made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
90     real             rswitch_scalar,d_scalar;
91     __m256d          dummy_mask,cutoff_mask;
92     __m128           tmpmask0,tmpmask1;
93     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
94     __m256d          one     = _mm256_set1_pd(1.0);
95     __m256d          two     = _mm256_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     krf              = _mm256_set1_pd(fr->ic->k_rf);
110     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
111     crf              = _mm256_set1_pd(fr->ic->c_rf);
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
119     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
120     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
121     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff_scalar   = fr->rcoulomb;
125     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
126     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
127
128     rswitch_scalar   = fr->rvdw_switch;
129     rswitch          = _mm256_set1_pd(rswitch_scalar);
130     /* Setup switch parameters */
131     d_scalar         = rcutoff_scalar-rswitch_scalar;
132     d                = _mm256_set1_pd(d_scalar);
133     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
134     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
135     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
136     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
137     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
138     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
139
140     /* Avoid stupid compiler warnings */
141     jnrA = jnrB = jnrC = jnrD = 0;
142     j_coord_offsetA = 0;
143     j_coord_offsetB = 0;
144     j_coord_offsetC = 0;
145     j_coord_offsetD = 0;
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     for(iidx=0;iidx<4*DIM;iidx++)
151     {
152         scratch[iidx] = 0.0;
153     }
154
155     /* Start outer loop over neighborlists */
156     for(iidx=0; iidx<nri; iidx++)
157     {
158         /* Load shift vector for this list */
159         i_shift_offset   = DIM*shiftidx[iidx];
160
161         /* Load limits for loop over neighbors */
162         j_index_start    = jindex[iidx];
163         j_index_end      = jindex[iidx+1];
164
165         /* Get outer coordinate index */
166         inr              = iinr[iidx];
167         i_coord_offset   = DIM*inr;
168
169         /* Load i particle coords and add shift vector */
170         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
171                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
172
173         fix0             = _mm256_setzero_pd();
174         fiy0             = _mm256_setzero_pd();
175         fiz0             = _mm256_setzero_pd();
176         fix1             = _mm256_setzero_pd();
177         fiy1             = _mm256_setzero_pd();
178         fiz1             = _mm256_setzero_pd();
179         fix2             = _mm256_setzero_pd();
180         fiy2             = _mm256_setzero_pd();
181         fiz2             = _mm256_setzero_pd();
182
183         /* Reset potential sums */
184         velecsum         = _mm256_setzero_pd();
185         vvdwsum          = _mm256_setzero_pd();
186
187         /* Start inner kernel loop */
188         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
189         {
190
191             /* Get j neighbor index, and coordinate index */
192             jnrA             = jjnr[jidx];
193             jnrB             = jjnr[jidx+1];
194             jnrC             = jjnr[jidx+2];
195             jnrD             = jjnr[jidx+3];
196             j_coord_offsetA  = DIM*jnrA;
197             j_coord_offsetB  = DIM*jnrB;
198             j_coord_offsetC  = DIM*jnrC;
199             j_coord_offsetD  = DIM*jnrD;
200
201             /* load j atom coordinates */
202             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
203                                                  x+j_coord_offsetC,x+j_coord_offsetD,
204                                                  &jx0,&jy0,&jz0);
205
206             /* Calculate displacement vector */
207             dx00             = _mm256_sub_pd(ix0,jx0);
208             dy00             = _mm256_sub_pd(iy0,jy0);
209             dz00             = _mm256_sub_pd(iz0,jz0);
210             dx10             = _mm256_sub_pd(ix1,jx0);
211             dy10             = _mm256_sub_pd(iy1,jy0);
212             dz10             = _mm256_sub_pd(iz1,jz0);
213             dx20             = _mm256_sub_pd(ix2,jx0);
214             dy20             = _mm256_sub_pd(iy2,jy0);
215             dz20             = _mm256_sub_pd(iz2,jz0);
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
219             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
220             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
221
222             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
223             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
224             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
225
226             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
227             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
228             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
229
230             /* Load parameters for j particles */
231             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
232                                                                  charge+jnrC+0,charge+jnrD+0);
233             vdwjidx0A        = 2*vdwtype[jnrA+0];
234             vdwjidx0B        = 2*vdwtype[jnrB+0];
235             vdwjidx0C        = 2*vdwtype[jnrC+0];
236             vdwjidx0D        = 2*vdwtype[jnrD+0];
237
238             fjx0             = _mm256_setzero_pd();
239             fjy0             = _mm256_setzero_pd();
240             fjz0             = _mm256_setzero_pd();
241
242             /**************************
243              * CALCULATE INTERACTIONS *
244              **************************/
245
246             if (gmx_mm256_any_lt(rsq00,rcutoff2))
247             {
248
249             r00              = _mm256_mul_pd(rsq00,rinv00);
250
251             /* Compute parameters for interactions between i and j atoms */
252             qq00             = _mm256_mul_pd(iq0,jq0);
253             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
254                                             vdwioffsetptr0+vdwjidx0B,
255                                             vdwioffsetptr0+vdwjidx0C,
256                                             vdwioffsetptr0+vdwjidx0D,
257                                             &c6_00,&c12_00);
258
259             /* REACTION-FIELD ELECTROSTATICS */
260             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
261             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
262
263             /* LENNARD-JONES DISPERSION/REPULSION */
264
265             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
266             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
267             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
268             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
269             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
270
271             d                = _mm256_sub_pd(r00,rswitch);
272             d                = _mm256_max_pd(d,_mm256_setzero_pd());
273             d2               = _mm256_mul_pd(d,d);
274             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
275
276             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
277
278             /* Evaluate switch function */
279             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
280             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
281             vvdw             = _mm256_mul_pd(vvdw,sw);
282             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
283
284             /* Update potential sum for this i atom from the interaction with this j atom. */
285             velec            = _mm256_and_pd(velec,cutoff_mask);
286             velecsum         = _mm256_add_pd(velecsum,velec);
287             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
288             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
289
290             fscal            = _mm256_add_pd(felec,fvdw);
291
292             fscal            = _mm256_and_pd(fscal,cutoff_mask);
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_pd(fscal,dx00);
296             ty               = _mm256_mul_pd(fscal,dy00);
297             tz               = _mm256_mul_pd(fscal,dz00);
298
299             /* Update vectorial force */
300             fix0             = _mm256_add_pd(fix0,tx);
301             fiy0             = _mm256_add_pd(fiy0,ty);
302             fiz0             = _mm256_add_pd(fiz0,tz);
303
304             fjx0             = _mm256_add_pd(fjx0,tx);
305             fjy0             = _mm256_add_pd(fjy0,ty);
306             fjz0             = _mm256_add_pd(fjz0,tz);
307
308             }
309
310             /**************************
311              * CALCULATE INTERACTIONS *
312              **************************/
313
314             if (gmx_mm256_any_lt(rsq10,rcutoff2))
315             {
316
317             /* Compute parameters for interactions between i and j atoms */
318             qq10             = _mm256_mul_pd(iq1,jq0);
319
320             /* REACTION-FIELD ELECTROSTATICS */
321             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
322             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
323
324             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
325
326             /* Update potential sum for this i atom from the interaction with this j atom. */
327             velec            = _mm256_and_pd(velec,cutoff_mask);
328             velecsum         = _mm256_add_pd(velecsum,velec);
329
330             fscal            = felec;
331
332             fscal            = _mm256_and_pd(fscal,cutoff_mask);
333
334             /* Calculate temporary vectorial force */
335             tx               = _mm256_mul_pd(fscal,dx10);
336             ty               = _mm256_mul_pd(fscal,dy10);
337             tz               = _mm256_mul_pd(fscal,dz10);
338
339             /* Update vectorial force */
340             fix1             = _mm256_add_pd(fix1,tx);
341             fiy1             = _mm256_add_pd(fiy1,ty);
342             fiz1             = _mm256_add_pd(fiz1,tz);
343
344             fjx0             = _mm256_add_pd(fjx0,tx);
345             fjy0             = _mm256_add_pd(fjy0,ty);
346             fjz0             = _mm256_add_pd(fjz0,tz);
347
348             }
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             if (gmx_mm256_any_lt(rsq20,rcutoff2))
355             {
356
357             /* Compute parameters for interactions between i and j atoms */
358             qq20             = _mm256_mul_pd(iq2,jq0);
359
360             /* REACTION-FIELD ELECTROSTATICS */
361             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
362             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
363
364             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
365
366             /* Update potential sum for this i atom from the interaction with this j atom. */
367             velec            = _mm256_and_pd(velec,cutoff_mask);
368             velecsum         = _mm256_add_pd(velecsum,velec);
369
370             fscal            = felec;
371
372             fscal            = _mm256_and_pd(fscal,cutoff_mask);
373
374             /* Calculate temporary vectorial force */
375             tx               = _mm256_mul_pd(fscal,dx20);
376             ty               = _mm256_mul_pd(fscal,dy20);
377             tz               = _mm256_mul_pd(fscal,dz20);
378
379             /* Update vectorial force */
380             fix2             = _mm256_add_pd(fix2,tx);
381             fiy2             = _mm256_add_pd(fiy2,ty);
382             fiz2             = _mm256_add_pd(fiz2,tz);
383
384             fjx0             = _mm256_add_pd(fjx0,tx);
385             fjy0             = _mm256_add_pd(fjy0,ty);
386             fjz0             = _mm256_add_pd(fjz0,tz);
387
388             }
389
390             fjptrA             = f+j_coord_offsetA;
391             fjptrB             = f+j_coord_offsetB;
392             fjptrC             = f+j_coord_offsetC;
393             fjptrD             = f+j_coord_offsetD;
394
395             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
396
397             /* Inner loop uses 145 flops */
398         }
399
400         if(jidx<j_index_end)
401         {
402
403             /* Get j neighbor index, and coordinate index */
404             jnrlistA         = jjnr[jidx];
405             jnrlistB         = jjnr[jidx+1];
406             jnrlistC         = jjnr[jidx+2];
407             jnrlistD         = jjnr[jidx+3];
408             /* Sign of each element will be negative for non-real atoms.
409              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
410              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
411              */
412             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
413
414             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
415             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
416             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
417
418             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
419             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
420             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
421             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
422             j_coord_offsetA  = DIM*jnrA;
423             j_coord_offsetB  = DIM*jnrB;
424             j_coord_offsetC  = DIM*jnrC;
425             j_coord_offsetD  = DIM*jnrD;
426
427             /* load j atom coordinates */
428             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
429                                                  x+j_coord_offsetC,x+j_coord_offsetD,
430                                                  &jx0,&jy0,&jz0);
431
432             /* Calculate displacement vector */
433             dx00             = _mm256_sub_pd(ix0,jx0);
434             dy00             = _mm256_sub_pd(iy0,jy0);
435             dz00             = _mm256_sub_pd(iz0,jz0);
436             dx10             = _mm256_sub_pd(ix1,jx0);
437             dy10             = _mm256_sub_pd(iy1,jy0);
438             dz10             = _mm256_sub_pd(iz1,jz0);
439             dx20             = _mm256_sub_pd(ix2,jx0);
440             dy20             = _mm256_sub_pd(iy2,jy0);
441             dz20             = _mm256_sub_pd(iz2,jz0);
442
443             /* Calculate squared distance and things based on it */
444             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
445             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
446             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
447
448             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
449             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
450             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
451
452             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
453             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
454             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
455
456             /* Load parameters for j particles */
457             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
458                                                                  charge+jnrC+0,charge+jnrD+0);
459             vdwjidx0A        = 2*vdwtype[jnrA+0];
460             vdwjidx0B        = 2*vdwtype[jnrB+0];
461             vdwjidx0C        = 2*vdwtype[jnrC+0];
462             vdwjidx0D        = 2*vdwtype[jnrD+0];
463
464             fjx0             = _mm256_setzero_pd();
465             fjy0             = _mm256_setzero_pd();
466             fjz0             = _mm256_setzero_pd();
467
468             /**************************
469              * CALCULATE INTERACTIONS *
470              **************************/
471
472             if (gmx_mm256_any_lt(rsq00,rcutoff2))
473             {
474
475             r00              = _mm256_mul_pd(rsq00,rinv00);
476             r00              = _mm256_andnot_pd(dummy_mask,r00);
477
478             /* Compute parameters for interactions between i and j atoms */
479             qq00             = _mm256_mul_pd(iq0,jq0);
480             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
481                                             vdwioffsetptr0+vdwjidx0B,
482                                             vdwioffsetptr0+vdwjidx0C,
483                                             vdwioffsetptr0+vdwjidx0D,
484                                             &c6_00,&c12_00);
485
486             /* REACTION-FIELD ELECTROSTATICS */
487             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
488             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
489
490             /* LENNARD-JONES DISPERSION/REPULSION */
491
492             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
493             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
494             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
495             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
496             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
497
498             d                = _mm256_sub_pd(r00,rswitch);
499             d                = _mm256_max_pd(d,_mm256_setzero_pd());
500             d2               = _mm256_mul_pd(d,d);
501             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
502
503             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
504
505             /* Evaluate switch function */
506             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
507             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
508             vvdw             = _mm256_mul_pd(vvdw,sw);
509             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
510
511             /* Update potential sum for this i atom from the interaction with this j atom. */
512             velec            = _mm256_and_pd(velec,cutoff_mask);
513             velec            = _mm256_andnot_pd(dummy_mask,velec);
514             velecsum         = _mm256_add_pd(velecsum,velec);
515             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
516             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
517             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
518
519             fscal            = _mm256_add_pd(felec,fvdw);
520
521             fscal            = _mm256_and_pd(fscal,cutoff_mask);
522
523             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
524
525             /* Calculate temporary vectorial force */
526             tx               = _mm256_mul_pd(fscal,dx00);
527             ty               = _mm256_mul_pd(fscal,dy00);
528             tz               = _mm256_mul_pd(fscal,dz00);
529
530             /* Update vectorial force */
531             fix0             = _mm256_add_pd(fix0,tx);
532             fiy0             = _mm256_add_pd(fiy0,ty);
533             fiz0             = _mm256_add_pd(fiz0,tz);
534
535             fjx0             = _mm256_add_pd(fjx0,tx);
536             fjy0             = _mm256_add_pd(fjy0,ty);
537             fjz0             = _mm256_add_pd(fjz0,tz);
538
539             }
540
541             /**************************
542              * CALCULATE INTERACTIONS *
543              **************************/
544
545             if (gmx_mm256_any_lt(rsq10,rcutoff2))
546             {
547
548             /* Compute parameters for interactions between i and j atoms */
549             qq10             = _mm256_mul_pd(iq1,jq0);
550
551             /* REACTION-FIELD ELECTROSTATICS */
552             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
553             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
554
555             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
556
557             /* Update potential sum for this i atom from the interaction with this j atom. */
558             velec            = _mm256_and_pd(velec,cutoff_mask);
559             velec            = _mm256_andnot_pd(dummy_mask,velec);
560             velecsum         = _mm256_add_pd(velecsum,velec);
561
562             fscal            = felec;
563
564             fscal            = _mm256_and_pd(fscal,cutoff_mask);
565
566             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_pd(fscal,dx10);
570             ty               = _mm256_mul_pd(fscal,dy10);
571             tz               = _mm256_mul_pd(fscal,dz10);
572
573             /* Update vectorial force */
574             fix1             = _mm256_add_pd(fix1,tx);
575             fiy1             = _mm256_add_pd(fiy1,ty);
576             fiz1             = _mm256_add_pd(fiz1,tz);
577
578             fjx0             = _mm256_add_pd(fjx0,tx);
579             fjy0             = _mm256_add_pd(fjy0,ty);
580             fjz0             = _mm256_add_pd(fjz0,tz);
581
582             }
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             if (gmx_mm256_any_lt(rsq20,rcutoff2))
589             {
590
591             /* Compute parameters for interactions between i and j atoms */
592             qq20             = _mm256_mul_pd(iq2,jq0);
593
594             /* REACTION-FIELD ELECTROSTATICS */
595             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
596             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
597
598             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
599
600             /* Update potential sum for this i atom from the interaction with this j atom. */
601             velec            = _mm256_and_pd(velec,cutoff_mask);
602             velec            = _mm256_andnot_pd(dummy_mask,velec);
603             velecsum         = _mm256_add_pd(velecsum,velec);
604
605             fscal            = felec;
606
607             fscal            = _mm256_and_pd(fscal,cutoff_mask);
608
609             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
610
611             /* Calculate temporary vectorial force */
612             tx               = _mm256_mul_pd(fscal,dx20);
613             ty               = _mm256_mul_pd(fscal,dy20);
614             tz               = _mm256_mul_pd(fscal,dz20);
615
616             /* Update vectorial force */
617             fix2             = _mm256_add_pd(fix2,tx);
618             fiy2             = _mm256_add_pd(fiy2,ty);
619             fiz2             = _mm256_add_pd(fiz2,tz);
620
621             fjx0             = _mm256_add_pd(fjx0,tx);
622             fjy0             = _mm256_add_pd(fjy0,ty);
623             fjz0             = _mm256_add_pd(fjz0,tz);
624
625             }
626
627             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
628             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
629             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
630             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
631
632             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
633
634             /* Inner loop uses 146 flops */
635         }
636
637         /* End of innermost loop */
638
639         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
640                                                  f+i_coord_offset,fshift+i_shift_offset);
641
642         ggid                        = gid[iidx];
643         /* Update potential energies */
644         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
645         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
646
647         /* Increment number of inner iterations */
648         inneriter                  += j_index_end - j_index_start;
649
650         /* Outer loop uses 20 flops */
651     }
652
653     /* Increment number of outer iterations */
654     outeriter        += nri;
655
656     /* Update outer/inner flops */
657
658     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*146);
659 }
660 /*
661  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
662  * Electrostatics interaction: ReactionField
663  * VdW interaction:            LennardJones
664  * Geometry:                   Water3-Particle
665  * Calculate force/pot:        Force
666  */
667 void
668 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_avx_256_double
669                     (t_nblist * gmx_restrict                nlist,
670                      rvec * gmx_restrict                    xx,
671                      rvec * gmx_restrict                    ff,
672                      t_forcerec * gmx_restrict              fr,
673                      t_mdatoms * gmx_restrict               mdatoms,
674                      nb_kernel_data_t * gmx_restrict        kernel_data,
675                      t_nrnb * gmx_restrict                  nrnb)
676 {
677     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
678      * just 0 for non-waters.
679      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
680      * jnr indices corresponding to data put in the four positions in the SIMD register.
681      */
682     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
683     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
684     int              jnrA,jnrB,jnrC,jnrD;
685     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
686     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
687     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
688     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
689     real             rcutoff_scalar;
690     real             *shiftvec,*fshift,*x,*f;
691     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
692     real             scratch[4*DIM];
693     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
694     real *           vdwioffsetptr0;
695     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
696     real *           vdwioffsetptr1;
697     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
698     real *           vdwioffsetptr2;
699     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
700     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
701     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
702     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
703     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
704     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
705     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
706     real             *charge;
707     int              nvdwtype;
708     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
709     int              *vdwtype;
710     real             *vdwparam;
711     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
712     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
713     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
714     real             rswitch_scalar,d_scalar;
715     __m256d          dummy_mask,cutoff_mask;
716     __m128           tmpmask0,tmpmask1;
717     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
718     __m256d          one     = _mm256_set1_pd(1.0);
719     __m256d          two     = _mm256_set1_pd(2.0);
720     x                = xx[0];
721     f                = ff[0];
722
723     nri              = nlist->nri;
724     iinr             = nlist->iinr;
725     jindex           = nlist->jindex;
726     jjnr             = nlist->jjnr;
727     shiftidx         = nlist->shift;
728     gid              = nlist->gid;
729     shiftvec         = fr->shift_vec[0];
730     fshift           = fr->fshift[0];
731     facel            = _mm256_set1_pd(fr->epsfac);
732     charge           = mdatoms->chargeA;
733     krf              = _mm256_set1_pd(fr->ic->k_rf);
734     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
735     crf              = _mm256_set1_pd(fr->ic->c_rf);
736     nvdwtype         = fr->ntype;
737     vdwparam         = fr->nbfp;
738     vdwtype          = mdatoms->typeA;
739
740     /* Setup water-specific parameters */
741     inr              = nlist->iinr[0];
742     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
743     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
744     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
745     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
746
747     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
748     rcutoff_scalar   = fr->rcoulomb;
749     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
750     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
751
752     rswitch_scalar   = fr->rvdw_switch;
753     rswitch          = _mm256_set1_pd(rswitch_scalar);
754     /* Setup switch parameters */
755     d_scalar         = rcutoff_scalar-rswitch_scalar;
756     d                = _mm256_set1_pd(d_scalar);
757     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
758     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
759     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
760     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
761     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
762     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
763
764     /* Avoid stupid compiler warnings */
765     jnrA = jnrB = jnrC = jnrD = 0;
766     j_coord_offsetA = 0;
767     j_coord_offsetB = 0;
768     j_coord_offsetC = 0;
769     j_coord_offsetD = 0;
770
771     outeriter        = 0;
772     inneriter        = 0;
773
774     for(iidx=0;iidx<4*DIM;iidx++)
775     {
776         scratch[iidx] = 0.0;
777     }
778
779     /* Start outer loop over neighborlists */
780     for(iidx=0; iidx<nri; iidx++)
781     {
782         /* Load shift vector for this list */
783         i_shift_offset   = DIM*shiftidx[iidx];
784
785         /* Load limits for loop over neighbors */
786         j_index_start    = jindex[iidx];
787         j_index_end      = jindex[iidx+1];
788
789         /* Get outer coordinate index */
790         inr              = iinr[iidx];
791         i_coord_offset   = DIM*inr;
792
793         /* Load i particle coords and add shift vector */
794         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
795                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
796
797         fix0             = _mm256_setzero_pd();
798         fiy0             = _mm256_setzero_pd();
799         fiz0             = _mm256_setzero_pd();
800         fix1             = _mm256_setzero_pd();
801         fiy1             = _mm256_setzero_pd();
802         fiz1             = _mm256_setzero_pd();
803         fix2             = _mm256_setzero_pd();
804         fiy2             = _mm256_setzero_pd();
805         fiz2             = _mm256_setzero_pd();
806
807         /* Start inner kernel loop */
808         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
809         {
810
811             /* Get j neighbor index, and coordinate index */
812             jnrA             = jjnr[jidx];
813             jnrB             = jjnr[jidx+1];
814             jnrC             = jjnr[jidx+2];
815             jnrD             = jjnr[jidx+3];
816             j_coord_offsetA  = DIM*jnrA;
817             j_coord_offsetB  = DIM*jnrB;
818             j_coord_offsetC  = DIM*jnrC;
819             j_coord_offsetD  = DIM*jnrD;
820
821             /* load j atom coordinates */
822             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
823                                                  x+j_coord_offsetC,x+j_coord_offsetD,
824                                                  &jx0,&jy0,&jz0);
825
826             /* Calculate displacement vector */
827             dx00             = _mm256_sub_pd(ix0,jx0);
828             dy00             = _mm256_sub_pd(iy0,jy0);
829             dz00             = _mm256_sub_pd(iz0,jz0);
830             dx10             = _mm256_sub_pd(ix1,jx0);
831             dy10             = _mm256_sub_pd(iy1,jy0);
832             dz10             = _mm256_sub_pd(iz1,jz0);
833             dx20             = _mm256_sub_pd(ix2,jx0);
834             dy20             = _mm256_sub_pd(iy2,jy0);
835             dz20             = _mm256_sub_pd(iz2,jz0);
836
837             /* Calculate squared distance and things based on it */
838             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
839             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
840             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
841
842             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
843             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
844             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
845
846             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
847             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
848             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
849
850             /* Load parameters for j particles */
851             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
852                                                                  charge+jnrC+0,charge+jnrD+0);
853             vdwjidx0A        = 2*vdwtype[jnrA+0];
854             vdwjidx0B        = 2*vdwtype[jnrB+0];
855             vdwjidx0C        = 2*vdwtype[jnrC+0];
856             vdwjidx0D        = 2*vdwtype[jnrD+0];
857
858             fjx0             = _mm256_setzero_pd();
859             fjy0             = _mm256_setzero_pd();
860             fjz0             = _mm256_setzero_pd();
861
862             /**************************
863              * CALCULATE INTERACTIONS *
864              **************************/
865
866             if (gmx_mm256_any_lt(rsq00,rcutoff2))
867             {
868
869             r00              = _mm256_mul_pd(rsq00,rinv00);
870
871             /* Compute parameters for interactions between i and j atoms */
872             qq00             = _mm256_mul_pd(iq0,jq0);
873             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
874                                             vdwioffsetptr0+vdwjidx0B,
875                                             vdwioffsetptr0+vdwjidx0C,
876                                             vdwioffsetptr0+vdwjidx0D,
877                                             &c6_00,&c12_00);
878
879             /* REACTION-FIELD ELECTROSTATICS */
880             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
881
882             /* LENNARD-JONES DISPERSION/REPULSION */
883
884             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
885             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
886             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
887             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
888             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
889
890             d                = _mm256_sub_pd(r00,rswitch);
891             d                = _mm256_max_pd(d,_mm256_setzero_pd());
892             d2               = _mm256_mul_pd(d,d);
893             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
894
895             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
896
897             /* Evaluate switch function */
898             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
899             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
900             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
901
902             fscal            = _mm256_add_pd(felec,fvdw);
903
904             fscal            = _mm256_and_pd(fscal,cutoff_mask);
905
906             /* Calculate temporary vectorial force */
907             tx               = _mm256_mul_pd(fscal,dx00);
908             ty               = _mm256_mul_pd(fscal,dy00);
909             tz               = _mm256_mul_pd(fscal,dz00);
910
911             /* Update vectorial force */
912             fix0             = _mm256_add_pd(fix0,tx);
913             fiy0             = _mm256_add_pd(fiy0,ty);
914             fiz0             = _mm256_add_pd(fiz0,tz);
915
916             fjx0             = _mm256_add_pd(fjx0,tx);
917             fjy0             = _mm256_add_pd(fjy0,ty);
918             fjz0             = _mm256_add_pd(fjz0,tz);
919
920             }
921
922             /**************************
923              * CALCULATE INTERACTIONS *
924              **************************/
925
926             if (gmx_mm256_any_lt(rsq10,rcutoff2))
927             {
928
929             /* Compute parameters for interactions between i and j atoms */
930             qq10             = _mm256_mul_pd(iq1,jq0);
931
932             /* REACTION-FIELD ELECTROSTATICS */
933             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
934
935             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
936
937             fscal            = felec;
938
939             fscal            = _mm256_and_pd(fscal,cutoff_mask);
940
941             /* Calculate temporary vectorial force */
942             tx               = _mm256_mul_pd(fscal,dx10);
943             ty               = _mm256_mul_pd(fscal,dy10);
944             tz               = _mm256_mul_pd(fscal,dz10);
945
946             /* Update vectorial force */
947             fix1             = _mm256_add_pd(fix1,tx);
948             fiy1             = _mm256_add_pd(fiy1,ty);
949             fiz1             = _mm256_add_pd(fiz1,tz);
950
951             fjx0             = _mm256_add_pd(fjx0,tx);
952             fjy0             = _mm256_add_pd(fjy0,ty);
953             fjz0             = _mm256_add_pd(fjz0,tz);
954
955             }
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             if (gmx_mm256_any_lt(rsq20,rcutoff2))
962             {
963
964             /* Compute parameters for interactions between i and j atoms */
965             qq20             = _mm256_mul_pd(iq2,jq0);
966
967             /* REACTION-FIELD ELECTROSTATICS */
968             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
969
970             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
971
972             fscal            = felec;
973
974             fscal            = _mm256_and_pd(fscal,cutoff_mask);
975
976             /* Calculate temporary vectorial force */
977             tx               = _mm256_mul_pd(fscal,dx20);
978             ty               = _mm256_mul_pd(fscal,dy20);
979             tz               = _mm256_mul_pd(fscal,dz20);
980
981             /* Update vectorial force */
982             fix2             = _mm256_add_pd(fix2,tx);
983             fiy2             = _mm256_add_pd(fiy2,ty);
984             fiz2             = _mm256_add_pd(fiz2,tz);
985
986             fjx0             = _mm256_add_pd(fjx0,tx);
987             fjy0             = _mm256_add_pd(fjy0,ty);
988             fjz0             = _mm256_add_pd(fjz0,tz);
989
990             }
991
992             fjptrA             = f+j_coord_offsetA;
993             fjptrB             = f+j_coord_offsetB;
994             fjptrC             = f+j_coord_offsetC;
995             fjptrD             = f+j_coord_offsetD;
996
997             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
998
999             /* Inner loop uses 124 flops */
1000         }
1001
1002         if(jidx<j_index_end)
1003         {
1004
1005             /* Get j neighbor index, and coordinate index */
1006             jnrlistA         = jjnr[jidx];
1007             jnrlistB         = jjnr[jidx+1];
1008             jnrlistC         = jjnr[jidx+2];
1009             jnrlistD         = jjnr[jidx+3];
1010             /* Sign of each element will be negative for non-real atoms.
1011              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1012              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1013              */
1014             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1015
1016             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1017             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1018             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1019
1020             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1021             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1022             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1023             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1024             j_coord_offsetA  = DIM*jnrA;
1025             j_coord_offsetB  = DIM*jnrB;
1026             j_coord_offsetC  = DIM*jnrC;
1027             j_coord_offsetD  = DIM*jnrD;
1028
1029             /* load j atom coordinates */
1030             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1031                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1032                                                  &jx0,&jy0,&jz0);
1033
1034             /* Calculate displacement vector */
1035             dx00             = _mm256_sub_pd(ix0,jx0);
1036             dy00             = _mm256_sub_pd(iy0,jy0);
1037             dz00             = _mm256_sub_pd(iz0,jz0);
1038             dx10             = _mm256_sub_pd(ix1,jx0);
1039             dy10             = _mm256_sub_pd(iy1,jy0);
1040             dz10             = _mm256_sub_pd(iz1,jz0);
1041             dx20             = _mm256_sub_pd(ix2,jx0);
1042             dy20             = _mm256_sub_pd(iy2,jy0);
1043             dz20             = _mm256_sub_pd(iz2,jz0);
1044
1045             /* Calculate squared distance and things based on it */
1046             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1047             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1048             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1049
1050             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1051             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1052             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1053
1054             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1055             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1056             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1057
1058             /* Load parameters for j particles */
1059             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1060                                                                  charge+jnrC+0,charge+jnrD+0);
1061             vdwjidx0A        = 2*vdwtype[jnrA+0];
1062             vdwjidx0B        = 2*vdwtype[jnrB+0];
1063             vdwjidx0C        = 2*vdwtype[jnrC+0];
1064             vdwjidx0D        = 2*vdwtype[jnrD+0];
1065
1066             fjx0             = _mm256_setzero_pd();
1067             fjy0             = _mm256_setzero_pd();
1068             fjz0             = _mm256_setzero_pd();
1069
1070             /**************************
1071              * CALCULATE INTERACTIONS *
1072              **************************/
1073
1074             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1075             {
1076
1077             r00              = _mm256_mul_pd(rsq00,rinv00);
1078             r00              = _mm256_andnot_pd(dummy_mask,r00);
1079
1080             /* Compute parameters for interactions between i and j atoms */
1081             qq00             = _mm256_mul_pd(iq0,jq0);
1082             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1083                                             vdwioffsetptr0+vdwjidx0B,
1084                                             vdwioffsetptr0+vdwjidx0C,
1085                                             vdwioffsetptr0+vdwjidx0D,
1086                                             &c6_00,&c12_00);
1087
1088             /* REACTION-FIELD ELECTROSTATICS */
1089             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1090
1091             /* LENNARD-JONES DISPERSION/REPULSION */
1092
1093             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1094             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1095             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1096             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1097             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1098
1099             d                = _mm256_sub_pd(r00,rswitch);
1100             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1101             d2               = _mm256_mul_pd(d,d);
1102             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1103
1104             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1105
1106             /* Evaluate switch function */
1107             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1108             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1109             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1110
1111             fscal            = _mm256_add_pd(felec,fvdw);
1112
1113             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1114
1115             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm256_mul_pd(fscal,dx00);
1119             ty               = _mm256_mul_pd(fscal,dy00);
1120             tz               = _mm256_mul_pd(fscal,dz00);
1121
1122             /* Update vectorial force */
1123             fix0             = _mm256_add_pd(fix0,tx);
1124             fiy0             = _mm256_add_pd(fiy0,ty);
1125             fiz0             = _mm256_add_pd(fiz0,tz);
1126
1127             fjx0             = _mm256_add_pd(fjx0,tx);
1128             fjy0             = _mm256_add_pd(fjy0,ty);
1129             fjz0             = _mm256_add_pd(fjz0,tz);
1130
1131             }
1132
1133             /**************************
1134              * CALCULATE INTERACTIONS *
1135              **************************/
1136
1137             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1138             {
1139
1140             /* Compute parameters for interactions between i and j atoms */
1141             qq10             = _mm256_mul_pd(iq1,jq0);
1142
1143             /* REACTION-FIELD ELECTROSTATICS */
1144             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1145
1146             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1147
1148             fscal            = felec;
1149
1150             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1151
1152             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm256_mul_pd(fscal,dx10);
1156             ty               = _mm256_mul_pd(fscal,dy10);
1157             tz               = _mm256_mul_pd(fscal,dz10);
1158
1159             /* Update vectorial force */
1160             fix1             = _mm256_add_pd(fix1,tx);
1161             fiy1             = _mm256_add_pd(fiy1,ty);
1162             fiz1             = _mm256_add_pd(fiz1,tz);
1163
1164             fjx0             = _mm256_add_pd(fjx0,tx);
1165             fjy0             = _mm256_add_pd(fjy0,ty);
1166             fjz0             = _mm256_add_pd(fjz0,tz);
1167
1168             }
1169
1170             /**************************
1171              * CALCULATE INTERACTIONS *
1172              **************************/
1173
1174             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1175             {
1176
1177             /* Compute parameters for interactions between i and j atoms */
1178             qq20             = _mm256_mul_pd(iq2,jq0);
1179
1180             /* REACTION-FIELD ELECTROSTATICS */
1181             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1182
1183             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1184
1185             fscal            = felec;
1186
1187             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1188
1189             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1190
1191             /* Calculate temporary vectorial force */
1192             tx               = _mm256_mul_pd(fscal,dx20);
1193             ty               = _mm256_mul_pd(fscal,dy20);
1194             tz               = _mm256_mul_pd(fscal,dz20);
1195
1196             /* Update vectorial force */
1197             fix2             = _mm256_add_pd(fix2,tx);
1198             fiy2             = _mm256_add_pd(fiy2,ty);
1199             fiz2             = _mm256_add_pd(fiz2,tz);
1200
1201             fjx0             = _mm256_add_pd(fjx0,tx);
1202             fjy0             = _mm256_add_pd(fjy0,ty);
1203             fjz0             = _mm256_add_pd(fjz0,tz);
1204
1205             }
1206
1207             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1208             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1209             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1210             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1211
1212             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1213
1214             /* Inner loop uses 125 flops */
1215         }
1216
1217         /* End of innermost loop */
1218
1219         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1220                                                  f+i_coord_offset,fshift+i_shift_offset);
1221
1222         /* Increment number of inner iterations */
1223         inneriter                  += j_index_end - j_index_start;
1224
1225         /* Outer loop uses 18 flops */
1226     }
1227
1228     /* Increment number of outer iterations */
1229     outeriter        += nri;
1230
1231     /* Update outer/inner flops */
1232
1233     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*125);
1234 }