made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     krf              = _mm256_set1_pd(fr->ic->k_rf);
106     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
107     crf              = _mm256_set1_pd(fr->ic->c_rf);
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     vftab            = kernel_data->table_vdw->data;
113     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
114
115     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
116     rcutoff_scalar   = fr->rcoulomb;
117     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
118     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
119
120     /* Avoid stupid compiler warnings */
121     jnrA = jnrB = jnrC = jnrD = 0;
122     j_coord_offsetA = 0;
123     j_coord_offsetB = 0;
124     j_coord_offsetC = 0;
125     j_coord_offsetD = 0;
126
127     outeriter        = 0;
128     inneriter        = 0;
129
130     for(iidx=0;iidx<4*DIM;iidx++)
131     {
132         scratch[iidx] = 0.0;
133     }
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
151
152         fix0             = _mm256_setzero_pd();
153         fiy0             = _mm256_setzero_pd();
154         fiz0             = _mm256_setzero_pd();
155
156         /* Load parameters for i particles */
157         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
158         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _mm256_setzero_pd();
162         vvdwsum          = _mm256_setzero_pd();
163
164         /* Start inner kernel loop */
165         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166         {
167
168             /* Get j neighbor index, and coordinate index */
169             jnrA             = jjnr[jidx];
170             jnrB             = jjnr[jidx+1];
171             jnrC             = jjnr[jidx+2];
172             jnrD             = jjnr[jidx+3];
173             j_coord_offsetA  = DIM*jnrA;
174             j_coord_offsetB  = DIM*jnrB;
175             j_coord_offsetC  = DIM*jnrC;
176             j_coord_offsetD  = DIM*jnrD;
177
178             /* load j atom coordinates */
179             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
180                                                  x+j_coord_offsetC,x+j_coord_offsetD,
181                                                  &jx0,&jy0,&jz0);
182
183             /* Calculate displacement vector */
184             dx00             = _mm256_sub_pd(ix0,jx0);
185             dy00             = _mm256_sub_pd(iy0,jy0);
186             dz00             = _mm256_sub_pd(iz0,jz0);
187
188             /* Calculate squared distance and things based on it */
189             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
190
191             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
192
193             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
194
195             /* Load parameters for j particles */
196             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
197                                                                  charge+jnrC+0,charge+jnrD+0);
198             vdwjidx0A        = 2*vdwtype[jnrA+0];
199             vdwjidx0B        = 2*vdwtype[jnrB+0];
200             vdwjidx0C        = 2*vdwtype[jnrC+0];
201             vdwjidx0D        = 2*vdwtype[jnrD+0];
202
203             /**************************
204              * CALCULATE INTERACTIONS *
205              **************************/
206
207             if (gmx_mm256_any_lt(rsq00,rcutoff2))
208             {
209
210             r00              = _mm256_mul_pd(rsq00,rinv00);
211
212             /* Compute parameters for interactions between i and j atoms */
213             qq00             = _mm256_mul_pd(iq0,jq0);
214             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
215                                             vdwioffsetptr0+vdwjidx0B,
216                                             vdwioffsetptr0+vdwjidx0C,
217                                             vdwioffsetptr0+vdwjidx0D,
218                                             &c6_00,&c12_00);
219
220             /* Calculate table index by multiplying r with table scale and truncate to integer */
221             rt               = _mm256_mul_pd(r00,vftabscale);
222             vfitab           = _mm256_cvttpd_epi32(rt);
223             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
224             vfitab           = _mm_slli_epi32(vfitab,3);
225
226             /* REACTION-FIELD ELECTROSTATICS */
227             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
228             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
229
230             /* CUBIC SPLINE TABLE DISPERSION */
231             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
232             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
233             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
234             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
235             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
236             Heps             = _mm256_mul_pd(vfeps,H);
237             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
238             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
239             vvdw6            = _mm256_mul_pd(c6_00,VV);
240             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
241             fvdw6            = _mm256_mul_pd(c6_00,FF);
242
243             /* CUBIC SPLINE TABLE REPULSION */
244             vfitab           = _mm_add_epi32(vfitab,ifour);
245             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
246             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
247             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
248             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
249             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
250             Heps             = _mm256_mul_pd(vfeps,H);
251             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
252             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
253             vvdw12           = _mm256_mul_pd(c12_00,VV);
254             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
255             fvdw12           = _mm256_mul_pd(c12_00,FF);
256             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
257             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
258
259             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
260
261             /* Update potential sum for this i atom from the interaction with this j atom. */
262             velec            = _mm256_and_pd(velec,cutoff_mask);
263             velecsum         = _mm256_add_pd(velecsum,velec);
264             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
265             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
266
267             fscal            = _mm256_add_pd(felec,fvdw);
268
269             fscal            = _mm256_and_pd(fscal,cutoff_mask);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_pd(fscal,dx00);
273             ty               = _mm256_mul_pd(fscal,dy00);
274             tz               = _mm256_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm256_add_pd(fix0,tx);
278             fiy0             = _mm256_add_pd(fiy0,ty);
279             fiz0             = _mm256_add_pd(fiz0,tz);
280
281             fjptrA             = f+j_coord_offsetA;
282             fjptrB             = f+j_coord_offsetB;
283             fjptrC             = f+j_coord_offsetC;
284             fjptrD             = f+j_coord_offsetD;
285             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
286
287             }
288
289             /* Inner loop uses 72 flops */
290         }
291
292         if(jidx<j_index_end)
293         {
294
295             /* Get j neighbor index, and coordinate index */
296             jnrlistA         = jjnr[jidx];
297             jnrlistB         = jjnr[jidx+1];
298             jnrlistC         = jjnr[jidx+2];
299             jnrlistD         = jjnr[jidx+3];
300             /* Sign of each element will be negative for non-real atoms.
301              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
302              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
303              */
304             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
305
306             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
307             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
308             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
309
310             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
311             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
312             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
313             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
314             j_coord_offsetA  = DIM*jnrA;
315             j_coord_offsetB  = DIM*jnrB;
316             j_coord_offsetC  = DIM*jnrC;
317             j_coord_offsetD  = DIM*jnrD;
318
319             /* load j atom coordinates */
320             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
321                                                  x+j_coord_offsetC,x+j_coord_offsetD,
322                                                  &jx0,&jy0,&jz0);
323
324             /* Calculate displacement vector */
325             dx00             = _mm256_sub_pd(ix0,jx0);
326             dy00             = _mm256_sub_pd(iy0,jy0);
327             dz00             = _mm256_sub_pd(iz0,jz0);
328
329             /* Calculate squared distance and things based on it */
330             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
331
332             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
333
334             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
335
336             /* Load parameters for j particles */
337             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
338                                                                  charge+jnrC+0,charge+jnrD+0);
339             vdwjidx0A        = 2*vdwtype[jnrA+0];
340             vdwjidx0B        = 2*vdwtype[jnrB+0];
341             vdwjidx0C        = 2*vdwtype[jnrC+0];
342             vdwjidx0D        = 2*vdwtype[jnrD+0];
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (gmx_mm256_any_lt(rsq00,rcutoff2))
349             {
350
351             r00              = _mm256_mul_pd(rsq00,rinv00);
352             r00              = _mm256_andnot_pd(dummy_mask,r00);
353
354             /* Compute parameters for interactions between i and j atoms */
355             qq00             = _mm256_mul_pd(iq0,jq0);
356             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
357                                             vdwioffsetptr0+vdwjidx0B,
358                                             vdwioffsetptr0+vdwjidx0C,
359                                             vdwioffsetptr0+vdwjidx0D,
360                                             &c6_00,&c12_00);
361
362             /* Calculate table index by multiplying r with table scale and truncate to integer */
363             rt               = _mm256_mul_pd(r00,vftabscale);
364             vfitab           = _mm256_cvttpd_epi32(rt);
365             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
366             vfitab           = _mm_slli_epi32(vfitab,3);
367
368             /* REACTION-FIELD ELECTROSTATICS */
369             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_add_pd(rinv00,_mm256_mul_pd(krf,rsq00)),crf));
370             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
371
372             /* CUBIC SPLINE TABLE DISPERSION */
373             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
374             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
375             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
376             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
377             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
378             Heps             = _mm256_mul_pd(vfeps,H);
379             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
380             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
381             vvdw6            = _mm256_mul_pd(c6_00,VV);
382             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
383             fvdw6            = _mm256_mul_pd(c6_00,FF);
384
385             /* CUBIC SPLINE TABLE REPULSION */
386             vfitab           = _mm_add_epi32(vfitab,ifour);
387             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
388             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
389             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
390             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
391             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
392             Heps             = _mm256_mul_pd(vfeps,H);
393             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
394             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
395             vvdw12           = _mm256_mul_pd(c12_00,VV);
396             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
397             fvdw12           = _mm256_mul_pd(c12_00,FF);
398             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
399             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
400
401             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _mm256_and_pd(velec,cutoff_mask);
405             velec            = _mm256_andnot_pd(dummy_mask,velec);
406             velecsum         = _mm256_add_pd(velecsum,velec);
407             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
408             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
409             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
410
411             fscal            = _mm256_add_pd(felec,fvdw);
412
413             fscal            = _mm256_and_pd(fscal,cutoff_mask);
414
415             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
416
417             /* Calculate temporary vectorial force */
418             tx               = _mm256_mul_pd(fscal,dx00);
419             ty               = _mm256_mul_pd(fscal,dy00);
420             tz               = _mm256_mul_pd(fscal,dz00);
421
422             /* Update vectorial force */
423             fix0             = _mm256_add_pd(fix0,tx);
424             fiy0             = _mm256_add_pd(fiy0,ty);
425             fiz0             = _mm256_add_pd(fiz0,tz);
426
427             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
428             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
429             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
430             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
431             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
432
433             }
434
435             /* Inner loop uses 73 flops */
436         }
437
438         /* End of innermost loop */
439
440         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
441                                                  f+i_coord_offset,fshift+i_shift_offset);
442
443         ggid                        = gid[iidx];
444         /* Update potential energies */
445         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
446         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
447
448         /* Increment number of inner iterations */
449         inneriter                  += j_index_end - j_index_start;
450
451         /* Outer loop uses 9 flops */
452     }
453
454     /* Increment number of outer iterations */
455     outeriter        += nri;
456
457     /* Update outer/inner flops */
458
459     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73);
460 }
461 /*
462  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
463  * Electrostatics interaction: ReactionField
464  * VdW interaction:            CubicSplineTable
465  * Geometry:                   Particle-Particle
466  * Calculate force/pot:        Force
467  */
468 void
469 nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_avx_256_double
470                     (t_nblist * gmx_restrict                nlist,
471                      rvec * gmx_restrict                    xx,
472                      rvec * gmx_restrict                    ff,
473                      t_forcerec * gmx_restrict              fr,
474                      t_mdatoms * gmx_restrict               mdatoms,
475                      nb_kernel_data_t * gmx_restrict        kernel_data,
476                      t_nrnb * gmx_restrict                  nrnb)
477 {
478     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
479      * just 0 for non-waters.
480      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
481      * jnr indices corresponding to data put in the four positions in the SIMD register.
482      */
483     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
484     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
485     int              jnrA,jnrB,jnrC,jnrD;
486     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
487     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
488     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
489     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
490     real             rcutoff_scalar;
491     real             *shiftvec,*fshift,*x,*f;
492     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
493     real             scratch[4*DIM];
494     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
495     real *           vdwioffsetptr0;
496     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
497     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
498     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
499     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
500     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
501     real             *charge;
502     int              nvdwtype;
503     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
504     int              *vdwtype;
505     real             *vdwparam;
506     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
507     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
508     __m128i          vfitab;
509     __m128i          ifour       = _mm_set1_epi32(4);
510     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
511     real             *vftab;
512     __m256d          dummy_mask,cutoff_mask;
513     __m128           tmpmask0,tmpmask1;
514     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
515     __m256d          one     = _mm256_set1_pd(1.0);
516     __m256d          two     = _mm256_set1_pd(2.0);
517     x                = xx[0];
518     f                = ff[0];
519
520     nri              = nlist->nri;
521     iinr             = nlist->iinr;
522     jindex           = nlist->jindex;
523     jjnr             = nlist->jjnr;
524     shiftidx         = nlist->shift;
525     gid              = nlist->gid;
526     shiftvec         = fr->shift_vec[0];
527     fshift           = fr->fshift[0];
528     facel            = _mm256_set1_pd(fr->epsfac);
529     charge           = mdatoms->chargeA;
530     krf              = _mm256_set1_pd(fr->ic->k_rf);
531     krf2             = _mm256_set1_pd(fr->ic->k_rf*2.0);
532     crf              = _mm256_set1_pd(fr->ic->c_rf);
533     nvdwtype         = fr->ntype;
534     vdwparam         = fr->nbfp;
535     vdwtype          = mdatoms->typeA;
536
537     vftab            = kernel_data->table_vdw->data;
538     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
539
540     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
541     rcutoff_scalar   = fr->rcoulomb;
542     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
543     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
544
545     /* Avoid stupid compiler warnings */
546     jnrA = jnrB = jnrC = jnrD = 0;
547     j_coord_offsetA = 0;
548     j_coord_offsetB = 0;
549     j_coord_offsetC = 0;
550     j_coord_offsetD = 0;
551
552     outeriter        = 0;
553     inneriter        = 0;
554
555     for(iidx=0;iidx<4*DIM;iidx++)
556     {
557         scratch[iidx] = 0.0;
558     }
559
560     /* Start outer loop over neighborlists */
561     for(iidx=0; iidx<nri; iidx++)
562     {
563         /* Load shift vector for this list */
564         i_shift_offset   = DIM*shiftidx[iidx];
565
566         /* Load limits for loop over neighbors */
567         j_index_start    = jindex[iidx];
568         j_index_end      = jindex[iidx+1];
569
570         /* Get outer coordinate index */
571         inr              = iinr[iidx];
572         i_coord_offset   = DIM*inr;
573
574         /* Load i particle coords and add shift vector */
575         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
576
577         fix0             = _mm256_setzero_pd();
578         fiy0             = _mm256_setzero_pd();
579         fiz0             = _mm256_setzero_pd();
580
581         /* Load parameters for i particles */
582         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
583         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
584
585         /* Start inner kernel loop */
586         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
587         {
588
589             /* Get j neighbor index, and coordinate index */
590             jnrA             = jjnr[jidx];
591             jnrB             = jjnr[jidx+1];
592             jnrC             = jjnr[jidx+2];
593             jnrD             = jjnr[jidx+3];
594             j_coord_offsetA  = DIM*jnrA;
595             j_coord_offsetB  = DIM*jnrB;
596             j_coord_offsetC  = DIM*jnrC;
597             j_coord_offsetD  = DIM*jnrD;
598
599             /* load j atom coordinates */
600             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
601                                                  x+j_coord_offsetC,x+j_coord_offsetD,
602                                                  &jx0,&jy0,&jz0);
603
604             /* Calculate displacement vector */
605             dx00             = _mm256_sub_pd(ix0,jx0);
606             dy00             = _mm256_sub_pd(iy0,jy0);
607             dz00             = _mm256_sub_pd(iz0,jz0);
608
609             /* Calculate squared distance and things based on it */
610             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
611
612             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
613
614             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
615
616             /* Load parameters for j particles */
617             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
618                                                                  charge+jnrC+0,charge+jnrD+0);
619             vdwjidx0A        = 2*vdwtype[jnrA+0];
620             vdwjidx0B        = 2*vdwtype[jnrB+0];
621             vdwjidx0C        = 2*vdwtype[jnrC+0];
622             vdwjidx0D        = 2*vdwtype[jnrD+0];
623
624             /**************************
625              * CALCULATE INTERACTIONS *
626              **************************/
627
628             if (gmx_mm256_any_lt(rsq00,rcutoff2))
629             {
630
631             r00              = _mm256_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm256_mul_pd(iq0,jq0);
635             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
636                                             vdwioffsetptr0+vdwjidx0B,
637                                             vdwioffsetptr0+vdwjidx0C,
638                                             vdwioffsetptr0+vdwjidx0D,
639                                             &c6_00,&c12_00);
640
641             /* Calculate table index by multiplying r with table scale and truncate to integer */
642             rt               = _mm256_mul_pd(r00,vftabscale);
643             vfitab           = _mm256_cvttpd_epi32(rt);
644             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
645             vfitab           = _mm_slli_epi32(vfitab,3);
646
647             /* REACTION-FIELD ELECTROSTATICS */
648             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
649
650             /* CUBIC SPLINE TABLE DISPERSION */
651             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
652             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
653             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
654             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
655             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
656             Heps             = _mm256_mul_pd(vfeps,H);
657             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
658             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
659             fvdw6            = _mm256_mul_pd(c6_00,FF);
660
661             /* CUBIC SPLINE TABLE REPULSION */
662             vfitab           = _mm_add_epi32(vfitab,ifour);
663             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
664             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
665             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
666             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
667             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
668             Heps             = _mm256_mul_pd(vfeps,H);
669             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
670             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
671             fvdw12           = _mm256_mul_pd(c12_00,FF);
672             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
673
674             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
675
676             fscal            = _mm256_add_pd(felec,fvdw);
677
678             fscal            = _mm256_and_pd(fscal,cutoff_mask);
679
680             /* Calculate temporary vectorial force */
681             tx               = _mm256_mul_pd(fscal,dx00);
682             ty               = _mm256_mul_pd(fscal,dy00);
683             tz               = _mm256_mul_pd(fscal,dz00);
684
685             /* Update vectorial force */
686             fix0             = _mm256_add_pd(fix0,tx);
687             fiy0             = _mm256_add_pd(fiy0,ty);
688             fiz0             = _mm256_add_pd(fiz0,tz);
689
690             fjptrA             = f+j_coord_offsetA;
691             fjptrB             = f+j_coord_offsetB;
692             fjptrC             = f+j_coord_offsetC;
693             fjptrD             = f+j_coord_offsetD;
694             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
695
696             }
697
698             /* Inner loop uses 57 flops */
699         }
700
701         if(jidx<j_index_end)
702         {
703
704             /* Get j neighbor index, and coordinate index */
705             jnrlistA         = jjnr[jidx];
706             jnrlistB         = jjnr[jidx+1];
707             jnrlistC         = jjnr[jidx+2];
708             jnrlistD         = jjnr[jidx+3];
709             /* Sign of each element will be negative for non-real atoms.
710              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
711              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
712              */
713             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
714
715             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
716             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
717             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
718
719             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
720             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
721             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
722             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
723             j_coord_offsetA  = DIM*jnrA;
724             j_coord_offsetB  = DIM*jnrB;
725             j_coord_offsetC  = DIM*jnrC;
726             j_coord_offsetD  = DIM*jnrD;
727
728             /* load j atom coordinates */
729             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
730                                                  x+j_coord_offsetC,x+j_coord_offsetD,
731                                                  &jx0,&jy0,&jz0);
732
733             /* Calculate displacement vector */
734             dx00             = _mm256_sub_pd(ix0,jx0);
735             dy00             = _mm256_sub_pd(iy0,jy0);
736             dz00             = _mm256_sub_pd(iz0,jz0);
737
738             /* Calculate squared distance and things based on it */
739             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
740
741             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
742
743             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
744
745             /* Load parameters for j particles */
746             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
747                                                                  charge+jnrC+0,charge+jnrD+0);
748             vdwjidx0A        = 2*vdwtype[jnrA+0];
749             vdwjidx0B        = 2*vdwtype[jnrB+0];
750             vdwjidx0C        = 2*vdwtype[jnrC+0];
751             vdwjidx0D        = 2*vdwtype[jnrD+0];
752
753             /**************************
754              * CALCULATE INTERACTIONS *
755              **************************/
756
757             if (gmx_mm256_any_lt(rsq00,rcutoff2))
758             {
759
760             r00              = _mm256_mul_pd(rsq00,rinv00);
761             r00              = _mm256_andnot_pd(dummy_mask,r00);
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq00             = _mm256_mul_pd(iq0,jq0);
765             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
766                                             vdwioffsetptr0+vdwjidx0B,
767                                             vdwioffsetptr0+vdwjidx0C,
768                                             vdwioffsetptr0+vdwjidx0D,
769                                             &c6_00,&c12_00);
770
771             /* Calculate table index by multiplying r with table scale and truncate to integer */
772             rt               = _mm256_mul_pd(r00,vftabscale);
773             vfitab           = _mm256_cvttpd_epi32(rt);
774             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
775             vfitab           = _mm_slli_epi32(vfitab,3);
776
777             /* REACTION-FIELD ELECTROSTATICS */
778             felec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_mul_pd(rinv00,rinvsq00),krf2));
779
780             /* CUBIC SPLINE TABLE DISPERSION */
781             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
782             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
783             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
784             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
785             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
786             Heps             = _mm256_mul_pd(vfeps,H);
787             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
788             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
789             fvdw6            = _mm256_mul_pd(c6_00,FF);
790
791             /* CUBIC SPLINE TABLE REPULSION */
792             vfitab           = _mm_add_epi32(vfitab,ifour);
793             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
794             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
795             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
796             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
797             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
798             Heps             = _mm256_mul_pd(vfeps,H);
799             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
800             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
801             fvdw12           = _mm256_mul_pd(c12_00,FF);
802             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
803
804             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
805
806             fscal            = _mm256_add_pd(felec,fvdw);
807
808             fscal            = _mm256_and_pd(fscal,cutoff_mask);
809
810             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
811
812             /* Calculate temporary vectorial force */
813             tx               = _mm256_mul_pd(fscal,dx00);
814             ty               = _mm256_mul_pd(fscal,dy00);
815             tz               = _mm256_mul_pd(fscal,dz00);
816
817             /* Update vectorial force */
818             fix0             = _mm256_add_pd(fix0,tx);
819             fiy0             = _mm256_add_pd(fiy0,ty);
820             fiz0             = _mm256_add_pd(fiz0,tz);
821
822             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
823             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
824             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
825             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
826             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
827
828             }
829
830             /* Inner loop uses 58 flops */
831         }
832
833         /* End of innermost loop */
834
835         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
836                                                  f+i_coord_offset,fshift+i_shift_offset);
837
838         /* Increment number of inner iterations */
839         inneriter                  += j_index_end - j_index_start;
840
841         /* Outer loop uses 7 flops */
842     }
843
844     /* Increment number of outer iterations */
845     outeriter        += nri;
846
847     /* Update outer/inner flops */
848
849     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58);
850 }