
404     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
405     crf              = _mm256_set1_pd(fr->ic->c_rf);
406
407     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
408     rcutoff_scalar   = fr->rcoulomb;
409     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
410     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
411
412     /* Avoid stupid compiler warnings */
413     jnrA = jnrB = jnrC = jnrD = 0;
414     j_coord_offsetA = 0;
415     j_coord_offsetB = 0;
416     j_coord_offsetC = 0;
417     j_coord_offsetD = 0;
418
419     outeriter        = 0;
420     inneriter        = 0;
421
422     for(iidx=0;iidx<4*DIM;iidx++)
423     {
424         scratch[iidx] = 0.0;
425     }
426
427     /* Start outer loop over neighborlists */
428     for(iidx=0; iidx<nri; iidx++)
429     {
430         /* Load shift vector for this list */
431         i_shift_offset   = DIM*shiftidx[iidx];
432
433         /* Load limits for loop over neighbors */
434         j_index_start    = jindex[iidx];
435         j_index_end      = jindex[iidx+1];
436
437         /* Get outer coordinate index */
438         inr              = iinr[iidx];
439         i_coord_offset   = DIM*inr;
440
441         /* Load i particle coords and add shift vector */
442         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
443
444         fix0             = _mm256_setzero_pd();
445         fiy0             = _mm256_setzero_pd();
446         fiz0             = _mm256_setzero_pd();
447
448         /* Load parameters for i particles */
449         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
450
451         /* Start inner kernel loop */
452         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
453         {
454
455             /* Get j neighbor index, and coordinate index */
456             jnrA             = jjnr[jidx];
457             jnrB             = jjnr[jidx+1];
458             jnrC             = jjnr[jidx+2];
459             jnrD             = jjnr[jidx+3];
460             j_coord_offsetA  = DIM*jnrA;
461             j_coord_offsetB  = DIM*jnrB;
462             j_coord_offsetC  = DIM*jnrC;
463             j_coord_offsetD  = DIM*jnrD;
464
465             /* load j atom coordinates */
466             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
467                                                  x+j_coord_offsetC,x+j_coord_offsetD,
468                                                  &jx0,&jy0,&jz0);
469
470             /* Calculate displacement vector */
471             dx00             = _mm256_sub_pd(ix0,jx0);
472             dy00             = _mm256_sub_pd(iy0,jy0);
473             dz00             = _mm256_sub_pd(iz0,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
477
478             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
479
480             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
481
482             /* Load parameters for j particles */
483             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
484                                                                  charge+jnrC+0,charge+jnrD+0);
485
486             /**************************
487              * CALCULATE INTERACTIONS *
488              **************************/
489
490             if (gmx_mm256_any_lt(rsq00,rcutoff2))
491             {
492
493             /* Compute parameters for interactions between i and j atoms */
494             qq00             = _mm256_mul_pd(iq0,jq0);
495
496             /* REACTION-FIELD ELECTROSTATICS */
497             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
498
499             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
500
501             fscal            = felec;
502
503             fscal            = _mm256_and_pd(fscal,cutoff_mask);
504
505             /* Calculate temporary vectorial force */
506             tx               = _mm256_mul_pd(fscal,dx00);
507             ty               = _mm256_mul_pd(fscal,dy00);
508             tz               = _mm256_mul_pd(fscal,dz00);
509
510             /* Update vectorial force */
511             fix0             = _mm256_add_pd(fix0,tx);
512             fiy0             = _mm256_add_pd(fiy0,ty);
513             fiz0             = _mm256_add_pd(fiz0,tz);
514
515             fjptrA             = f+j_coord_offsetA;
516             fjptrB             = f+j_coord_offsetB;
517             fjptrC             = f+j_coord_offsetC;
518             fjptrD             = f+j_coord_offsetD;
519             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
520
521             }
522
523             /* Inner loop uses 30 flops */
524         }
525
526         if(jidx<j_index_end)
527         {
528
529             /* Get j neighbor index, and coordinate index */
530             jnrlistA         = jjnr[jidx];
531             jnrlistB         = jjnr[jidx+1];
532             jnrlistC         = jjnr[jidx+2];
533             jnrlistD         = jjnr[jidx+3];
534             /* Sign of each element will be negative for non-real atoms.
535              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
536              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
537              */
538             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
539
540             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
541             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
542             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
543
544             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
545             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
546             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
547             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
548             j_coord_offsetA  = DIM*jnrA;
549             j_coord_offsetB  = DIM*jnrB;
550             j_coord_offsetC  = DIM*jnrC;
551             j_coord_offsetD  = DIM*jnrD;
552
553             /* load j atom coordinates */
554             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
555                                                  x+j_coord_offsetC,x+j_coord_offsetD,
556                                                  &jx0,&jy0,&jz0);
557
558             /* Calculate displacement vector */
559             dx00             = _mm256_sub_pd(ix0,jx0);
560             dy00             = _mm256_sub_pd(iy0,jy0);
561             dz00             = _mm256_sub_pd(iz0,jz0);
562
563             /* Calculate squared distance and things based on it */
564             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
565
566             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
567
568             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
569
570             /* Load parameters for j particles */
571             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
572                                                                  charge+jnrC+0,charge+jnrD+0);
573
574             /**************************
575              * CALCULATE INTERACTIONS *
576              **************************/
577
578             if (gmx_mm256_any_lt(rsq00,rcutoff2))
579             {
580
581             /* Compute parameters for interactions between i and j atoms */
582             qq00             = _mm256_mul_pd(iq0,jq0);
583
584             /* REACTION-FIELD ELECTROSTATICS */
585             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
586
587             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
588
589             fscal            = felec;
590
591             fscal            = _mm256_and_pd(fscal,cutoff_mask);
592
593             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
594
595             /* Calculate temporary vectorial force */
596             tx               = _mm256_mul_pd(fscal,dx00);
597             ty               = _mm256_mul_pd(fscal,dy00);
598             tz               = _mm256_mul_pd(fscal,dz00);
599
600             /* Update vectorial force */
601             fix0             = _mm256_add_pd(fix0,tx);
602             fiy0             = _mm256_add_pd(fiy0,ty);
603             fiz0             = _mm256_add_pd(fiz0,tz);
604
605             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
606             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
607             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
608             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
609             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
610
611             }
612
613             /* Inner loop uses 30 flops */
614         }
615
616         /* End of innermost loop */
617
618         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
619                                                  f+i_coord_offset,fshift+i_shift_offset);
620
621         /* Increment number of inner iterations */
622         inneriter                  += j_index_end - j_index_start;
623
624         /* Outer loop uses 7 flops */
625     }
626
627     /* Increment number of outer iterations */
628     outeriter        += nri;
629
630     /* Update outer/inner flops */
631
632     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
633 }