13a6a80bc1607a3f43198f01029706fd5eb480bc
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwLJSw_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: None
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     int              nvdwtype;
76     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
77     int              *vdwtype;
78     real             *vdwparam;
79     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
80     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
81     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
82     real             rswitch_scalar,d_scalar;
83     __m256d          dummy_mask,cutoff_mask;
84     __m128           tmpmask0,tmpmask1;
85     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
86     __m256d          one     = _mm256_set1_pd(1.0);
87     __m256d          two     = _mm256_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     nvdwtype         = fr->ntype;
100     vdwparam         = fr->nbfp;
101     vdwtype          = mdatoms->typeA;
102
103     rcutoff_scalar   = fr->rvdw;
104     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
105     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
106
107     rswitch_scalar   = fr->rvdw_switch;
108     rswitch          = _mm256_set1_pd(rswitch_scalar);
109     /* Setup switch parameters */
110     d_scalar         = rcutoff_scalar-rswitch_scalar;
111     d                = _mm256_set1_pd(d_scalar);
112     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
113     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
114     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
115     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
116     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
117     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm256_setzero_pd();
152         fiy0             = _mm256_setzero_pd();
153         fiz0             = _mm256_setzero_pd();
154
155         /* Load parameters for i particles */
156         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
157
158         /* Reset potential sums */
159         vvdwsum          = _mm256_setzero_pd();
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
163         {
164
165             /* Get j neighbor index, and coordinate index */
166             jnrA             = jjnr[jidx];
167             jnrB             = jjnr[jidx+1];
168             jnrC             = jjnr[jidx+2];
169             jnrD             = jjnr[jidx+3];
170             j_coord_offsetA  = DIM*jnrA;
171             j_coord_offsetB  = DIM*jnrB;
172             j_coord_offsetC  = DIM*jnrC;
173             j_coord_offsetD  = DIM*jnrD;
174
175             /* load j atom coordinates */
176             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
177                                                  x+j_coord_offsetC,x+j_coord_offsetD,
178                                                  &jx0,&jy0,&jz0);
179
180             /* Calculate displacement vector */
181             dx00             = _mm256_sub_pd(ix0,jx0);
182             dy00             = _mm256_sub_pd(iy0,jy0);
183             dz00             = _mm256_sub_pd(iz0,jz0);
184
185             /* Calculate squared distance and things based on it */
186             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
187
188             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
189
190             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
191
192             /* Load parameters for j particles */
193             vdwjidx0A        = 2*vdwtype[jnrA+0];
194             vdwjidx0B        = 2*vdwtype[jnrB+0];
195             vdwjidx0C        = 2*vdwtype[jnrC+0];
196             vdwjidx0D        = 2*vdwtype[jnrD+0];
197
198             /**************************
199              * CALCULATE INTERACTIONS *
200              **************************/
201
202             if (gmx_mm256_any_lt(rsq00,rcutoff2))
203             {
204
205             r00              = _mm256_mul_pd(rsq00,rinv00);
206
207             /* Compute parameters for interactions between i and j atoms */
208             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
209                                             vdwioffsetptr0+vdwjidx0B,
210                                             vdwioffsetptr0+vdwjidx0C,
211                                             vdwioffsetptr0+vdwjidx0D,
212                                             &c6_00,&c12_00);
213
214             /* LENNARD-JONES DISPERSION/REPULSION */
215
216             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
217             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
218             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
219             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
220             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
221
222             d                = _mm256_sub_pd(r00,rswitch);
223             d                = _mm256_max_pd(d,_mm256_setzero_pd());
224             d2               = _mm256_mul_pd(d,d);
225             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
226
227             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
228
229             /* Evaluate switch function */
230             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
231             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
232             vvdw             = _mm256_mul_pd(vvdw,sw);
233             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
234
235             /* Update potential sum for this i atom from the interaction with this j atom. */
236             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
237             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
238
239             fscal            = fvdw;
240
241             fscal            = _mm256_and_pd(fscal,cutoff_mask);
242
243             /* Calculate temporary vectorial force */
244             tx               = _mm256_mul_pd(fscal,dx00);
245             ty               = _mm256_mul_pd(fscal,dy00);
246             tz               = _mm256_mul_pd(fscal,dz00);
247
248             /* Update vectorial force */
249             fix0             = _mm256_add_pd(fix0,tx);
250             fiy0             = _mm256_add_pd(fiy0,ty);
251             fiz0             = _mm256_add_pd(fiz0,tz);
252
253             fjptrA             = f+j_coord_offsetA;
254             fjptrB             = f+j_coord_offsetB;
255             fjptrC             = f+j_coord_offsetC;
256             fjptrD             = f+j_coord_offsetD;
257             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
258
259             }
260
261             /* Inner loop uses 59 flops */
262         }
263
264         if(jidx<j_index_end)
265         {
266
267             /* Get j neighbor index, and coordinate index */
268             jnrlistA         = jjnr[jidx];
269             jnrlistB         = jjnr[jidx+1];
270             jnrlistC         = jjnr[jidx+2];
271             jnrlistD         = jjnr[jidx+3];
272             /* Sign of each element will be negative for non-real atoms.
273              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
274              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
275              */
276             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
277
278             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
279             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
280             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
281
282             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
283             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
284             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
285             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
286             j_coord_offsetA  = DIM*jnrA;
287             j_coord_offsetB  = DIM*jnrB;
288             j_coord_offsetC  = DIM*jnrC;
289             j_coord_offsetD  = DIM*jnrD;
290
291             /* load j atom coordinates */
292             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
293                                                  x+j_coord_offsetC,x+j_coord_offsetD,
294                                                  &jx0,&jy0,&jz0);
295
296             /* Calculate displacement vector */
297             dx00             = _mm256_sub_pd(ix0,jx0);
298             dy00             = _mm256_sub_pd(iy0,jy0);
299             dz00             = _mm256_sub_pd(iz0,jz0);
300
301             /* Calculate squared distance and things based on it */
302             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
303
304             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
305
306             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
307
308             /* Load parameters for j particles */
309             vdwjidx0A        = 2*vdwtype[jnrA+0];
310             vdwjidx0B        = 2*vdwtype[jnrB+0];
311             vdwjidx0C        = 2*vdwtype[jnrC+0];
312             vdwjidx0D        = 2*vdwtype[jnrD+0];
313
314             /**************************
315              * CALCULATE INTERACTIONS *
316              **************************/
317
318             if (gmx_mm256_any_lt(rsq00,rcutoff2))
319             {
320
321             r00              = _mm256_mul_pd(rsq00,rinv00);
322             r00              = _mm256_andnot_pd(dummy_mask,r00);
323
324             /* Compute parameters for interactions between i and j atoms */
325             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
326                                             vdwioffsetptr0+vdwjidx0B,
327                                             vdwioffsetptr0+vdwjidx0C,
328                                             vdwioffsetptr0+vdwjidx0D,
329                                             &c6_00,&c12_00);
330
331             /* LENNARD-JONES DISPERSION/REPULSION */
332
333             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
334             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
335             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
336             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
337             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
338
339             d                = _mm256_sub_pd(r00,rswitch);
340             d                = _mm256_max_pd(d,_mm256_setzero_pd());
341             d2               = _mm256_mul_pd(d,d);
342             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
343
344             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
345
346             /* Evaluate switch function */
347             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
348             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
349             vvdw             = _mm256_mul_pd(vvdw,sw);
350             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
351
352             /* Update potential sum for this i atom from the interaction with this j atom. */
353             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
354             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
355             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
356
357             fscal            = fvdw;
358
359             fscal            = _mm256_and_pd(fscal,cutoff_mask);
360
361             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm256_mul_pd(fscal,dx00);
365             ty               = _mm256_mul_pd(fscal,dy00);
366             tz               = _mm256_mul_pd(fscal,dz00);
367
368             /* Update vectorial force */
369             fix0             = _mm256_add_pd(fix0,tx);
370             fiy0             = _mm256_add_pd(fiy0,ty);
371             fiz0             = _mm256_add_pd(fiz0,tz);
372
373             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
374             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
375             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
376             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
377             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
378
379             }
380
381             /* Inner loop uses 60 flops */
382         }
383
384         /* End of innermost loop */
385
386         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
387                                                  f+i_coord_offset,fshift+i_shift_offset);
388
389         ggid                        = gid[iidx];
390         /* Update potential energies */
391         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
392
393         /* Increment number of inner iterations */
394         inneriter                  += j_index_end - j_index_start;
395
396         /* Outer loop uses 7 flops */
397     }
398
399     /* Increment number of outer iterations */
400     outeriter        += nri;
401
402     /* Update outer/inner flops */
403
404     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*60);
405 }
406 /*
407  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
408  * Electrostatics interaction: None
409  * VdW interaction:            LennardJones
410  * Geometry:                   Particle-Particle
411  * Calculate force/pot:        Force
412  */
413 void
414 nb_kernel_ElecNone_VdwLJSw_GeomP1P1_F_avx_256_double
415                     (t_nblist * gmx_restrict                nlist,
416                      rvec * gmx_restrict                    xx,
417                      rvec * gmx_restrict                    ff,
418                      t_forcerec * gmx_restrict              fr,
419                      t_mdatoms * gmx_restrict               mdatoms,
420                      nb_kernel_data_t * gmx_restrict        kernel_data,
421                      t_nrnb * gmx_restrict                  nrnb)
422 {
423     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
424      * just 0 for non-waters.
425      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
426      * jnr indices corresponding to data put in the four positions in the SIMD register.
427      */
428     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
429     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
430     int              jnrA,jnrB,jnrC,jnrD;
431     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
432     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
433     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
434     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
435     real             rcutoff_scalar;
436     real             *shiftvec,*fshift,*x,*f;
437     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
438     real             scratch[4*DIM];
439     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
440     real *           vdwioffsetptr0;
441     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
442     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
443     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
444     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
445     int              nvdwtype;
446     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
447     int              *vdwtype;
448     real             *vdwparam;
449     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
450     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
451     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
452     real             rswitch_scalar,d_scalar;
453     __m256d          dummy_mask,cutoff_mask;
454     __m128           tmpmask0,tmpmask1;
455     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
456     __m256d          one     = _mm256_set1_pd(1.0);
457     __m256d          two     = _mm256_set1_pd(2.0);
458     x                = xx[0];
459     f                = ff[0];
460
461     nri              = nlist->nri;
462     iinr             = nlist->iinr;
463     jindex           = nlist->jindex;
464     jjnr             = nlist->jjnr;
465     shiftidx         = nlist->shift;
466     gid              = nlist->gid;
467     shiftvec         = fr->shift_vec[0];
468     fshift           = fr->fshift[0];
469     nvdwtype         = fr->ntype;
470     vdwparam         = fr->nbfp;
471     vdwtype          = mdatoms->typeA;
472
473     rcutoff_scalar   = fr->rvdw;
474     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
475     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
476
477     rswitch_scalar   = fr->rvdw_switch;
478     rswitch          = _mm256_set1_pd(rswitch_scalar);
479     /* Setup switch parameters */
480     d_scalar         = rcutoff_scalar-rswitch_scalar;
481     d                = _mm256_set1_pd(d_scalar);
482     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
483     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
484     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
485     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
486     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
487     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
488
489     /* Avoid stupid compiler warnings */
490     jnrA = jnrB = jnrC = jnrD = 0;
491     j_coord_offsetA = 0;
492     j_coord_offsetB = 0;
493     j_coord_offsetC = 0;
494     j_coord_offsetD = 0;
495
496     outeriter        = 0;
497     inneriter        = 0;
498
499     for(iidx=0;iidx<4*DIM;iidx++)
500     {
501         scratch[iidx] = 0.0;
502     }
503
504     /* Start outer loop over neighborlists */
505     for(iidx=0; iidx<nri; iidx++)
506     {
507         /* Load shift vector for this list */
508         i_shift_offset   = DIM*shiftidx[iidx];
509
510         /* Load limits for loop over neighbors */
511         j_index_start    = jindex[iidx];
512         j_index_end      = jindex[iidx+1];
513
514         /* Get outer coordinate index */
515         inr              = iinr[iidx];
516         i_coord_offset   = DIM*inr;
517
518         /* Load i particle coords and add shift vector */
519         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
520
521         fix0             = _mm256_setzero_pd();
522         fiy0             = _mm256_setzero_pd();
523         fiz0             = _mm256_setzero_pd();
524
525         /* Load parameters for i particles */
526         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
527
528         /* Start inner kernel loop */
529         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
530         {
531
532             /* Get j neighbor index, and coordinate index */
533             jnrA             = jjnr[jidx];
534             jnrB             = jjnr[jidx+1];
535             jnrC             = jjnr[jidx+2];
536             jnrD             = jjnr[jidx+3];
537             j_coord_offsetA  = DIM*jnrA;
538             j_coord_offsetB  = DIM*jnrB;
539             j_coord_offsetC  = DIM*jnrC;
540             j_coord_offsetD  = DIM*jnrD;
541
542             /* load j atom coordinates */
543             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
544                                                  x+j_coord_offsetC,x+j_coord_offsetD,
545                                                  &jx0,&jy0,&jz0);
546
547             /* Calculate displacement vector */
548             dx00             = _mm256_sub_pd(ix0,jx0);
549             dy00             = _mm256_sub_pd(iy0,jy0);
550             dz00             = _mm256_sub_pd(iz0,jz0);
551
552             /* Calculate squared distance and things based on it */
553             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
554
555             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
556
557             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
558
559             /* Load parameters for j particles */
560             vdwjidx0A        = 2*vdwtype[jnrA+0];
561             vdwjidx0B        = 2*vdwtype[jnrB+0];
562             vdwjidx0C        = 2*vdwtype[jnrC+0];
563             vdwjidx0D        = 2*vdwtype[jnrD+0];
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             if (gmx_mm256_any_lt(rsq00,rcutoff2))
570             {
571
572             r00              = _mm256_mul_pd(rsq00,rinv00);
573
574             /* Compute parameters for interactions between i and j atoms */
575             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
576                                             vdwioffsetptr0+vdwjidx0B,
577                                             vdwioffsetptr0+vdwjidx0C,
578                                             vdwioffsetptr0+vdwjidx0D,
579                                             &c6_00,&c12_00);
580
581             /* LENNARD-JONES DISPERSION/REPULSION */
582
583             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
584             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
585             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
586             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
587             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
588
589             d                = _mm256_sub_pd(r00,rswitch);
590             d                = _mm256_max_pd(d,_mm256_setzero_pd());
591             d2               = _mm256_mul_pd(d,d);
592             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
593
594             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
595
596             /* Evaluate switch function */
597             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
598             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
599             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
600
601             fscal            = fvdw;
602
603             fscal            = _mm256_and_pd(fscal,cutoff_mask);
604
605             /* Calculate temporary vectorial force */
606             tx               = _mm256_mul_pd(fscal,dx00);
607             ty               = _mm256_mul_pd(fscal,dy00);
608             tz               = _mm256_mul_pd(fscal,dz00);
609
610             /* Update vectorial force */
611             fix0             = _mm256_add_pd(fix0,tx);
612             fiy0             = _mm256_add_pd(fiy0,ty);
613             fiz0             = _mm256_add_pd(fiz0,tz);
614
615             fjptrA             = f+j_coord_offsetA;
616             fjptrB             = f+j_coord_offsetB;
617             fjptrC             = f+j_coord_offsetC;
618             fjptrD             = f+j_coord_offsetD;
619             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
620
621             }
622
623             /* Inner loop uses 56 flops */
624         }
625
626         if(jidx<j_index_end)
627         {
628
629             /* Get j neighbor index, and coordinate index */
630             jnrlistA         = jjnr[jidx];
631             jnrlistB         = jjnr[jidx+1];
632             jnrlistC         = jjnr[jidx+2];
633             jnrlistD         = jjnr[jidx+3];
634             /* Sign of each element will be negative for non-real atoms.
635              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
636              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
637              */
638             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
639
640             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
641             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
642             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
643
644             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
645             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
646             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
647             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
648             j_coord_offsetA  = DIM*jnrA;
649             j_coord_offsetB  = DIM*jnrB;
650             j_coord_offsetC  = DIM*jnrC;
651             j_coord_offsetD  = DIM*jnrD;
652
653             /* load j atom coordinates */
654             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
655                                                  x+j_coord_offsetC,x+j_coord_offsetD,
656                                                  &jx0,&jy0,&jz0);
657
658             /* Calculate displacement vector */
659             dx00             = _mm256_sub_pd(ix0,jx0);
660             dy00             = _mm256_sub_pd(iy0,jy0);
661             dz00             = _mm256_sub_pd(iz0,jz0);
662
663             /* Calculate squared distance and things based on it */
664             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
665
666             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
667
668             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
669
670             /* Load parameters for j particles */
671             vdwjidx0A        = 2*vdwtype[jnrA+0];
672             vdwjidx0B        = 2*vdwtype[jnrB+0];
673             vdwjidx0C        = 2*vdwtype[jnrC+0];
674             vdwjidx0D        = 2*vdwtype[jnrD+0];
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             if (gmx_mm256_any_lt(rsq00,rcutoff2))
681             {
682
683             r00              = _mm256_mul_pd(rsq00,rinv00);
684             r00              = _mm256_andnot_pd(dummy_mask,r00);
685
686             /* Compute parameters for interactions between i and j atoms */
687             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
688                                             vdwioffsetptr0+vdwjidx0B,
689                                             vdwioffsetptr0+vdwjidx0C,
690                                             vdwioffsetptr0+vdwjidx0D,
691                                             &c6_00,&c12_00);
692
693             /* LENNARD-JONES DISPERSION/REPULSION */
694
695             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
696             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
697             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
698             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
699             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
700
701             d                = _mm256_sub_pd(r00,rswitch);
702             d                = _mm256_max_pd(d,_mm256_setzero_pd());
703             d2               = _mm256_mul_pd(d,d);
704             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
705
706             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
707
708             /* Evaluate switch function */
709             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
710             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
711             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
712
713             fscal            = fvdw;
714
715             fscal            = _mm256_and_pd(fscal,cutoff_mask);
716
717             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
718
719             /* Calculate temporary vectorial force */
720             tx               = _mm256_mul_pd(fscal,dx00);
721             ty               = _mm256_mul_pd(fscal,dy00);
722             tz               = _mm256_mul_pd(fscal,dz00);
723
724             /* Update vectorial force */
725             fix0             = _mm256_add_pd(fix0,tx);
726             fiy0             = _mm256_add_pd(fiy0,ty);
727             fiz0             = _mm256_add_pd(fiz0,tz);
728
729             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
730             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
731             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
732             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
733             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
734
735             }
736
737             /* Inner loop uses 57 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
743                                                  f+i_coord_offset,fshift+i_shift_offset);
744
745         /* Increment number of inner iterations */
746         inneriter                  += j_index_end - j_index_start;
747
748         /* Outer loop uses 6 flops */
749     }
750
751     /* Increment number of outer iterations */
752     outeriter        += nri;
753
754     /* Update outer/inner flops */
755
756     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*57);
757 }