621a3c6a2ea3b505d1e4f7b95ebbf82b82efedd3
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecNone_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: None
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     int              nvdwtype;
76     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
77     int              *vdwtype;
78     real             *vdwparam;
79     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
80     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
81     __m128i          vfitab;
82     __m128i          ifour       = _mm_set1_epi32(4);
83     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
84     real             *vftab;
85     __m256d          dummy_mask,cutoff_mask;
86     __m128           tmpmask0,tmpmask1;
87     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
88     __m256d          one     = _mm256_set1_pd(1.0);
89     __m256d          two     = _mm256_set1_pd(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     vftab            = kernel_data->table_vdw->data;
106     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
107
108     /* Avoid stupid compiler warnings */
109     jnrA = jnrB = jnrC = jnrD = 0;
110     j_coord_offsetA = 0;
111     j_coord_offsetB = 0;
112     j_coord_offsetC = 0;
113     j_coord_offsetD = 0;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     for(iidx=0;iidx<4*DIM;iidx++)
119     {
120         scratch[iidx] = 0.0;
121     }
122
123     /* Start outer loop over neighborlists */
124     for(iidx=0; iidx<nri; iidx++)
125     {
126         /* Load shift vector for this list */
127         i_shift_offset   = DIM*shiftidx[iidx];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
139
140         fix0             = _mm256_setzero_pd();
141         fiy0             = _mm256_setzero_pd();
142         fiz0             = _mm256_setzero_pd();
143
144         /* Load parameters for i particles */
145         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
146
147         /* Reset potential sums */
148         vvdwsum          = _mm256_setzero_pd();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             jnrC             = jjnr[jidx+2];
158             jnrD             = jjnr[jidx+3];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161             j_coord_offsetC  = DIM*jnrC;
162             j_coord_offsetD  = DIM*jnrD;
163
164             /* load j atom coordinates */
165             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
166                                                  x+j_coord_offsetC,x+j_coord_offsetD,
167                                                  &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx00             = _mm256_sub_pd(ix0,jx0);
171             dy00             = _mm256_sub_pd(iy0,jy0);
172             dz00             = _mm256_sub_pd(iz0,jz0);
173
174             /* Calculate squared distance and things based on it */
175             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
176
177             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
178
179             /* Load parameters for j particles */
180             vdwjidx0A        = 2*vdwtype[jnrA+0];
181             vdwjidx0B        = 2*vdwtype[jnrB+0];
182             vdwjidx0C        = 2*vdwtype[jnrC+0];
183             vdwjidx0D        = 2*vdwtype[jnrD+0];
184
185             /**************************
186              * CALCULATE INTERACTIONS *
187              **************************/
188
189             r00              = _mm256_mul_pd(rsq00,rinv00);
190
191             /* Compute parameters for interactions between i and j atoms */
192             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
193                                             vdwioffsetptr0+vdwjidx0B,
194                                             vdwioffsetptr0+vdwjidx0C,
195                                             vdwioffsetptr0+vdwjidx0D,
196                                             &c6_00,&c12_00);
197
198             /* Calculate table index by multiplying r with table scale and truncate to integer */
199             rt               = _mm256_mul_pd(r00,vftabscale);
200             vfitab           = _mm256_cvttpd_epi32(rt);
201             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
202             vfitab           = _mm_slli_epi32(vfitab,3);
203
204             /* CUBIC SPLINE TABLE DISPERSION */
205             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
206             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
207             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
208             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
209             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
210             Heps             = _mm256_mul_pd(vfeps,H);
211             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
212             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
213             vvdw6            = _mm256_mul_pd(c6_00,VV);
214             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
215             fvdw6            = _mm256_mul_pd(c6_00,FF);
216
217             /* CUBIC SPLINE TABLE REPULSION */
218             vfitab           = _mm_add_epi32(vfitab,ifour);
219             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
220             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
221             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
222             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
223             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
224             Heps             = _mm256_mul_pd(vfeps,H);
225             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
226             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
227             vvdw12           = _mm256_mul_pd(c12_00,VV);
228             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
229             fvdw12           = _mm256_mul_pd(c12_00,FF);
230             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
231             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
232
233             /* Update potential sum for this i atom from the interaction with this j atom. */
234             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
235
236             fscal            = fvdw;
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm256_mul_pd(fscal,dx00);
240             ty               = _mm256_mul_pd(fscal,dy00);
241             tz               = _mm256_mul_pd(fscal,dz00);
242
243             /* Update vectorial force */
244             fix0             = _mm256_add_pd(fix0,tx);
245             fiy0             = _mm256_add_pd(fiy0,ty);
246             fiz0             = _mm256_add_pd(fiz0,tz);
247
248             fjptrA             = f+j_coord_offsetA;
249             fjptrB             = f+j_coord_offsetB;
250             fjptrC             = f+j_coord_offsetC;
251             fjptrD             = f+j_coord_offsetD;
252             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
253
254             /* Inner loop uses 56 flops */
255         }
256
257         if(jidx<j_index_end)
258         {
259
260             /* Get j neighbor index, and coordinate index */
261             jnrlistA         = jjnr[jidx];
262             jnrlistB         = jjnr[jidx+1];
263             jnrlistC         = jjnr[jidx+2];
264             jnrlistD         = jjnr[jidx+3];
265             /* Sign of each element will be negative for non-real atoms.
266              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
267              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
268              */
269             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
270
271             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
272             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
273             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
274
275             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
276             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
277             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
278             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
279             j_coord_offsetA  = DIM*jnrA;
280             j_coord_offsetB  = DIM*jnrB;
281             j_coord_offsetC  = DIM*jnrC;
282             j_coord_offsetD  = DIM*jnrD;
283
284             /* load j atom coordinates */
285             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
286                                                  x+j_coord_offsetC,x+j_coord_offsetD,
287                                                  &jx0,&jy0,&jz0);
288
289             /* Calculate displacement vector */
290             dx00             = _mm256_sub_pd(ix0,jx0);
291             dy00             = _mm256_sub_pd(iy0,jy0);
292             dz00             = _mm256_sub_pd(iz0,jz0);
293
294             /* Calculate squared distance and things based on it */
295             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
296
297             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
298
299             /* Load parameters for j particles */
300             vdwjidx0A        = 2*vdwtype[jnrA+0];
301             vdwjidx0B        = 2*vdwtype[jnrB+0];
302             vdwjidx0C        = 2*vdwtype[jnrC+0];
303             vdwjidx0D        = 2*vdwtype[jnrD+0];
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             r00              = _mm256_mul_pd(rsq00,rinv00);
310             r00              = _mm256_andnot_pd(dummy_mask,r00);
311
312             /* Compute parameters for interactions between i and j atoms */
313             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
314                                             vdwioffsetptr0+vdwjidx0B,
315                                             vdwioffsetptr0+vdwjidx0C,
316                                             vdwioffsetptr0+vdwjidx0D,
317                                             &c6_00,&c12_00);
318
319             /* Calculate table index by multiplying r with table scale and truncate to integer */
320             rt               = _mm256_mul_pd(r00,vftabscale);
321             vfitab           = _mm256_cvttpd_epi32(rt);
322             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
323             vfitab           = _mm_slli_epi32(vfitab,3);
324
325             /* CUBIC SPLINE TABLE DISPERSION */
326             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
327             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
328             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
329             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
330             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
331             Heps             = _mm256_mul_pd(vfeps,H);
332             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
333             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
334             vvdw6            = _mm256_mul_pd(c6_00,VV);
335             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
336             fvdw6            = _mm256_mul_pd(c6_00,FF);
337
338             /* CUBIC SPLINE TABLE REPULSION */
339             vfitab           = _mm_add_epi32(vfitab,ifour);
340             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
341             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
342             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
343             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
344             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
345             Heps             = _mm256_mul_pd(vfeps,H);
346             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
347             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
348             vvdw12           = _mm256_mul_pd(c12_00,VV);
349             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
350             fvdw12           = _mm256_mul_pd(c12_00,FF);
351             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
352             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
356             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
357
358             fscal            = fvdw;
359
360             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
361
362             /* Calculate temporary vectorial force */
363             tx               = _mm256_mul_pd(fscal,dx00);
364             ty               = _mm256_mul_pd(fscal,dy00);
365             tz               = _mm256_mul_pd(fscal,dz00);
366
367             /* Update vectorial force */
368             fix0             = _mm256_add_pd(fix0,tx);
369             fiy0             = _mm256_add_pd(fiy0,ty);
370             fiz0             = _mm256_add_pd(fiz0,tz);
371
372             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
373             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
374             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
375             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
376             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
377
378             /* Inner loop uses 57 flops */
379         }
380
381         /* End of innermost loop */
382
383         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
384                                                  f+i_coord_offset,fshift+i_shift_offset);
385
386         ggid                        = gid[iidx];
387         /* Update potential energies */
388         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
389
390         /* Increment number of inner iterations */
391         inneriter                  += j_index_end - j_index_start;
392
393         /* Outer loop uses 7 flops */
394     }
395
396     /* Increment number of outer iterations */
397     outeriter        += nri;
398
399     /* Update outer/inner flops */
400
401     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*57);
402 }
403 /*
404  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_double
405  * Electrostatics interaction: None
406  * VdW interaction:            CubicSplineTable
407  * Geometry:                   Particle-Particle
408  * Calculate force/pot:        Force
409  */
410 void
411 nb_kernel_ElecNone_VdwCSTab_GeomP1P1_F_avx_256_double
412                     (t_nblist * gmx_restrict                nlist,
413                      rvec * gmx_restrict                    xx,
414                      rvec * gmx_restrict                    ff,
415                      t_forcerec * gmx_restrict              fr,
416                      t_mdatoms * gmx_restrict               mdatoms,
417                      nb_kernel_data_t * gmx_restrict        kernel_data,
418                      t_nrnb * gmx_restrict                  nrnb)
419 {
420     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
421      * just 0 for non-waters.
422      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
423      * jnr indices corresponding to data put in the four positions in the SIMD register.
424      */
425     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
426     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
427     int              jnrA,jnrB,jnrC,jnrD;
428     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
429     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
430     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
431     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
432     real             rcutoff_scalar;
433     real             *shiftvec,*fshift,*x,*f;
434     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
435     real             scratch[4*DIM];
436     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
437     real *           vdwioffsetptr0;
438     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
439     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
440     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
441     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
442     int              nvdwtype;
443     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
444     int              *vdwtype;
445     real             *vdwparam;
446     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
447     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
448     __m128i          vfitab;
449     __m128i          ifour       = _mm_set1_epi32(4);
450     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
451     real             *vftab;
452     __m256d          dummy_mask,cutoff_mask;
453     __m128           tmpmask0,tmpmask1;
454     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
455     __m256d          one     = _mm256_set1_pd(1.0);
456     __m256d          two     = _mm256_set1_pd(2.0);
457     x                = xx[0];
458     f                = ff[0];
459
460     nri              = nlist->nri;
461     iinr             = nlist->iinr;
462     jindex           = nlist->jindex;
463     jjnr             = nlist->jjnr;
464     shiftidx         = nlist->shift;
465     gid              = nlist->gid;
466     shiftvec         = fr->shift_vec[0];
467     fshift           = fr->fshift[0];
468     nvdwtype         = fr->ntype;
469     vdwparam         = fr->nbfp;
470     vdwtype          = mdatoms->typeA;
471
472     vftab            = kernel_data->table_vdw->data;
473     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
474
475     /* Avoid stupid compiler warnings */
476     jnrA = jnrB = jnrC = jnrD = 0;
477     j_coord_offsetA = 0;
478     j_coord_offsetB = 0;
479     j_coord_offsetC = 0;
480     j_coord_offsetD = 0;
481
482     outeriter        = 0;
483     inneriter        = 0;
484
485     for(iidx=0;iidx<4*DIM;iidx++)
486     {
487         scratch[iidx] = 0.0;
488     }
489
490     /* Start outer loop over neighborlists */
491     for(iidx=0; iidx<nri; iidx++)
492     {
493         /* Load shift vector for this list */
494         i_shift_offset   = DIM*shiftidx[iidx];
495
496         /* Load limits for loop over neighbors */
497         j_index_start    = jindex[iidx];
498         j_index_end      = jindex[iidx+1];
499
500         /* Get outer coordinate index */
501         inr              = iinr[iidx];
502         i_coord_offset   = DIM*inr;
503
504         /* Load i particle coords and add shift vector */
505         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
506
507         fix0             = _mm256_setzero_pd();
508         fiy0             = _mm256_setzero_pd();
509         fiz0             = _mm256_setzero_pd();
510
511         /* Load parameters for i particles */
512         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
513
514         /* Start inner kernel loop */
515         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
516         {
517
518             /* Get j neighbor index, and coordinate index */
519             jnrA             = jjnr[jidx];
520             jnrB             = jjnr[jidx+1];
521             jnrC             = jjnr[jidx+2];
522             jnrD             = jjnr[jidx+3];
523             j_coord_offsetA  = DIM*jnrA;
524             j_coord_offsetB  = DIM*jnrB;
525             j_coord_offsetC  = DIM*jnrC;
526             j_coord_offsetD  = DIM*jnrD;
527
528             /* load j atom coordinates */
529             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
530                                                  x+j_coord_offsetC,x+j_coord_offsetD,
531                                                  &jx0,&jy0,&jz0);
532
533             /* Calculate displacement vector */
534             dx00             = _mm256_sub_pd(ix0,jx0);
535             dy00             = _mm256_sub_pd(iy0,jy0);
536             dz00             = _mm256_sub_pd(iz0,jz0);
537
538             /* Calculate squared distance and things based on it */
539             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
540
541             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
542
543             /* Load parameters for j particles */
544             vdwjidx0A        = 2*vdwtype[jnrA+0];
545             vdwjidx0B        = 2*vdwtype[jnrB+0];
546             vdwjidx0C        = 2*vdwtype[jnrC+0];
547             vdwjidx0D        = 2*vdwtype[jnrD+0];
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             r00              = _mm256_mul_pd(rsq00,rinv00);
554
555             /* Compute parameters for interactions between i and j atoms */
556             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
557                                             vdwioffsetptr0+vdwjidx0B,
558                                             vdwioffsetptr0+vdwjidx0C,
559                                             vdwioffsetptr0+vdwjidx0D,
560                                             &c6_00,&c12_00);
561
562             /* Calculate table index by multiplying r with table scale and truncate to integer */
563             rt               = _mm256_mul_pd(r00,vftabscale);
564             vfitab           = _mm256_cvttpd_epi32(rt);
565             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
566             vfitab           = _mm_slli_epi32(vfitab,3);
567
568             /* CUBIC SPLINE TABLE DISPERSION */
569             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
570             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
571             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
572             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
573             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
574             Heps             = _mm256_mul_pd(vfeps,H);
575             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
576             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
577             fvdw6            = _mm256_mul_pd(c6_00,FF);
578
579             /* CUBIC SPLINE TABLE REPULSION */
580             vfitab           = _mm_add_epi32(vfitab,ifour);
581             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
582             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
583             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
584             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
585             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
586             Heps             = _mm256_mul_pd(vfeps,H);
587             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
588             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
589             fvdw12           = _mm256_mul_pd(c12_00,FF);
590             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
591
592             fscal            = fvdw;
593
594             /* Calculate temporary vectorial force */
595             tx               = _mm256_mul_pd(fscal,dx00);
596             ty               = _mm256_mul_pd(fscal,dy00);
597             tz               = _mm256_mul_pd(fscal,dz00);
598
599             /* Update vectorial force */
600             fix0             = _mm256_add_pd(fix0,tx);
601             fiy0             = _mm256_add_pd(fiy0,ty);
602             fiz0             = _mm256_add_pd(fiz0,tz);
603
604             fjptrA             = f+j_coord_offsetA;
605             fjptrB             = f+j_coord_offsetB;
606             fjptrC             = f+j_coord_offsetC;
607             fjptrD             = f+j_coord_offsetD;
608             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
609
610             /* Inner loop uses 48 flops */
611         }
612
613         if(jidx<j_index_end)
614         {
615
616             /* Get j neighbor index, and coordinate index */
617             jnrlistA         = jjnr[jidx];
618             jnrlistB         = jjnr[jidx+1];
619             jnrlistC         = jjnr[jidx+2];
620             jnrlistD         = jjnr[jidx+3];
621             /* Sign of each element will be negative for non-real atoms.
622              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
623              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
624              */
625             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
626
627             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
628             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
629             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
630
631             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
632             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
633             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
634             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
635             j_coord_offsetA  = DIM*jnrA;
636             j_coord_offsetB  = DIM*jnrB;
637             j_coord_offsetC  = DIM*jnrC;
638             j_coord_offsetD  = DIM*jnrD;
639
640             /* load j atom coordinates */
641             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
642                                                  x+j_coord_offsetC,x+j_coord_offsetD,
643                                                  &jx0,&jy0,&jz0);
644
645             /* Calculate displacement vector */
646             dx00             = _mm256_sub_pd(ix0,jx0);
647             dy00             = _mm256_sub_pd(iy0,jy0);
648             dz00             = _mm256_sub_pd(iz0,jz0);
649
650             /* Calculate squared distance and things based on it */
651             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
652
653             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
654
655             /* Load parameters for j particles */
656             vdwjidx0A        = 2*vdwtype[jnrA+0];
657             vdwjidx0B        = 2*vdwtype[jnrB+0];
658             vdwjidx0C        = 2*vdwtype[jnrC+0];
659             vdwjidx0D        = 2*vdwtype[jnrD+0];
660
661             /**************************
662              * CALCULATE INTERACTIONS *
663              **************************/
664
665             r00              = _mm256_mul_pd(rsq00,rinv00);
666             r00              = _mm256_andnot_pd(dummy_mask,r00);
667
668             /* Compute parameters for interactions between i and j atoms */
669             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
670                                             vdwioffsetptr0+vdwjidx0B,
671                                             vdwioffsetptr0+vdwjidx0C,
672                                             vdwioffsetptr0+vdwjidx0D,
673                                             &c6_00,&c12_00);
674
675             /* Calculate table index by multiplying r with table scale and truncate to integer */
676             rt               = _mm256_mul_pd(r00,vftabscale);
677             vfitab           = _mm256_cvttpd_epi32(rt);
678             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
679             vfitab           = _mm_slli_epi32(vfitab,3);
680
681             /* CUBIC SPLINE TABLE DISPERSION */
682             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
683             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
684             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
685             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
686             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
687             Heps             = _mm256_mul_pd(vfeps,H);
688             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
689             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
690             fvdw6            = _mm256_mul_pd(c6_00,FF);
691
692             /* CUBIC SPLINE TABLE REPULSION */
693             vfitab           = _mm_add_epi32(vfitab,ifour);
694             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
695             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
696             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
697             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
698             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
699             Heps             = _mm256_mul_pd(vfeps,H);
700             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
701             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
702             fvdw12           = _mm256_mul_pd(c12_00,FF);
703             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
704
705             fscal            = fvdw;
706
707             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
708
709             /* Calculate temporary vectorial force */
710             tx               = _mm256_mul_pd(fscal,dx00);
711             ty               = _mm256_mul_pd(fscal,dy00);
712             tz               = _mm256_mul_pd(fscal,dz00);
713
714             /* Update vectorial force */
715             fix0             = _mm256_add_pd(fix0,tx);
716             fiy0             = _mm256_add_pd(fiy0,ty);
717             fiz0             = _mm256_add_pd(fiz0,tz);
718
719             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
720             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
721             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
722             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
723             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
724
725             /* Inner loop uses 49 flops */
726         }
727
728         /* End of innermost loop */
729
730         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
731                                                  f+i_coord_offset,fshift+i_shift_offset);
732
733         /* Increment number of inner iterations */
734         inneriter                  += j_index_end - j_index_start;
735
736         /* Outer loop uses 6 flops */
737     }
738
739     /* Increment number of outer iterations */
740     outeriter        += nri;
741
742     /* Update outer/inner flops */
743
744     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*49);
745 }