6bf8d2f90bdb64540014f6d80bd132a6bc21ae2f
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
84     real             rswitch_scalar,d_scalar;
85     __m256d          dummy_mask,cutoff_mask;
86     __m128           tmpmask0,tmpmask1;
87     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
88     __m256d          one     = _mm256_set1_pd(1.0);
89     __m256d          two     = _mm256_set1_pd(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm256_set1_pd(fr->epsfac);
102     charge           = mdatoms->chargeA;
103     krf              = _mm256_set1_pd(fr->ic->k_rf);
104     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
105     crf              = _mm256_set1_pd(fr->ic->c_rf);
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff_scalar   = fr->rcoulomb;
112     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
113     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
114
115     rswitch_scalar   = fr->rvdw_switch;
116     rswitch          = _mm256_set1_pd(rswitch_scalar);
117     /* Setup switch parameters */
118     d_scalar         = rcutoff_scalar-rswitch_scalar;
119     d                = _mm256_set1_pd(d_scalar);
120     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
121     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
122     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
123     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
124     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
125     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
126
127     /* Avoid stupid compiler warnings */
128     jnrA = jnrB = jnrC = jnrD = 0;
129     j_coord_offsetA = 0;
130     j_coord_offsetB = 0;
131     j_coord_offsetC = 0;
132     j_coord_offsetD = 0;
133
134     outeriter        = 0;
135     inneriter        = 0;
136
137     for(iidx=0;iidx<4*DIM;iidx++)
138     {
139         scratch[iidx] = 0.0;
140     }
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147
148         /* Load limits for loop over neighbors */
149         j_index_start    = jindex[iidx];
150         j_index_end      = jindex[iidx+1];
151
152         /* Get outer coordinate index */
153         inr              = iinr[iidx];
154         i_coord_offset   = DIM*inr;
155
156         /* Load i particle coords and add shift vector */
157         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159         fix0             = _mm256_setzero_pd();
160         fiy0             = _mm256_setzero_pd();
161         fiz0             = _mm256_setzero_pd();
162
163         /* Load parameters for i particles */
164         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
165         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
166
167         /* Reset potential sums */
168         velecsum         = _mm256_setzero_pd();
169         vvdwsum          = _mm256_setzero_pd();
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173         {
174
175             /* Get j neighbor index, and coordinate index */
176             jnrA             = jjnr[jidx];
177             jnrB             = jjnr[jidx+1];
178             jnrC             = jjnr[jidx+2];
179             jnrD             = jjnr[jidx+3];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184
185             /* load j atom coordinates */
186             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
187                                                  x+j_coord_offsetC,x+j_coord_offsetD,
188                                                  &jx0,&jy0,&jz0);
189
190             /* Calculate displacement vector */
191             dx00             = _mm256_sub_pd(ix0,jx0);
192             dy00             = _mm256_sub_pd(iy0,jy0);
193             dz00             = _mm256_sub_pd(iz0,jz0);
194
195             /* Calculate squared distance and things based on it */
196             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
197
198             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
199
200             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
201
202             /* Load parameters for j particles */
203             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
204                                                                  charge+jnrC+0,charge+jnrD+0);
205             vdwjidx0A        = 2*vdwtype[jnrA+0];
206             vdwjidx0B        = 2*vdwtype[jnrB+0];
207             vdwjidx0C        = 2*vdwtype[jnrC+0];
208             vdwjidx0D        = 2*vdwtype[jnrD+0];
209
210             /**************************
211              * CALCULATE INTERACTIONS *
212              **************************/
213
214             if (gmx_mm256_any_lt(rsq00,rcutoff2))
215             {
216
217             r00              = _mm256_mul_pd(rsq00,rinv00);
218
219             /* Compute parameters for interactions between i and j atoms */
220             qq00             = _mm256_mul_pd(iq0,jq0);
221             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
222                                             vdwioffsetptr0+vdwjidx0B,
223                                             vdwioffsetptr0+vdwjidx0C,
224                                             vdwioffsetptr0+vdwjidx0D,
225                                             &c6_00,&c12_00);
226
227             /* REACTION-FIELD ELECTROSTATICS */
228             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
229             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
230
231             /* LENNARD-JONES DISPERSION/REPULSION */
232
233             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
234             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
235             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
236             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
237             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
238
239             d                = _mm256_sub_pd(r00,rswitch);
240             d                = _mm256_max_pd(d,_mm256_setzero_pd());
241             d2               = _mm256_mul_pd(d,d);
242             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
243
244             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
245
246             /* Evaluate switch function */
247             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
248             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
249             vvdw             = _mm256_mul_pd(vvdw,sw);
250             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
251
252             /* Update potential sum for this i atom from the interaction with this j atom. */
253             velec            = _mm256_and_pd(velec,cutoff_mask);
254             velecsum         = _mm256_add_pd(velecsum,velec);
255             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
256             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
257
258             fscal            = _mm256_add_pd(felec,fvdw);
259
260             fscal            = _mm256_and_pd(fscal,cutoff_mask);
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm256_mul_pd(fscal,dx00);
264             ty               = _mm256_mul_pd(fscal,dy00);
265             tz               = _mm256_mul_pd(fscal,dz00);
266
267             /* Update vectorial force */
268             fix0             = _mm256_add_pd(fix0,tx);
269             fiy0             = _mm256_add_pd(fiy0,ty);
270             fiz0             = _mm256_add_pd(fiz0,tz);
271
272             fjptrA             = f+j_coord_offsetA;
273             fjptrB             = f+j_coord_offsetB;
274             fjptrC             = f+j_coord_offsetC;
275             fjptrD             = f+j_coord_offsetD;
276             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
277
278             }
279
280             /* Inner loop uses 70 flops */
281         }
282
283         if(jidx<j_index_end)
284         {
285
286             /* Get j neighbor index, and coordinate index */
287             jnrlistA         = jjnr[jidx];
288             jnrlistB         = jjnr[jidx+1];
289             jnrlistC         = jjnr[jidx+2];
290             jnrlistD         = jjnr[jidx+3];
291             /* Sign of each element will be negative for non-real atoms.
292              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
293              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
294              */
295             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
296
297             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
298             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
299             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
300
301             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
302             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
303             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
304             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
305             j_coord_offsetA  = DIM*jnrA;
306             j_coord_offsetB  = DIM*jnrB;
307             j_coord_offsetC  = DIM*jnrC;
308             j_coord_offsetD  = DIM*jnrD;
309
310             /* load j atom coordinates */
311             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
312                                                  x+j_coord_offsetC,x+j_coord_offsetD,
313                                                  &jx0,&jy0,&jz0);
314
315             /* Calculate displacement vector */
316             dx00             = _mm256_sub_pd(ix0,jx0);
317             dy00             = _mm256_sub_pd(iy0,jy0);
318             dz00             = _mm256_sub_pd(iz0,jz0);
319
320             /* Calculate squared distance and things based on it */
321             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
322
323             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
324
325             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
326
327             /* Load parameters for j particles */
328             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
329                                                                  charge+jnrC+0,charge+jnrD+0);
330             vdwjidx0A        = 2*vdwtype[jnrA+0];
331             vdwjidx0B        = 2*vdwtype[jnrB+0];
332             vdwjidx0C        = 2*vdwtype[jnrC+0];
333             vdwjidx0D        = 2*vdwtype[jnrD+0];
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm256_any_lt(rsq00,rcutoff2))
340             {
341
342             r00              = _mm256_mul_pd(rsq00,rinv00);
343             r00              = _mm256_andnot_pd(dummy_mask,r00);
344
345             /* Compute parameters for interactions between i and j atoms */
346             qq00             = _mm256_mul_pd(iq0,jq0);
347             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
348                                             vdwioffsetptr0+vdwjidx0B,
349                                             vdwioffsetptr0+vdwjidx0C,
350                                             vdwioffsetptr0+vdwjidx0D,
351                                             &c6_00,&c12_00);
352
353             /* REACTION-FIELD ELECTROSTATICS */
354             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
355             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
356
357             /* LENNARD-JONES DISPERSION/REPULSION */
358
359             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
360             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
361             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
362             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
363             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
364
365             d                = _mm256_sub_pd(r00,rswitch);
366             d                = _mm256_max_pd(d,_mm256_setzero_pd());
367             d2               = _mm256_mul_pd(d,d);
368             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
369
370             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
371
372             /* Evaluate switch function */
373             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
374             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
375             vvdw             = _mm256_mul_pd(vvdw,sw);
376             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
377
378             /* Update potential sum for this i atom from the interaction with this j atom. */
379             velec            = _mm256_and_pd(velec,cutoff_mask);
380             velec            = _mm256_andnot_pd(dummy_mask,velec);
381             velecsum         = _mm256_add_pd(velecsum,velec);
382             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
383             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
384             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
385
386             fscal            = _mm256_add_pd(felec,fvdw);
387
388             fscal            = _mm256_and_pd(fscal,cutoff_mask);
389
390             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
391
392             /* Calculate temporary vectorial force */
393             tx               = _mm256_mul_pd(fscal,dx00);
394             ty               = _mm256_mul_pd(fscal,dy00);
395             tz               = _mm256_mul_pd(fscal,dz00);
396
397             /* Update vectorial force */
398             fix0             = _mm256_add_pd(fix0,tx);
399             fiy0             = _mm256_add_pd(fiy0,ty);
400             fiz0             = _mm256_add_pd(fiz0,tz);
401
402             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
403             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
404             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
405             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
406             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
407
408             }
409
410             /* Inner loop uses 71 flops */
411         }
412
413         /* End of innermost loop */
414
415         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
416                                                  f+i_coord_offset,fshift+i_shift_offset);
417
418         ggid                        = gid[iidx];
419         /* Update potential energies */
420         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
421         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
422
423         /* Increment number of inner iterations */
424         inneriter                  += j_index_end - j_index_start;
425
426         /* Outer loop uses 9 flops */
427     }
428
429     /* Increment number of outer iterations */
430     outeriter        += nri;
431
432     /* Update outer/inner flops */
433
434     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71);
435 }
436 /*
437  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
438  * Electrostatics interaction: ReactionField
439  * VdW interaction:            LennardJones
440  * Geometry:                   Particle-Particle
441  * Calculate force/pot:        Force
442  */
443 void
444 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_avx_256_double
445                     (t_nblist * gmx_restrict                nlist,
446                      rvec * gmx_restrict                    xx,
447                      rvec * gmx_restrict                    ff,
448                      t_forcerec * gmx_restrict              fr,
449                      t_mdatoms * gmx_restrict               mdatoms,
450                      nb_kernel_data_t * gmx_restrict        kernel_data,
451                      t_nrnb * gmx_restrict                  nrnb)
452 {
453     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
454      * just 0 for non-waters.
455      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
456      * jnr indices corresponding to data put in the four positions in the SIMD register.
457      */
458     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
459     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
460     int              jnrA,jnrB,jnrC,jnrD;
461     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
462     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
463     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
464     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
465     real             rcutoff_scalar;
466     real             *shiftvec,*fshift,*x,*f;
467     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
468     real             scratch[4*DIM];
469     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
470     real *           vdwioffsetptr0;
471     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
472     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
473     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
474     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
475     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
476     real             *charge;
477     int              nvdwtype;
478     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
479     int              *vdwtype;
480     real             *vdwparam;
481     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
482     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
483     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
484     real             rswitch_scalar,d_scalar;
485     __m256d          dummy_mask,cutoff_mask;
486     __m128           tmpmask0,tmpmask1;
487     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
488     __m256d          one     = _mm256_set1_pd(1.0);
489     __m256d          two     = _mm256_set1_pd(2.0);
490     x                = xx[0];
491     f                = ff[0];
492
493     nri              = nlist->nri;
494     iinr             = nlist->iinr;
495     jindex           = nlist->jindex;
496     jjnr             = nlist->jjnr;
497     shiftidx         = nlist->shift;
498     gid              = nlist->gid;
499     shiftvec         = fr->shift_vec[0];
500     fshift           = fr->fshift[0];
501     facel            = _mm256_set1_pd(fr->epsfac);
502     charge           = mdatoms->chargeA;
503     krf              = _mm256_set1_pd(fr->ic->k_rf);
504     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
505     crf              = _mm256_set1_pd(fr->ic->c_rf);
506     nvdwtype         = fr->ntype;
507     vdwparam         = fr->nbfp;
508     vdwtype          = mdatoms->typeA;
509
510     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
511     rcutoff_scalar   = fr->rcoulomb;
512     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
513     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
514
515     rswitch_scalar   = fr->rvdw_switch;
516     rswitch          = _mm256_set1_pd(rswitch_scalar);
517     /* Setup switch parameters */
518     d_scalar         = rcutoff_scalar-rswitch_scalar;
519     d                = _mm256_set1_pd(d_scalar);
520     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
521     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
522     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
523     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
524     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
525     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
526
527     /* Avoid stupid compiler warnings */
528     jnrA = jnrB = jnrC = jnrD = 0;
529     j_coord_offsetA = 0;
530     j_coord_offsetB = 0;
531     j_coord_offsetC = 0;
532     j_coord_offsetD = 0;
533
534     outeriter        = 0;
535     inneriter        = 0;
536
537     for(iidx=0;iidx<4*DIM;iidx++)
538     {
539         scratch[iidx] = 0.0;
540     }
541
542     /* Start outer loop over neighborlists */
543     for(iidx=0; iidx<nri; iidx++)
544     {
545         /* Load shift vector for this list */
546         i_shift_offset   = DIM*shiftidx[iidx];
547
548         /* Load limits for loop over neighbors */
549         j_index_start    = jindex[iidx];
550         j_index_end      = jindex[iidx+1];
551
552         /* Get outer coordinate index */
553         inr              = iinr[iidx];
554         i_coord_offset   = DIM*inr;
555
556         /* Load i particle coords and add shift vector */
557         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
558
559         fix0             = _mm256_setzero_pd();
560         fiy0             = _mm256_setzero_pd();
561         fiz0             = _mm256_setzero_pd();
562
563         /* Load parameters for i particles */
564         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
565         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
566
567         /* Start inner kernel loop */
568         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
569         {
570
571             /* Get j neighbor index, and coordinate index */
572             jnrA             = jjnr[jidx];
573             jnrB             = jjnr[jidx+1];
574             jnrC             = jjnr[jidx+2];
575             jnrD             = jjnr[jidx+3];
576             j_coord_offsetA  = DIM*jnrA;
577             j_coord_offsetB  = DIM*jnrB;
578             j_coord_offsetC  = DIM*jnrC;
579             j_coord_offsetD  = DIM*jnrD;
580
581             /* load j atom coordinates */
582             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
583                                                  x+j_coord_offsetC,x+j_coord_offsetD,
584                                                  &jx0,&jy0,&jz0);
585
586             /* Calculate displacement vector */
587             dx00             = _mm256_sub_pd(ix0,jx0);
588             dy00             = _mm256_sub_pd(iy0,jy0);
589             dz00             = _mm256_sub_pd(iz0,jz0);
590
591             /* Calculate squared distance and things based on it */
592             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
593
594             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
595
596             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
597
598             /* Load parameters for j particles */
599             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
600                                                                  charge+jnrC+0,charge+jnrD+0);
601             vdwjidx0A        = 2*vdwtype[jnrA+0];
602             vdwjidx0B        = 2*vdwtype[jnrB+0];
603             vdwjidx0C        = 2*vdwtype[jnrC+0];
604             vdwjidx0D        = 2*vdwtype[jnrD+0];
605
606             /**************************
607              * CALCULATE INTERACTIONS *
608              **************************/
609
610             if (gmx_mm256_any_lt(rsq00,rcutoff2))
611             {
612
613             r00              = _mm256_mul_pd(rsq00,rinv00);
614
615             /* Compute parameters for interactions between i and j atoms */
616             qq00             = _mm256_mul_pd(iq0,jq0);
617             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
618                                             vdwioffsetptr0+vdwjidx0B,
619                                             vdwioffsetptr0+vdwjidx0C,
620                                             vdwioffsetptr0+vdwjidx0D,
621                                             &c6_00,&c12_00);
622
623             /* REACTION-FIELD ELECTROSTATICS */
624             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
625
626             /* LENNARD-JONES DISPERSION/REPULSION */
627
628             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
629             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
630             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
631             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
632             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
633
634             d                = _mm256_sub_pd(r00,rswitch);
635             d                = _mm256_max_pd(d,_mm256_setzero_pd());
636             d2               = _mm256_mul_pd(d,d);
637             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
638
639             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
640
641             /* Evaluate switch function */
642             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
643             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
644             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
645
646             fscal            = _mm256_add_pd(felec,fvdw);
647
648             fscal            = _mm256_and_pd(fscal,cutoff_mask);
649
650             /* Calculate temporary vectorial force */
651             tx               = _mm256_mul_pd(fscal,dx00);
652             ty               = _mm256_mul_pd(fscal,dy00);
653             tz               = _mm256_mul_pd(fscal,dz00);
654
655             /* Update vectorial force */
656             fix0             = _mm256_add_pd(fix0,tx);
657             fiy0             = _mm256_add_pd(fiy0,ty);
658             fiz0             = _mm256_add_pd(fiz0,tz);
659
660             fjptrA             = f+j_coord_offsetA;
661             fjptrB             = f+j_coord_offsetB;
662             fjptrC             = f+j_coord_offsetC;
663             fjptrD             = f+j_coord_offsetD;
664             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
665
666             }
667
668             /* Inner loop uses 61 flops */
669         }
670
671         if(jidx<j_index_end)
672         {
673
674             /* Get j neighbor index, and coordinate index */
675             jnrlistA         = jjnr[jidx];
676             jnrlistB         = jjnr[jidx+1];
677             jnrlistC         = jjnr[jidx+2];
678             jnrlistD         = jjnr[jidx+3];
679             /* Sign of each element will be negative for non-real atoms.
680              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
681              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
682              */
683             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
684
685             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
686             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
687             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
688
689             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
690             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
691             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
692             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
693             j_coord_offsetA  = DIM*jnrA;
694             j_coord_offsetB  = DIM*jnrB;
695             j_coord_offsetC  = DIM*jnrC;
696             j_coord_offsetD  = DIM*jnrD;
697
698             /* load j atom coordinates */
699             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
700                                                  x+j_coord_offsetC,x+j_coord_offsetD,
701                                                  &jx0,&jy0,&jz0);
702
703             /* Calculate displacement vector */
704             dx00             = _mm256_sub_pd(ix0,jx0);
705             dy00             = _mm256_sub_pd(iy0,jy0);
706             dz00             = _mm256_sub_pd(iz0,jz0);
707
708             /* Calculate squared distance and things based on it */
709             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
710
711             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
712
713             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
714
715             /* Load parameters for j particles */
716             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
717                                                                  charge+jnrC+0,charge+jnrD+0);
718             vdwjidx0A        = 2*vdwtype[jnrA+0];
719             vdwjidx0B        = 2*vdwtype[jnrB+0];
720             vdwjidx0C        = 2*vdwtype[jnrC+0];
721             vdwjidx0D        = 2*vdwtype[jnrD+0];
722
723             /**************************
724              * CALCULATE INTERACTIONS *
725              **************************/
726
727             if (gmx_mm256_any_lt(rsq00,rcutoff2))
728             {
729
730             r00              = _mm256_mul_pd(rsq00,rinv00);
731             r00              = _mm256_andnot_pd(dummy_mask,r00);
732
733             /* Compute parameters for interactions between i and j atoms */
734             qq00             = _mm256_mul_pd(iq0,jq0);
735             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
736                                             vdwioffsetptr0+vdwjidx0B,
737                                             vdwioffsetptr0+vdwjidx0C,
738                                             vdwioffsetptr0+vdwjidx0D,
739                                             &c6_00,&c12_00);
740
741             /* REACTION-FIELD ELECTROSTATICS */
742             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
743
744             /* LENNARD-JONES DISPERSION/REPULSION */
745
746             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
747             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
748             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
749             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
750             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
751
752             d                = _mm256_sub_pd(r00,rswitch);
753             d                = _mm256_max_pd(d,_mm256_setzero_pd());
754             d2               = _mm256_mul_pd(d,d);
755             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
756
757             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
758
759             /* Evaluate switch function */
760             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
761             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
762             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
763
764             fscal            = _mm256_add_pd(felec,fvdw);
765
766             fscal            = _mm256_and_pd(fscal,cutoff_mask);
767
768             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
769
770             /* Calculate temporary vectorial force */
771             tx               = _mm256_mul_pd(fscal,dx00);
772             ty               = _mm256_mul_pd(fscal,dy00);
773             tz               = _mm256_mul_pd(fscal,dz00);
774
775             /* Update vectorial force */
776             fix0             = _mm256_add_pd(fix0,tx);
777             fiy0             = _mm256_add_pd(fiy0,ty);
778             fiz0             = _mm256_add_pd(fiz0,tz);
779
780             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
781             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
782             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
783             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
784             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
785
786             }
787
788             /* Inner loop uses 62 flops */
789         }
790
791         /* End of innermost loop */
792
793         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
794                                                  f+i_coord_offset,fshift+i_shift_offset);
795
796         /* Increment number of inner iterations */
797         inneriter                  += j_index_end - j_index_start;
798
799         /* Outer loop uses 7 flops */
800     }
801
802     /* Increment number of outer iterations */
803     outeriter        += nri;
804
805     /* Update outer/inner flops */
806
807     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
808 }