2c4c3457cd9f77edc07b075084ec4f7286e03573
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m256d          dummy_mask,cutoff_mask;
84     __m128           tmpmask0,tmpmask1;
85     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
86     __m256d          one     = _mm256_set1_pd(1.0);
87     __m256d          two     = _mm256_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     krf              = _mm256_set1_pd(fr->ic->k_rf);
102     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
103     crf              = _mm256_set1_pd(fr->ic->c_rf);
104     nvdwtype         = fr->ntype;
105     vdwparam         = fr->nbfp;
106     vdwtype          = mdatoms->typeA;
107
108     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
109     rcutoff_scalar   = fr->rcoulomb;
110     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
111     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
112
113     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
114     rvdw             = _mm256_set1_pd(fr->rvdw);
115
116     /* Avoid stupid compiler warnings */
117     jnrA = jnrB = jnrC = jnrD = 0;
118     j_coord_offsetA = 0;
119     j_coord_offsetB = 0;
120     j_coord_offsetC = 0;
121     j_coord_offsetD = 0;
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     for(iidx=0;iidx<4*DIM;iidx++)
127     {
128         scratch[iidx] = 0.0;
129     }
130
131     /* Start outer loop over neighborlists */
132     for(iidx=0; iidx<nri; iidx++)
133     {
134         /* Load shift vector for this list */
135         i_shift_offset   = DIM*shiftidx[iidx];
136
137         /* Load limits for loop over neighbors */
138         j_index_start    = jindex[iidx];
139         j_index_end      = jindex[iidx+1];
140
141         /* Get outer coordinate index */
142         inr              = iinr[iidx];
143         i_coord_offset   = DIM*inr;
144
145         /* Load i particle coords and add shift vector */
146         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
147
148         fix0             = _mm256_setzero_pd();
149         fiy0             = _mm256_setzero_pd();
150         fiz0             = _mm256_setzero_pd();
151
152         /* Load parameters for i particles */
153         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
154         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
155
156         /* Reset potential sums */
157         velecsum         = _mm256_setzero_pd();
158         vvdwsum          = _mm256_setzero_pd();
159
160         /* Start inner kernel loop */
161         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
162         {
163
164             /* Get j neighbor index, and coordinate index */
165             jnrA             = jjnr[jidx];
166             jnrB             = jjnr[jidx+1];
167             jnrC             = jjnr[jidx+2];
168             jnrD             = jjnr[jidx+3];
169             j_coord_offsetA  = DIM*jnrA;
170             j_coord_offsetB  = DIM*jnrB;
171             j_coord_offsetC  = DIM*jnrC;
172             j_coord_offsetD  = DIM*jnrD;
173
174             /* load j atom coordinates */
175             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
176                                                  x+j_coord_offsetC,x+j_coord_offsetD,
177                                                  &jx0,&jy0,&jz0);
178
179             /* Calculate displacement vector */
180             dx00             = _mm256_sub_pd(ix0,jx0);
181             dy00             = _mm256_sub_pd(iy0,jy0);
182             dz00             = _mm256_sub_pd(iz0,jz0);
183
184             /* Calculate squared distance and things based on it */
185             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
186
187             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
188
189             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
190
191             /* Load parameters for j particles */
192             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
193                                                                  charge+jnrC+0,charge+jnrD+0);
194             vdwjidx0A        = 2*vdwtype[jnrA+0];
195             vdwjidx0B        = 2*vdwtype[jnrB+0];
196             vdwjidx0C        = 2*vdwtype[jnrC+0];
197             vdwjidx0D        = 2*vdwtype[jnrD+0];
198
199             /**************************
200              * CALCULATE INTERACTIONS *
201              **************************/
202
203             if (gmx_mm256_any_lt(rsq00,rcutoff2))
204             {
205
206             /* Compute parameters for interactions between i and j atoms */
207             qq00             = _mm256_mul_pd(iq0,jq0);
208             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
209                                             vdwioffsetptr0+vdwjidx0B,
210                                             vdwioffsetptr0+vdwjidx0C,
211                                             vdwioffsetptr0+vdwjidx0D,
212                                             &c6_00,&c12_00);
213
214             /* REACTION-FIELD ELECTROSTATICS */
215             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
216             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
217
218             /* LENNARD-JONES DISPERSION/REPULSION */
219
220             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
221             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
222             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
223             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
224                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
225             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
226
227             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
228
229             /* Update potential sum for this i atom from the interaction with this j atom. */
230             velec            = _mm256_and_pd(velec,cutoff_mask);
231             velecsum         = _mm256_add_pd(velecsum,velec);
232             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
233             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
234
235             fscal            = _mm256_add_pd(felec,fvdw);
236
237             fscal            = _mm256_and_pd(fscal,cutoff_mask);
238
239             /* Calculate temporary vectorial force */
240             tx               = _mm256_mul_pd(fscal,dx00);
241             ty               = _mm256_mul_pd(fscal,dy00);
242             tz               = _mm256_mul_pd(fscal,dz00);
243
244             /* Update vectorial force */
245             fix0             = _mm256_add_pd(fix0,tx);
246             fiy0             = _mm256_add_pd(fiy0,ty);
247             fiz0             = _mm256_add_pd(fiz0,tz);
248
249             fjptrA             = f+j_coord_offsetA;
250             fjptrB             = f+j_coord_offsetB;
251             fjptrC             = f+j_coord_offsetC;
252             fjptrD             = f+j_coord_offsetD;
253             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
254
255             }
256
257             /* Inner loop uses 54 flops */
258         }
259
260         if(jidx<j_index_end)
261         {
262
263             /* Get j neighbor index, and coordinate index */
264             jnrlistA         = jjnr[jidx];
265             jnrlistB         = jjnr[jidx+1];
266             jnrlistC         = jjnr[jidx+2];
267             jnrlistD         = jjnr[jidx+3];
268             /* Sign of each element will be negative for non-real atoms.
269              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
270              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
271              */
272             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
273
274             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
275             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
276             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
277
278             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
279             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
280             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
281             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
282             j_coord_offsetA  = DIM*jnrA;
283             j_coord_offsetB  = DIM*jnrB;
284             j_coord_offsetC  = DIM*jnrC;
285             j_coord_offsetD  = DIM*jnrD;
286
287             /* load j atom coordinates */
288             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
289                                                  x+j_coord_offsetC,x+j_coord_offsetD,
290                                                  &jx0,&jy0,&jz0);
291
292             /* Calculate displacement vector */
293             dx00             = _mm256_sub_pd(ix0,jx0);
294             dy00             = _mm256_sub_pd(iy0,jy0);
295             dz00             = _mm256_sub_pd(iz0,jz0);
296
297             /* Calculate squared distance and things based on it */
298             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
299
300             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
301
302             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
303
304             /* Load parameters for j particles */
305             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
306                                                                  charge+jnrC+0,charge+jnrD+0);
307             vdwjidx0A        = 2*vdwtype[jnrA+0];
308             vdwjidx0B        = 2*vdwtype[jnrB+0];
309             vdwjidx0C        = 2*vdwtype[jnrC+0];
310             vdwjidx0D        = 2*vdwtype[jnrD+0];
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm256_any_lt(rsq00,rcutoff2))
317             {
318
319             /* Compute parameters for interactions between i and j atoms */
320             qq00             = _mm256_mul_pd(iq0,jq0);
321             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
322                                             vdwioffsetptr0+vdwjidx0B,
323                                             vdwioffsetptr0+vdwjidx0C,
324                                             vdwioffsetptr0+vdwjidx0D,
325                                             &c6_00,&c12_00);
326
327             /* REACTION-FIELD ELECTROSTATICS */
328             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
329             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
330
331             /* LENNARD-JONES DISPERSION/REPULSION */
332
333             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
334             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
335             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
336             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
337                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
338             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
339
340             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
341
342             /* Update potential sum for this i atom from the interaction with this j atom. */
343             velec            = _mm256_and_pd(velec,cutoff_mask);
344             velec            = _mm256_andnot_pd(dummy_mask,velec);
345             velecsum         = _mm256_add_pd(velecsum,velec);
346             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
347             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
348             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
349
350             fscal            = _mm256_add_pd(felec,fvdw);
351
352             fscal            = _mm256_and_pd(fscal,cutoff_mask);
353
354             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
355
356             /* Calculate temporary vectorial force */
357             tx               = _mm256_mul_pd(fscal,dx00);
358             ty               = _mm256_mul_pd(fscal,dy00);
359             tz               = _mm256_mul_pd(fscal,dz00);
360
361             /* Update vectorial force */
362             fix0             = _mm256_add_pd(fix0,tx);
363             fiy0             = _mm256_add_pd(fiy0,ty);
364             fiz0             = _mm256_add_pd(fiz0,tz);
365
366             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
367             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
368             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
369             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
370             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
371
372             }
373
374             /* Inner loop uses 54 flops */
375         }
376
377         /* End of innermost loop */
378
379         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
380                                                  f+i_coord_offset,fshift+i_shift_offset);
381
382         ggid                        = gid[iidx];
383         /* Update potential energies */
384         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
385         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
386
387         /* Increment number of inner iterations */
388         inneriter                  += j_index_end - j_index_start;
389
390         /* Outer loop uses 9 flops */
391     }
392
393     /* Increment number of outer iterations */
394     outeriter        += nri;
395
396     /* Update outer/inner flops */
397
398     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54);
399 }
400 /*
401  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_double
402  * Electrostatics interaction: ReactionField
403  * VdW interaction:            LennardJones
404  * Geometry:                   Particle-Particle
405  * Calculate force/pot:        Force
406  */
407 void
408 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_avx_256_double
409                     (t_nblist * gmx_restrict                nlist,
410                      rvec * gmx_restrict                    xx,
411                      rvec * gmx_restrict                    ff,
412                      t_forcerec * gmx_restrict              fr,
413                      t_mdatoms * gmx_restrict               mdatoms,
414                      nb_kernel_data_t * gmx_restrict        kernel_data,
415                      t_nrnb * gmx_restrict                  nrnb)
416 {
417     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
418      * just 0 for non-waters.
419      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
420      * jnr indices corresponding to data put in the four positions in the SIMD register.
421      */
422     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
423     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
424     int              jnrA,jnrB,jnrC,jnrD;
425     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
426     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
427     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
428     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
429     real             rcutoff_scalar;
430     real             *shiftvec,*fshift,*x,*f;
431     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
432     real             scratch[4*DIM];
433     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
434     real *           vdwioffsetptr0;
435     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
436     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
437     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
438     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
439     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
440     real             *charge;
441     int              nvdwtype;
442     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
443     int              *vdwtype;
444     real             *vdwparam;
445     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
446     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
447     __m256d          dummy_mask,cutoff_mask;
448     __m128           tmpmask0,tmpmask1;
449     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
450     __m256d          one     = _mm256_set1_pd(1.0);
451     __m256d          two     = _mm256_set1_pd(2.0);
452     x                = xx[0];
453     f                = ff[0];
454
455     nri              = nlist->nri;
456     iinr             = nlist->iinr;
457     jindex           = nlist->jindex;
458     jjnr             = nlist->jjnr;
459     shiftidx         = nlist->shift;
460     gid              = nlist->gid;
461     shiftvec         = fr->shift_vec[0];
462     fshift           = fr->fshift[0];
463     facel            = _mm256_set1_pd(fr->epsfac);
464     charge           = mdatoms->chargeA;
465     krf              = _mm256_set1_pd(fr->ic->k_rf);
466     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
467     crf              = _mm256_set1_pd(fr->ic->c_rf);
468     nvdwtype         = fr->ntype;
469     vdwparam         = fr->nbfp;
470     vdwtype          = mdatoms->typeA;
471
472     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
473     rcutoff_scalar   = fr->rcoulomb;
474     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
475     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
476
477     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
478     rvdw             = _mm256_set1_pd(fr->rvdw);
479
480     /* Avoid stupid compiler warnings */
481     jnrA = jnrB = jnrC = jnrD = 0;
482     j_coord_offsetA = 0;
483     j_coord_offsetB = 0;
484     j_coord_offsetC = 0;
485     j_coord_offsetD = 0;
486
487     outeriter        = 0;
488     inneriter        = 0;
489
490     for(iidx=0;iidx<4*DIM;iidx++)
491     {
492         scratch[iidx] = 0.0;
493     }
494
495     /* Start outer loop over neighborlists */
496     for(iidx=0; iidx<nri; iidx++)
497     {
498         /* Load shift vector for this list */
499         i_shift_offset   = DIM*shiftidx[iidx];
500
501         /* Load limits for loop over neighbors */
502         j_index_start    = jindex[iidx];
503         j_index_end      = jindex[iidx+1];
504
505         /* Get outer coordinate index */
506         inr              = iinr[iidx];
507         i_coord_offset   = DIM*inr;
508
509         /* Load i particle coords and add shift vector */
510         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
511
512         fix0             = _mm256_setzero_pd();
513         fiy0             = _mm256_setzero_pd();
514         fiz0             = _mm256_setzero_pd();
515
516         /* Load parameters for i particles */
517         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
518         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
519
520         /* Start inner kernel loop */
521         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
522         {
523
524             /* Get j neighbor index, and coordinate index */
525             jnrA             = jjnr[jidx];
526             jnrB             = jjnr[jidx+1];
527             jnrC             = jjnr[jidx+2];
528             jnrD             = jjnr[jidx+3];
529             j_coord_offsetA  = DIM*jnrA;
530             j_coord_offsetB  = DIM*jnrB;
531             j_coord_offsetC  = DIM*jnrC;
532             j_coord_offsetD  = DIM*jnrD;
533
534             /* load j atom coordinates */
535             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
536                                                  x+j_coord_offsetC,x+j_coord_offsetD,
537                                                  &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _mm256_sub_pd(ix0,jx0);
541             dy00             = _mm256_sub_pd(iy0,jy0);
542             dz00             = _mm256_sub_pd(iz0,jz0);
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
546
547             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
548
549             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
550
551             /* Load parameters for j particles */
552             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
553                                                                  charge+jnrC+0,charge+jnrD+0);
554             vdwjidx0A        = 2*vdwtype[jnrA+0];
555             vdwjidx0B        = 2*vdwtype[jnrB+0];
556             vdwjidx0C        = 2*vdwtype[jnrC+0];
557             vdwjidx0D        = 2*vdwtype[jnrD+0];
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             if (gmx_mm256_any_lt(rsq00,rcutoff2))
564             {
565
566             /* Compute parameters for interactions between i and j atoms */
567             qq00             = _mm256_mul_pd(iq0,jq0);
568             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
569                                             vdwioffsetptr0+vdwjidx0B,
570                                             vdwioffsetptr0+vdwjidx0C,
571                                             vdwioffsetptr0+vdwjidx0D,
572                                             &c6_00,&c12_00);
573
574             /* REACTION-FIELD ELECTROSTATICS */
575             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
576
577             /* LENNARD-JONES DISPERSION/REPULSION */
578
579             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
580             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
581
582             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
583
584             fscal            = _mm256_add_pd(felec,fvdw);
585
586             fscal            = _mm256_and_pd(fscal,cutoff_mask);
587
588             /* Calculate temporary vectorial force */
589             tx               = _mm256_mul_pd(fscal,dx00);
590             ty               = _mm256_mul_pd(fscal,dy00);
591             tz               = _mm256_mul_pd(fscal,dz00);
592
593             /* Update vectorial force */
594             fix0             = _mm256_add_pd(fix0,tx);
595             fiy0             = _mm256_add_pd(fiy0,ty);
596             fiz0             = _mm256_add_pd(fiz0,tz);
597
598             fjptrA             = f+j_coord_offsetA;
599             fjptrB             = f+j_coord_offsetB;
600             fjptrC             = f+j_coord_offsetC;
601             fjptrD             = f+j_coord_offsetD;
602             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
603
604             }
605
606             /* Inner loop uses 37 flops */
607         }
608
609         if(jidx<j_index_end)
610         {
611
612             /* Get j neighbor index, and coordinate index */
613             jnrlistA         = jjnr[jidx];
614             jnrlistB         = jjnr[jidx+1];
615             jnrlistC         = jjnr[jidx+2];
616             jnrlistD         = jjnr[jidx+3];
617             /* Sign of each element will be negative for non-real atoms.
618              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
619              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
620              */
621             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
622
623             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
624             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
625             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
626
627             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
628             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
629             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
630             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
631             j_coord_offsetA  = DIM*jnrA;
632             j_coord_offsetB  = DIM*jnrB;
633             j_coord_offsetC  = DIM*jnrC;
634             j_coord_offsetD  = DIM*jnrD;
635
636             /* load j atom coordinates */
637             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
638                                                  x+j_coord_offsetC,x+j_coord_offsetD,
639                                                  &jx0,&jy0,&jz0);
640
641             /* Calculate displacement vector */
642             dx00             = _mm256_sub_pd(ix0,jx0);
643             dy00             = _mm256_sub_pd(iy0,jy0);
644             dz00             = _mm256_sub_pd(iz0,jz0);
645
646             /* Calculate squared distance and things based on it */
647             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
648
649             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
650
651             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
652
653             /* Load parameters for j particles */
654             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
655                                                                  charge+jnrC+0,charge+jnrD+0);
656             vdwjidx0A        = 2*vdwtype[jnrA+0];
657             vdwjidx0B        = 2*vdwtype[jnrB+0];
658             vdwjidx0C        = 2*vdwtype[jnrC+0];
659             vdwjidx0D        = 2*vdwtype[jnrD+0];
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             if (gmx_mm256_any_lt(rsq00,rcutoff2))
666             {
667
668             /* Compute parameters for interactions between i and j atoms */
669             qq00             = _mm256_mul_pd(iq0,jq0);
670             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
671                                             vdwioffsetptr0+vdwjidx0B,
672                                             vdwioffsetptr0+vdwjidx0C,
673                                             vdwioffsetptr0+vdwjidx0D,
674                                             &c6_00,&c12_00);
675
676             /* REACTION-FIELD ELECTROSTATICS */
677             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
678
679             /* LENNARD-JONES DISPERSION/REPULSION */
680
681             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
682             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
683
684             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
685
686             fscal            = _mm256_add_pd(felec,fvdw);
687
688             fscal            = _mm256_and_pd(fscal,cutoff_mask);
689
690             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
691
692             /* Calculate temporary vectorial force */
693             tx               = _mm256_mul_pd(fscal,dx00);
694             ty               = _mm256_mul_pd(fscal,dy00);
695             tz               = _mm256_mul_pd(fscal,dz00);
696
697             /* Update vectorial force */
698             fix0             = _mm256_add_pd(fix0,tx);
699             fiy0             = _mm256_add_pd(fiy0,ty);
700             fiz0             = _mm256_add_pd(fiz0,tz);
701
702             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
703             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
704             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
705             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
706             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
707
708             }
709
710             /* Inner loop uses 37 flops */
711         }
712
713         /* End of innermost loop */
714
715         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
716                                                  f+i_coord_offset,fshift+i_shift_offset);
717
718         /* Increment number of inner iterations */
719         inneriter                  += j_index_end - j_index_start;
720
721         /* Outer loop uses 7 flops */
722     }
723
724     /* Increment number of outer iterations */
725     outeriter        += nri;
726
727     /* Update outer/inner flops */
728
729     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
730 }