made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          vfitab;
90     __m128i          ifour       = _mm_set1_epi32(4);
91     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
92     real             *vftab;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     krf              = _mm256_set1_pd(fr->ic->k_rf);
112     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
113     crf              = _mm256_set1_pd(fr->ic->c_rf);
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     vftab            = kernel_data->table_vdw->data;
119     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
124     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
125     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
126     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
127
128     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
129     rcutoff_scalar   = fr->rcoulomb;
130     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
131     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
132
133     /* Avoid stupid compiler warnings */
134     jnrA = jnrB = jnrC = jnrD = 0;
135     j_coord_offsetA = 0;
136     j_coord_offsetB = 0;
137     j_coord_offsetC = 0;
138     j_coord_offsetD = 0;
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     for(iidx=0;iidx<4*DIM;iidx++)
144     {
145         scratch[iidx] = 0.0;
146     }
147
148     /* Start outer loop over neighborlists */
149     for(iidx=0; iidx<nri; iidx++)
150     {
151         /* Load shift vector for this list */
152         i_shift_offset   = DIM*shiftidx[iidx];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
164                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
165
166         fix0             = _mm256_setzero_pd();
167         fiy0             = _mm256_setzero_pd();
168         fiz0             = _mm256_setzero_pd();
169         fix1             = _mm256_setzero_pd();
170         fiy1             = _mm256_setzero_pd();
171         fiz1             = _mm256_setzero_pd();
172         fix2             = _mm256_setzero_pd();
173         fiy2             = _mm256_setzero_pd();
174         fiz2             = _mm256_setzero_pd();
175
176         /* Reset potential sums */
177         velecsum         = _mm256_setzero_pd();
178         vvdwsum          = _mm256_setzero_pd();
179
180         /* Start inner kernel loop */
181         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
182         {
183
184             /* Get j neighbor index, and coordinate index */
185             jnrA             = jjnr[jidx];
186             jnrB             = jjnr[jidx+1];
187             jnrC             = jjnr[jidx+2];
188             jnrD             = jjnr[jidx+3];
189             j_coord_offsetA  = DIM*jnrA;
190             j_coord_offsetB  = DIM*jnrB;
191             j_coord_offsetC  = DIM*jnrC;
192             j_coord_offsetD  = DIM*jnrD;
193
194             /* load j atom coordinates */
195             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
196                                                  x+j_coord_offsetC,x+j_coord_offsetD,
197                                                  &jx0,&jy0,&jz0);
198
199             /* Calculate displacement vector */
200             dx00             = _mm256_sub_pd(ix0,jx0);
201             dy00             = _mm256_sub_pd(iy0,jy0);
202             dz00             = _mm256_sub_pd(iz0,jz0);
203             dx10             = _mm256_sub_pd(ix1,jx0);
204             dy10             = _mm256_sub_pd(iy1,jy0);
205             dz10             = _mm256_sub_pd(iz1,jz0);
206             dx20             = _mm256_sub_pd(ix2,jx0);
207             dy20             = _mm256_sub_pd(iy2,jy0);
208             dz20             = _mm256_sub_pd(iz2,jz0);
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
212             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
213             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
214
215             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
216             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
217             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
218
219             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
220             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
221             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
222
223             /* Load parameters for j particles */
224             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
225                                                                  charge+jnrC+0,charge+jnrD+0);
226             vdwjidx0A        = 2*vdwtype[jnrA+0];
227             vdwjidx0B        = 2*vdwtype[jnrB+0];
228             vdwjidx0C        = 2*vdwtype[jnrC+0];
229             vdwjidx0D        = 2*vdwtype[jnrD+0];
230
231             fjx0             = _mm256_setzero_pd();
232             fjy0             = _mm256_setzero_pd();
233             fjz0             = _mm256_setzero_pd();
234
235             /**************************
236              * CALCULATE INTERACTIONS *
237              **************************/
238
239             if (gmx_mm256_any_lt(rsq00,rcutoff2))
240             {
241
242             r00              = _mm256_mul_pd(rsq00,rinv00);
243
244             /* Compute parameters for interactions between i and j atoms */
245             qq00             = _mm256_mul_pd(iq0,jq0);
246             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
247                                             vdwioffsetptr0+vdwjidx0B,
248                                             vdwioffsetptr0+vdwjidx0C,
249                                             vdwioffsetptr0+vdwjidx0D,
250                                             &c6_00,&c12_00);
251
252             /* Calculate table index by multiplying r with table scale and truncate to integer */
253             rt               = _mm256_mul_pd(r00,vftabscale);
254             vfitab           = _mm256_cvttpd_epi32(rt);
255             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
256             vfitab           = _mm_slli_epi32(vfitab,3);
257
258             /* REACTION-FIELD ELECTROSTATICS */
259             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
260             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
261
262             /* CUBIC SPLINE TABLE DISPERSION */
263             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
264             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
265             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
266             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
267             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
268             Heps             = _mm256_mul_pd(vfeps,H);
269             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
270             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
271             vvdw6            = _mm256_mul_pd(c6_00,VV);
272             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
273             fvdw6            = _mm256_mul_pd(c6_00,FF);
274
275             /* CUBIC SPLINE TABLE REPULSION */
276             vfitab           = _mm_add_epi32(vfitab,ifour);
277             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
278             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
279             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
280             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
281             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
282             Heps             = _mm256_mul_pd(vfeps,H);
283             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
284             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
285             vvdw12           = _mm256_mul_pd(c12_00,VV);
286             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
287             fvdw12           = _mm256_mul_pd(c12_00,FF);
288             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
289             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
290
291             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
292
293             /* Update potential sum for this i atom from the interaction with this j atom. */
294             velec            = _mm256_and_pd(velec,cutoff_mask);
295             velecsum         = _mm256_add_pd(velecsum,velec);
296             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
297             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
298
299             fscal            = _mm256_add_pd(felec,fvdw);
300
301             fscal            = _mm256_and_pd(fscal,cutoff_mask);
302
303             /* Calculate temporary vectorial force */
304             tx               = _mm256_mul_pd(fscal,dx00);
305             ty               = _mm256_mul_pd(fscal,dy00);
306             tz               = _mm256_mul_pd(fscal,dz00);
307
308             /* Update vectorial force */
309             fix0             = _mm256_add_pd(fix0,tx);
310             fiy0             = _mm256_add_pd(fiy0,ty);
311             fiz0             = _mm256_add_pd(fiz0,tz);
312
313             fjx0             = _mm256_add_pd(fjx0,tx);
314             fjy0             = _mm256_add_pd(fjy0,ty);
315             fjz0             = _mm256_add_pd(fjz0,tz);
316
317             }
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             if (gmx_mm256_any_lt(rsq10,rcutoff2))
324             {
325
326             /* Compute parameters for interactions between i and j atoms */
327             qq10             = _mm256_mul_pd(iq1,jq0);
328
329             /* REACTION-FIELD ELECTROSTATICS */
330             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
331             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
332
333             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
334
335             /* Update potential sum for this i atom from the interaction with this j atom. */
336             velec            = _mm256_and_pd(velec,cutoff_mask);
337             velecsum         = _mm256_add_pd(velecsum,velec);
338
339             fscal            = felec;
340
341             fscal            = _mm256_and_pd(fscal,cutoff_mask);
342
343             /* Calculate temporary vectorial force */
344             tx               = _mm256_mul_pd(fscal,dx10);
345             ty               = _mm256_mul_pd(fscal,dy10);
346             tz               = _mm256_mul_pd(fscal,dz10);
347
348             /* Update vectorial force */
349             fix1             = _mm256_add_pd(fix1,tx);
350             fiy1             = _mm256_add_pd(fiy1,ty);
351             fiz1             = _mm256_add_pd(fiz1,tz);
352
353             fjx0             = _mm256_add_pd(fjx0,tx);
354             fjy0             = _mm256_add_pd(fjy0,ty);
355             fjz0             = _mm256_add_pd(fjz0,tz);
356
357             }
358
359             /**************************
360              * CALCULATE INTERACTIONS *
361              **************************/
362
363             if (gmx_mm256_any_lt(rsq20,rcutoff2))
364             {
365
366             /* Compute parameters for interactions between i and j atoms */
367             qq20             = _mm256_mul_pd(iq2,jq0);
368
369             /* REACTION-FIELD ELECTROSTATICS */
370             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
371             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
372
373             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
374
375             /* Update potential sum for this i atom from the interaction with this j atom. */
376             velec            = _mm256_and_pd(velec,cutoff_mask);
377             velecsum         = _mm256_add_pd(velecsum,velec);
378
379             fscal            = felec;
380
381             fscal            = _mm256_and_pd(fscal,cutoff_mask);
382
383             /* Calculate temporary vectorial force */
384             tx               = _mm256_mul_pd(fscal,dx20);
385             ty               = _mm256_mul_pd(fscal,dy20);
386             tz               = _mm256_mul_pd(fscal,dz20);
387
388             /* Update vectorial force */
389             fix2             = _mm256_add_pd(fix2,tx);
390             fiy2             = _mm256_add_pd(fiy2,ty);
391             fiz2             = _mm256_add_pd(fiz2,tz);
392
393             fjx0             = _mm256_add_pd(fjx0,tx);
394             fjy0             = _mm256_add_pd(fjy0,ty);
395             fjz0             = _mm256_add_pd(fjz0,tz);
396
397             }
398
399             fjptrA             = f+j_coord_offsetA;
400             fjptrB             = f+j_coord_offsetB;
401             fjptrC             = f+j_coord_offsetC;
402             fjptrD             = f+j_coord_offsetD;
403
404             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
405
406             /* Inner loop uses 147 flops */
407         }
408
409         if(jidx<j_index_end)
410         {
411
412             /* Get j neighbor index, and coordinate index */
413             jnrlistA         = jjnr[jidx];
414             jnrlistB         = jjnr[jidx+1];
415             jnrlistC         = jjnr[jidx+2];
416             jnrlistD         = jjnr[jidx+3];
417             /* Sign of each element will be negative for non-real atoms.
418              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
419              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
420              */
421             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
422
423             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
424             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
425             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
426
427             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
428             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
429             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
430             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
431             j_coord_offsetA  = DIM*jnrA;
432             j_coord_offsetB  = DIM*jnrB;
433             j_coord_offsetC  = DIM*jnrC;
434             j_coord_offsetD  = DIM*jnrD;
435
436             /* load j atom coordinates */
437             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
438                                                  x+j_coord_offsetC,x+j_coord_offsetD,
439                                                  &jx0,&jy0,&jz0);
440
441             /* Calculate displacement vector */
442             dx00             = _mm256_sub_pd(ix0,jx0);
443             dy00             = _mm256_sub_pd(iy0,jy0);
444             dz00             = _mm256_sub_pd(iz0,jz0);
445             dx10             = _mm256_sub_pd(ix1,jx0);
446             dy10             = _mm256_sub_pd(iy1,jy0);
447             dz10             = _mm256_sub_pd(iz1,jz0);
448             dx20             = _mm256_sub_pd(ix2,jx0);
449             dy20             = _mm256_sub_pd(iy2,jy0);
450             dz20             = _mm256_sub_pd(iz2,jz0);
451
452             /* Calculate squared distance and things based on it */
453             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
454             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
455             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
456
457             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
458             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
459             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
460
461             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
462             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
463             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
464
465             /* Load parameters for j particles */
466             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
467                                                                  charge+jnrC+0,charge+jnrD+0);
468             vdwjidx0A        = 2*vdwtype[jnrA+0];
469             vdwjidx0B        = 2*vdwtype[jnrB+0];
470             vdwjidx0C        = 2*vdwtype[jnrC+0];
471             vdwjidx0D        = 2*vdwtype[jnrD+0];
472
473             fjx0             = _mm256_setzero_pd();
474             fjy0             = _mm256_setzero_pd();
475             fjz0             = _mm256_setzero_pd();
476
477             /**************************
478              * CALCULATE INTERACTIONS *
479              **************************/
480
481             if (gmx_mm256_any_lt(rsq00,rcutoff2))
482             {
483
484             r00              = _mm256_mul_pd(rsq00,rinv00);
485             r00              = _mm256_andnot_pd(dummy_mask,r00);
486
487             /* Compute parameters for interactions between i and j atoms */
488             qq00             = _mm256_mul_pd(iq0,jq0);
489             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
490                                             vdwioffsetptr0+vdwjidx0B,
491                                             vdwioffsetptr0+vdwjidx0C,
492                                             vdwioffsetptr0+vdwjidx0D,
493                                             &c6_00,&c12_00);
494
495             /* Calculate table index by multiplying r with table scale and truncate to integer */
496             rt               = _mm256_mul_pd(r00,vftabscale);
497             vfitab           = _mm256_cvttpd_epi32(rt);
498             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
499             vfitab           = _mm_slli_epi32(vfitab,3);
500
501             /* REACTION-FIELD ELECTROSTATICS */
502             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
503             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
504
505             /* CUBIC SPLINE TABLE DISPERSION */
506             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
507             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
508             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
509             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
510             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
511             Heps             = _mm256_mul_pd(vfeps,H);
512             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
513             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
514             vvdw6            = _mm256_mul_pd(c6_00,VV);
515             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
516             fvdw6            = _mm256_mul_pd(c6_00,FF);
517
518             /* CUBIC SPLINE TABLE REPULSION */
519             vfitab           = _mm_add_epi32(vfitab,ifour);
520             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
521             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
522             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
523             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
524             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
525             Heps             = _mm256_mul_pd(vfeps,H);
526             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
527             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
528             vvdw12           = _mm256_mul_pd(c12_00,VV);
529             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
530             fvdw12           = _mm256_mul_pd(c12_00,FF);
531             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
532             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
533
534             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
535
536             /* Update potential sum for this i atom from the interaction with this j atom. */
537             velec            = _mm256_and_pd(velec,cutoff_mask);
538             velec            = _mm256_andnot_pd(dummy_mask,velec);
539             velecsum         = _mm256_add_pd(velecsum,velec);
540             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
541             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
542             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
543
544             fscal            = _mm256_add_pd(felec,fvdw);
545
546             fscal            = _mm256_and_pd(fscal,cutoff_mask);
547
548             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
549
550             /* Calculate temporary vectorial force */
551             tx               = _mm256_mul_pd(fscal,dx00);
552             ty               = _mm256_mul_pd(fscal,dy00);
553             tz               = _mm256_mul_pd(fscal,dz00);
554
555             /* Update vectorial force */
556             fix0             = _mm256_add_pd(fix0,tx);
557             fiy0             = _mm256_add_pd(fiy0,ty);
558             fiz0             = _mm256_add_pd(fiz0,tz);
559
560             fjx0             = _mm256_add_pd(fjx0,tx);
561             fjy0             = _mm256_add_pd(fjy0,ty);
562             fjz0             = _mm256_add_pd(fjz0,tz);
563
564             }
565
566             /**************************
567              * CALCULATE INTERACTIONS *
568              **************************/
569
570             if (gmx_mm256_any_lt(rsq10,rcutoff2))
571             {
572
573             /* Compute parameters for interactions between i and j atoms */
574             qq10             = _mm256_mul_pd(iq1,jq0);
575
576             /* REACTION-FIELD ELECTROSTATICS */
577             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_add_pd(rinv10,_mm256_mul_pd(krf,rsq10)),crf));
578             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
579
580             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
581
582             /* Update potential sum for this i atom from the interaction with this j atom. */
583             velec            = _mm256_and_pd(velec,cutoff_mask);
584             velec            = _mm256_andnot_pd(dummy_mask,velec);
585             velecsum         = _mm256_add_pd(velecsum,velec);
586
587             fscal            = felec;
588
589             fscal            = _mm256_and_pd(fscal,cutoff_mask);
590
591             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm256_mul_pd(fscal,dx10);
595             ty               = _mm256_mul_pd(fscal,dy10);
596             tz               = _mm256_mul_pd(fscal,dz10);
597
598             /* Update vectorial force */
599             fix1             = _mm256_add_pd(fix1,tx);
600             fiy1             = _mm256_add_pd(fiy1,ty);
601             fiz1             = _mm256_add_pd(fiz1,tz);
602
603             fjx0             = _mm256_add_pd(fjx0,tx);
604             fjy0             = _mm256_add_pd(fjy0,ty);
605             fjz0             = _mm256_add_pd(fjz0,tz);
606
607             }
608
609             /**************************
610              * CALCULATE INTERACTIONS *
611              **************************/
612
613             if (gmx_mm256_any_lt(rsq20,rcutoff2))
614             {
615
616             /* Compute parameters for interactions between i and j atoms */
617             qq20             = _mm256_mul_pd(iq2,jq0);
618
619             /* REACTION-FIELD ELECTROSTATICS */
620             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_add_pd(rinv20,_mm256_mul_pd(krf,rsq20)),crf));
621             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
622
623             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
624
625             /* Update potential sum for this i atom from the interaction with this j atom. */
626             velec            = _mm256_and_pd(velec,cutoff_mask);
627             velec            = _mm256_andnot_pd(dummy_mask,velec);
628             velecsum         = _mm256_add_pd(velecsum,velec);
629
630             fscal            = felec;
631
632             fscal            = _mm256_and_pd(fscal,cutoff_mask);
633
634             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
635
636             /* Calculate temporary vectorial force */
637             tx               = _mm256_mul_pd(fscal,dx20);
638             ty               = _mm256_mul_pd(fscal,dy20);
639             tz               = _mm256_mul_pd(fscal,dz20);
640
641             /* Update vectorial force */
642             fix2             = _mm256_add_pd(fix2,tx);
643             fiy2             = _mm256_add_pd(fiy2,ty);
644             fiz2             = _mm256_add_pd(fiz2,tz);
645
646             fjx0             = _mm256_add_pd(fjx0,tx);
647             fjy0             = _mm256_add_pd(fjy0,ty);
648             fjz0             = _mm256_add_pd(fjz0,tz);
649
650             }
651
652             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
653             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
654             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
655             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
656
657             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
658
659             /* Inner loop uses 148 flops */
660         }
661
662         /* End of innermost loop */
663
664         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
665                                                  f+i_coord_offset,fshift+i_shift_offset);
666
667         ggid                        = gid[iidx];
668         /* Update potential energies */
669         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
670         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
671
672         /* Increment number of inner iterations */
673         inneriter                  += j_index_end - j_index_start;
674
675         /* Outer loop uses 20 flops */
676     }
677
678     /* Increment number of outer iterations */
679     outeriter        += nri;
680
681     /* Update outer/inner flops */
682
683     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
684 }
685 /*
686  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
687  * Electrostatics interaction: ReactionField
688  * VdW interaction:            CubicSplineTable
689  * Geometry:                   Water3-Particle
690  * Calculate force/pot:        Force
691  */
692 void
693 nb_kernel_ElecRFCut_VdwCSTab_GeomW3P1_F_avx_256_double
694                     (t_nblist * gmx_restrict                nlist,
695                      rvec * gmx_restrict                    xx,
696                      rvec * gmx_restrict                    ff,
697                      t_forcerec * gmx_restrict              fr,
698                      t_mdatoms * gmx_restrict               mdatoms,
699                      nb_kernel_data_t * gmx_restrict        kernel_data,
700                      t_nrnb * gmx_restrict                  nrnb)
701 {
702     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
703      * just 0 for non-waters.
704      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
705      * jnr indices corresponding to data put in the four positions in the SIMD register.
706      */
707     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
708     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
709     int              jnrA,jnrB,jnrC,jnrD;
710     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
711     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
712     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
713     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
714     real             rcutoff_scalar;
715     real             *shiftvec,*fshift,*x,*f;
716     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
717     real             scratch[4*DIM];
718     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
719     real *           vdwioffsetptr0;
720     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
721     real *           vdwioffsetptr1;
722     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
723     real *           vdwioffsetptr2;
724     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
725     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
726     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
727     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
728     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
729     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
730     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
731     real             *charge;
732     int              nvdwtype;
733     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
734     int              *vdwtype;
735     real             *vdwparam;
736     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
737     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
738     __m128i          vfitab;
739     __m128i          ifour       = _mm_set1_epi32(4);
740     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
741     real             *vftab;
742     __m256d          dummy_mask,cutoff_mask;
743     __m128           tmpmask0,tmpmask1;
744     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
745     __m256d          one     = _mm256_set1_pd(1.0);
746     __m256d          two     = _mm256_set1_pd(2.0);
747     x                = xx[0];
748     f                = ff[0];
749
750     nri              = nlist->nri;
751     iinr             = nlist->iinr;
752     jindex           = nlist->jindex;
753     jjnr             = nlist->jjnr;
754     shiftidx         = nlist->shift;
755     gid              = nlist->gid;
756     shiftvec         = fr->shift_vec[0];
757     fshift           = fr->fshift[0];
758     facel            = _mm256_set1_pd(fr->epsfac);
759     charge           = mdatoms->chargeA;
760     krf              = _mm256_set1_pd(fr->ic->k_rf);
761     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
762     crf              = _mm256_set1_pd(fr->ic->c_rf);
763     nvdwtype         = fr->ntype;
764     vdwparam         = fr->nbfp;
765     vdwtype          = mdatoms->typeA;
766
767     vftab            = kernel_data->table_vdw->data;
768     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
769
770     /* Setup water-specific parameters */
771     inr              = nlist->iinr[0];
772     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
773     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
774     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
775     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
776
777     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
778     rcutoff_scalar   = fr->rcoulomb;
779     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
780     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
781
782     /* Avoid stupid compiler warnings */
783     jnrA = jnrB = jnrC = jnrD = 0;
784     j_coord_offsetA = 0;
785     j_coord_offsetB = 0;
786     j_coord_offsetC = 0;
787     j_coord_offsetD = 0;
788
789     outeriter        = 0;
790     inneriter        = 0;
791
792     for(iidx=0;iidx<4*DIM;iidx++)
793     {
794         scratch[iidx] = 0.0;
795     }
796
797     /* Start outer loop over neighborlists */
798     for(iidx=0; iidx<nri; iidx++)
799     {
800         /* Load shift vector for this list */
801         i_shift_offset   = DIM*shiftidx[iidx];
802
803         /* Load limits for loop over neighbors */
804         j_index_start    = jindex[iidx];
805         j_index_end      = jindex[iidx+1];
806
807         /* Get outer coordinate index */
808         inr              = iinr[iidx];
809         i_coord_offset   = DIM*inr;
810
811         /* Load i particle coords and add shift vector */
812         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
813                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
814
815         fix0             = _mm256_setzero_pd();
816         fiy0             = _mm256_setzero_pd();
817         fiz0             = _mm256_setzero_pd();
818         fix1             = _mm256_setzero_pd();
819         fiy1             = _mm256_setzero_pd();
820         fiz1             = _mm256_setzero_pd();
821         fix2             = _mm256_setzero_pd();
822         fiy2             = _mm256_setzero_pd();
823         fiz2             = _mm256_setzero_pd();
824
825         /* Start inner kernel loop */
826         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
827         {
828
829             /* Get j neighbor index, and coordinate index */
830             jnrA             = jjnr[jidx];
831             jnrB             = jjnr[jidx+1];
832             jnrC             = jjnr[jidx+2];
833             jnrD             = jjnr[jidx+3];
834             j_coord_offsetA  = DIM*jnrA;
835             j_coord_offsetB  = DIM*jnrB;
836             j_coord_offsetC  = DIM*jnrC;
837             j_coord_offsetD  = DIM*jnrD;
838
839             /* load j atom coordinates */
840             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
841                                                  x+j_coord_offsetC,x+j_coord_offsetD,
842                                                  &jx0,&jy0,&jz0);
843
844             /* Calculate displacement vector */
845             dx00             = _mm256_sub_pd(ix0,jx0);
846             dy00             = _mm256_sub_pd(iy0,jy0);
847             dz00             = _mm256_sub_pd(iz0,jz0);
848             dx10             = _mm256_sub_pd(ix1,jx0);
849             dy10             = _mm256_sub_pd(iy1,jy0);
850             dz10             = _mm256_sub_pd(iz1,jz0);
851             dx20             = _mm256_sub_pd(ix2,jx0);
852             dy20             = _mm256_sub_pd(iy2,jy0);
853             dz20             = _mm256_sub_pd(iz2,jz0);
854
855             /* Calculate squared distance and things based on it */
856             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
857             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
858             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
859
860             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
861             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
862             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
863
864             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
865             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
866             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
867
868             /* Load parameters for j particles */
869             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
870                                                                  charge+jnrC+0,charge+jnrD+0);
871             vdwjidx0A        = 2*vdwtype[jnrA+0];
872             vdwjidx0B        = 2*vdwtype[jnrB+0];
873             vdwjidx0C        = 2*vdwtype[jnrC+0];
874             vdwjidx0D        = 2*vdwtype[jnrD+0];
875
876             fjx0             = _mm256_setzero_pd();
877             fjy0             = _mm256_setzero_pd();
878             fjz0             = _mm256_setzero_pd();
879
880             /**************************
881              * CALCULATE INTERACTIONS *
882              **************************/
883
884             if (gmx_mm256_any_lt(rsq00,rcutoff2))
885             {
886
887             r00              = _mm256_mul_pd(rsq00,rinv00);
888
889             /* Compute parameters for interactions between i and j atoms */
890             qq00             = _mm256_mul_pd(iq0,jq0);
891             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
892                                             vdwioffsetptr0+vdwjidx0B,
893                                             vdwioffsetptr0+vdwjidx0C,
894                                             vdwioffsetptr0+vdwjidx0D,
895                                             &c6_00,&c12_00);
896
897             /* Calculate table index by multiplying r with table scale and truncate to integer */
898             rt               = _mm256_mul_pd(r00,vftabscale);
899             vfitab           = _mm256_cvttpd_epi32(rt);
900             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
901             vfitab           = _mm_slli_epi32(vfitab,3);
902
903             /* REACTION-FIELD ELECTROSTATICS */
904             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
905
906             /* CUBIC SPLINE TABLE DISPERSION */
907             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
908             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
909             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
910             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
911             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
912             Heps             = _mm256_mul_pd(vfeps,H);
913             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
914             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
915             fvdw6            = _mm256_mul_pd(c6_00,FF);
916
917             /* CUBIC SPLINE TABLE REPULSION */
918             vfitab           = _mm_add_epi32(vfitab,ifour);
919             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
920             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
921             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
922             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
923             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
924             Heps             = _mm256_mul_pd(vfeps,H);
925             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
926             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
927             fvdw12           = _mm256_mul_pd(c12_00,FF);
928             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
929
930             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
931
932             fscal            = _mm256_add_pd(felec,fvdw);
933
934             fscal            = _mm256_and_pd(fscal,cutoff_mask);
935
936             /* Calculate temporary vectorial force */
937             tx               = _mm256_mul_pd(fscal,dx00);
938             ty               = _mm256_mul_pd(fscal,dy00);
939             tz               = _mm256_mul_pd(fscal,dz00);
940
941             /* Update vectorial force */
942             fix0             = _mm256_add_pd(fix0,tx);
943             fiy0             = _mm256_add_pd(fiy0,ty);
944             fiz0             = _mm256_add_pd(fiz0,tz);
945
946             fjx0             = _mm256_add_pd(fjx0,tx);
947             fjy0             = _mm256_add_pd(fjy0,ty);
948             fjz0             = _mm256_add_pd(fjz0,tz);
949
950             }
951
952             /**************************
953              * CALCULATE INTERACTIONS *
954              **************************/
955
956             if (gmx_mm256_any_lt(rsq10,rcutoff2))
957             {
958
959             /* Compute parameters for interactions between i and j atoms */
960             qq10             = _mm256_mul_pd(iq1,jq0);
961
962             /* REACTION-FIELD ELECTROSTATICS */
963             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
964
965             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
966
967             fscal            = felec;
968
969             fscal            = _mm256_and_pd(fscal,cutoff_mask);
970
971             /* Calculate temporary vectorial force */
972             tx               = _mm256_mul_pd(fscal,dx10);
973             ty               = _mm256_mul_pd(fscal,dy10);
974             tz               = _mm256_mul_pd(fscal,dz10);
975
976             /* Update vectorial force */
977             fix1             = _mm256_add_pd(fix1,tx);
978             fiy1             = _mm256_add_pd(fiy1,ty);
979             fiz1             = _mm256_add_pd(fiz1,tz);
980
981             fjx0             = _mm256_add_pd(fjx0,tx);
982             fjy0             = _mm256_add_pd(fjy0,ty);
983             fjz0             = _mm256_add_pd(fjz0,tz);
984
985             }
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             if (gmx_mm256_any_lt(rsq20,rcutoff2))
992             {
993
994             /* Compute parameters for interactions between i and j atoms */
995             qq20             = _mm256_mul_pd(iq2,jq0);
996
997             /* REACTION-FIELD ELECTROSTATICS */
998             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
999
1000             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1001
1002             fscal            = felec;
1003
1004             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1005
1006             /* Calculate temporary vectorial force */
1007             tx               = _mm256_mul_pd(fscal,dx20);
1008             ty               = _mm256_mul_pd(fscal,dy20);
1009             tz               = _mm256_mul_pd(fscal,dz20);
1010
1011             /* Update vectorial force */
1012             fix2             = _mm256_add_pd(fix2,tx);
1013             fiy2             = _mm256_add_pd(fiy2,ty);
1014             fiz2             = _mm256_add_pd(fiz2,tz);
1015
1016             fjx0             = _mm256_add_pd(fjx0,tx);
1017             fjy0             = _mm256_add_pd(fjy0,ty);
1018             fjz0             = _mm256_add_pd(fjz0,tz);
1019
1020             }
1021
1022             fjptrA             = f+j_coord_offsetA;
1023             fjptrB             = f+j_coord_offsetB;
1024             fjptrC             = f+j_coord_offsetC;
1025             fjptrD             = f+j_coord_offsetD;
1026
1027             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1028
1029             /* Inner loop uses 120 flops */
1030         }
1031
1032         if(jidx<j_index_end)
1033         {
1034
1035             /* Get j neighbor index, and coordinate index */
1036             jnrlistA         = jjnr[jidx];
1037             jnrlistB         = jjnr[jidx+1];
1038             jnrlistC         = jjnr[jidx+2];
1039             jnrlistD         = jjnr[jidx+3];
1040             /* Sign of each element will be negative for non-real atoms.
1041              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1042              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1043              */
1044             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1045
1046             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1047             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1048             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1049
1050             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1051             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1052             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1053             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1054             j_coord_offsetA  = DIM*jnrA;
1055             j_coord_offsetB  = DIM*jnrB;
1056             j_coord_offsetC  = DIM*jnrC;
1057             j_coord_offsetD  = DIM*jnrD;
1058
1059             /* load j atom coordinates */
1060             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1061                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1062                                                  &jx0,&jy0,&jz0);
1063
1064             /* Calculate displacement vector */
1065             dx00             = _mm256_sub_pd(ix0,jx0);
1066             dy00             = _mm256_sub_pd(iy0,jy0);
1067             dz00             = _mm256_sub_pd(iz0,jz0);
1068             dx10             = _mm256_sub_pd(ix1,jx0);
1069             dy10             = _mm256_sub_pd(iy1,jy0);
1070             dz10             = _mm256_sub_pd(iz1,jz0);
1071             dx20             = _mm256_sub_pd(ix2,jx0);
1072             dy20             = _mm256_sub_pd(iy2,jy0);
1073             dz20             = _mm256_sub_pd(iz2,jz0);
1074
1075             /* Calculate squared distance and things based on it */
1076             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1077             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1078             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1079
1080             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1081             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1082             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1083
1084             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1085             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1086             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1087
1088             /* Load parameters for j particles */
1089             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1090                                                                  charge+jnrC+0,charge+jnrD+0);
1091             vdwjidx0A        = 2*vdwtype[jnrA+0];
1092             vdwjidx0B        = 2*vdwtype[jnrB+0];
1093             vdwjidx0C        = 2*vdwtype[jnrC+0];
1094             vdwjidx0D        = 2*vdwtype[jnrD+0];
1095
1096             fjx0             = _mm256_setzero_pd();
1097             fjy0             = _mm256_setzero_pd();
1098             fjz0             = _mm256_setzero_pd();
1099
1100             /**************************
1101              * CALCULATE INTERACTIONS *
1102              **************************/
1103
1104             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1105             {
1106
1107             r00              = _mm256_mul_pd(rsq00,rinv00);
1108             r00              = _mm256_andnot_pd(dummy_mask,r00);
1109
1110             /* Compute parameters for interactions between i and j atoms */
1111             qq00             = _mm256_mul_pd(iq0,jq0);
1112             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1113                                             vdwioffsetptr0+vdwjidx0B,
1114                                             vdwioffsetptr0+vdwjidx0C,
1115                                             vdwioffsetptr0+vdwjidx0D,
1116                                             &c6_00,&c12_00);
1117
1118             /* Calculate table index by multiplying r with table scale and truncate to integer */
1119             rt               = _mm256_mul_pd(r00,vftabscale);
1120             vfitab           = _mm256_cvttpd_epi32(rt);
1121             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1122             vfitab           = _mm_slli_epi32(vfitab,3);
1123
1124             /* REACTION-FIELD ELECTROSTATICS */
1125             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
1126
1127             /* CUBIC SPLINE TABLE DISPERSION */
1128             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1129             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1130             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1131             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1132             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1133             Heps             = _mm256_mul_pd(vfeps,H);
1134             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1135             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1136             fvdw6            = _mm256_mul_pd(c6_00,FF);
1137
1138             /* CUBIC SPLINE TABLE REPULSION */
1139             vfitab           = _mm_add_epi32(vfitab,ifour);
1140             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1141             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1142             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1143             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1144             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1145             Heps             = _mm256_mul_pd(vfeps,H);
1146             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1147             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1148             fvdw12           = _mm256_mul_pd(c12_00,FF);
1149             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1150
1151             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1152
1153             fscal            = _mm256_add_pd(felec,fvdw);
1154
1155             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1156
1157             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1158
1159             /* Calculate temporary vectorial force */
1160             tx               = _mm256_mul_pd(fscal,dx00);
1161             ty               = _mm256_mul_pd(fscal,dy00);
1162             tz               = _mm256_mul_pd(fscal,dz00);
1163
1164             /* Update vectorial force */
1165             fix0             = _mm256_add_pd(fix0,tx);
1166             fiy0             = _mm256_add_pd(fiy0,ty);
1167             fiz0             = _mm256_add_pd(fiz0,tz);
1168
1169             fjx0             = _mm256_add_pd(fjx0,tx);
1170             fjy0             = _mm256_add_pd(fjy0,ty);
1171             fjz0             = _mm256_add_pd(fjz0,tz);
1172
1173             }
1174
1175             /**************************
1176              * CALCULATE INTERACTIONS *
1177              **************************/
1178
1179             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1180             {
1181
1182             /* Compute parameters for interactions between i and j atoms */
1183             qq10             = _mm256_mul_pd(iq1,jq0);
1184
1185             /* REACTION-FIELD ELECTROSTATICS */
1186             felec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_mul_pd(rinv10,rinvsq10),krf2));
1187
1188             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1189
1190             fscal            = felec;
1191
1192             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1193
1194             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1195
1196             /* Calculate temporary vectorial force */
1197             tx               = _mm256_mul_pd(fscal,dx10);
1198             ty               = _mm256_mul_pd(fscal,dy10);
1199             tz               = _mm256_mul_pd(fscal,dz10);
1200
1201             /* Update vectorial force */
1202             fix1             = _mm256_add_pd(fix1,tx);
1203             fiy1             = _mm256_add_pd(fiy1,ty);
1204             fiz1             = _mm256_add_pd(fiz1,tz);
1205
1206             fjx0             = _mm256_add_pd(fjx0,tx);
1207             fjy0             = _mm256_add_pd(fjy0,ty);
1208             fjz0             = _mm256_add_pd(fjz0,tz);
1209
1210             }
1211
1212             /**************************
1213              * CALCULATE INTERACTIONS *
1214              **************************/
1215
1216             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1217             {
1218
1219             /* Compute parameters for interactions between i and j atoms */
1220             qq20             = _mm256_mul_pd(iq2,jq0);
1221
1222             /* REACTION-FIELD ELECTROSTATICS */
1223             felec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_mul_pd(rinv20,rinvsq20),krf2));
1224
1225             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1226
1227             fscal            = felec;
1228
1229             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1230
1231             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1232
1233             /* Calculate temporary vectorial force */
1234             tx               = _mm256_mul_pd(fscal,dx20);
1235             ty               = _mm256_mul_pd(fscal,dy20);
1236             tz               = _mm256_mul_pd(fscal,dz20);
1237
1238             /* Update vectorial force */
1239             fix2             = _mm256_add_pd(fix2,tx);
1240             fiy2             = _mm256_add_pd(fiy2,ty);
1241             fiz2             = _mm256_add_pd(fiz2,tz);
1242
1243             fjx0             = _mm256_add_pd(fjx0,tx);
1244             fjy0             = _mm256_add_pd(fjy0,ty);
1245             fjz0             = _mm256_add_pd(fjz0,tz);
1246
1247             }
1248
1249             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1250             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1251             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1252             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1253
1254             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1255
1256             /* Inner loop uses 121 flops */
1257         }
1258
1259         /* End of innermost loop */
1260
1261         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1262                                                  f+i_coord_offset,fshift+i_shift_offset);
1263
1264         /* Increment number of inner iterations */
1265         inneriter                  += j_index_end - j_index_start;
1266
1267         /* Outer loop uses 18 flops */
1268     }
1269
1270     /* Increment number of outer iterations */
1271     outeriter        += nri;
1272
1273     /* Update outer/inner flops */
1274
1275     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*121);
1276 }