made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          gbitab;
78     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
79     __m256d          minushalf = _mm256_set1_pd(-0.5);
80     real             *invsqrta,*dvda,*gbtab;
81     __m128i          vfitab;
82     __m128i          ifour       = _mm_set1_epi32(4);
83     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
84     real             *vftab;
85     __m256d          dummy_mask,cutoff_mask;
86     __m128           tmpmask0,tmpmask1;
87     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
88     __m256d          one     = _mm256_set1_pd(1.0);
89     __m256d          two     = _mm256_set1_pd(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm256_set1_pd(fr->epsfac);
102     charge           = mdatoms->chargeA;
103
104     invsqrta         = fr->invsqrta;
105     dvda             = fr->dvda;
106     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
107     gbtab            = fr->gbtab.data;
108     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm256_setzero_pd();
143         fiy0             = _mm256_setzero_pd();
144         fiz0             = _mm256_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
148         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
149
150         /* Reset potential sums */
151         velecsum         = _mm256_setzero_pd();
152         vgbsum           = _mm256_setzero_pd();
153         dvdasum          = _mm256_setzero_pd();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             jnrC             = jjnr[jidx+2];
163             jnrD             = jjnr[jidx+3];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168
169             /* load j atom coordinates */
170             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                                  x+j_coord_offsetC,x+j_coord_offsetD,
172                                                  &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm256_sub_pd(ix0,jx0);
176             dy00             = _mm256_sub_pd(iy0,jy0);
177             dz00             = _mm256_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
186                                                                  charge+jnrC+0,charge+jnrD+0);
187             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
188                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             r00              = _mm256_mul_pd(rsq00,rinv00);
195
196             /* Compute parameters for interactions between i and j atoms */
197             qq00             = _mm256_mul_pd(iq0,jq0);
198
199             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
200             isaprod          = _mm256_mul_pd(isai0,isaj0);
201             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
202             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
203
204             /* Calculate generalized born table index - this is a separate table from the normal one,
205              * but we use the same procedure by multiplying r with scale and truncating to integer.
206              */
207             rt               = _mm256_mul_pd(r00,gbscale);
208             gbitab           = _mm256_cvttpd_epi32(rt);
209             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
210             gbitab           = _mm_slli_epi32(gbitab,2);
211             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
212             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
213             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
214             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
215             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
216             Heps             = _mm256_mul_pd(gbeps,H);
217             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
218             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
219             vgb              = _mm256_mul_pd(gbqqfactor,VV);
220
221             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
222             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
223             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
224             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
225             fjptrA           = dvda+jnrA;
226             fjptrB           = dvda+jnrB;
227             fjptrC           = dvda+jnrC;
228             fjptrD           = dvda+jnrD;
229             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
230                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
231             velec            = _mm256_mul_pd(qq00,rinv00);
232             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
233
234             /* Update potential sum for this i atom from the interaction with this j atom. */
235             velecsum         = _mm256_add_pd(velecsum,velec);
236             vgbsum           = _mm256_add_pd(vgbsum,vgb);
237
238             fscal            = felec;
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm256_mul_pd(fscal,dx00);
242             ty               = _mm256_mul_pd(fscal,dy00);
243             tz               = _mm256_mul_pd(fscal,dz00);
244
245             /* Update vectorial force */
246             fix0             = _mm256_add_pd(fix0,tx);
247             fiy0             = _mm256_add_pd(fiy0,ty);
248             fiz0             = _mm256_add_pd(fiz0,tz);
249
250             fjptrA             = f+j_coord_offsetA;
251             fjptrB             = f+j_coord_offsetB;
252             fjptrC             = f+j_coord_offsetC;
253             fjptrD             = f+j_coord_offsetD;
254             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
255
256             /* Inner loop uses 57 flops */
257         }
258
259         if(jidx<j_index_end)
260         {
261
262             /* Get j neighbor index, and coordinate index */
263             jnrlistA         = jjnr[jidx];
264             jnrlistB         = jjnr[jidx+1];
265             jnrlistC         = jjnr[jidx+2];
266             jnrlistD         = jjnr[jidx+3];
267             /* Sign of each element will be negative for non-real atoms.
268              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
269              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
270              */
271             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
272
273             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
274             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
275             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
276
277             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
278             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
279             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
280             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
281             j_coord_offsetA  = DIM*jnrA;
282             j_coord_offsetB  = DIM*jnrB;
283             j_coord_offsetC  = DIM*jnrC;
284             j_coord_offsetD  = DIM*jnrD;
285
286             /* load j atom coordinates */
287             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
288                                                  x+j_coord_offsetC,x+j_coord_offsetD,
289                                                  &jx0,&jy0,&jz0);
290
291             /* Calculate displacement vector */
292             dx00             = _mm256_sub_pd(ix0,jx0);
293             dy00             = _mm256_sub_pd(iy0,jy0);
294             dz00             = _mm256_sub_pd(iz0,jz0);
295
296             /* Calculate squared distance and things based on it */
297             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
298
299             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
300
301             /* Load parameters for j particles */
302             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
303                                                                  charge+jnrC+0,charge+jnrD+0);
304             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
305                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             r00              = _mm256_mul_pd(rsq00,rinv00);
312             r00              = _mm256_andnot_pd(dummy_mask,r00);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq00             = _mm256_mul_pd(iq0,jq0);
316
317             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
318             isaprod          = _mm256_mul_pd(isai0,isaj0);
319             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
320             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
321
322             /* Calculate generalized born table index - this is a separate table from the normal one,
323              * but we use the same procedure by multiplying r with scale and truncating to integer.
324              */
325             rt               = _mm256_mul_pd(r00,gbscale);
326             gbitab           = _mm256_cvttpd_epi32(rt);
327             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
328             gbitab           = _mm_slli_epi32(gbitab,2);
329             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
330             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
331             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
332             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
333             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
334             Heps             = _mm256_mul_pd(gbeps,H);
335             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
336             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
337             vgb              = _mm256_mul_pd(gbqqfactor,VV);
338
339             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
340             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
341             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
342             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
343             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
344             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
345             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
346             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
347             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
348             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
349                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
350             velec            = _mm256_mul_pd(qq00,rinv00);
351             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
352
353             /* Update potential sum for this i atom from the interaction with this j atom. */
354             velec            = _mm256_andnot_pd(dummy_mask,velec);
355             velecsum         = _mm256_add_pd(velecsum,velec);
356             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
357             vgbsum           = _mm256_add_pd(vgbsum,vgb);
358
359             fscal            = felec;
360
361             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
362
363             /* Calculate temporary vectorial force */
364             tx               = _mm256_mul_pd(fscal,dx00);
365             ty               = _mm256_mul_pd(fscal,dy00);
366             tz               = _mm256_mul_pd(fscal,dz00);
367
368             /* Update vectorial force */
369             fix0             = _mm256_add_pd(fix0,tx);
370             fiy0             = _mm256_add_pd(fiy0,ty);
371             fiz0             = _mm256_add_pd(fiz0,tz);
372
373             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
374             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
375             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
376             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
377             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
378
379             /* Inner loop uses 58 flops */
380         }
381
382         /* End of innermost loop */
383
384         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
385                                                  f+i_coord_offset,fshift+i_shift_offset);
386
387         ggid                        = gid[iidx];
388         /* Update potential energies */
389         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
390         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
391         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
392         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
393
394         /* Increment number of inner iterations */
395         inneriter                  += j_index_end - j_index_start;
396
397         /* Outer loop uses 9 flops */
398     }
399
400     /* Increment number of outer iterations */
401     outeriter        += nri;
402
403     /* Update outer/inner flops */
404
405     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
406 }
407 /*
408  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
409  * Electrostatics interaction: GeneralizedBorn
410  * VdW interaction:            None
411  * Geometry:                   Particle-Particle
412  * Calculate force/pot:        Force
413  */
414 void
415 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
416                     (t_nblist * gmx_restrict                nlist,
417                      rvec * gmx_restrict                    xx,
418                      rvec * gmx_restrict                    ff,
419                      t_forcerec * gmx_restrict              fr,
420                      t_mdatoms * gmx_restrict               mdatoms,
421                      nb_kernel_data_t * gmx_restrict        kernel_data,
422                      t_nrnb * gmx_restrict                  nrnb)
423 {
424     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
425      * just 0 for non-waters.
426      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
427      * jnr indices corresponding to data put in the four positions in the SIMD register.
428      */
429     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
430     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
431     int              jnrA,jnrB,jnrC,jnrD;
432     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
433     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
434     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
435     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
436     real             rcutoff_scalar;
437     real             *shiftvec,*fshift,*x,*f;
438     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
439     real             scratch[4*DIM];
440     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
441     real *           vdwioffsetptr0;
442     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
443     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
444     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
445     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
446     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
447     real             *charge;
448     __m128i          gbitab;
449     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
450     __m256d          minushalf = _mm256_set1_pd(-0.5);
451     real             *invsqrta,*dvda,*gbtab;
452     __m128i          vfitab;
453     __m128i          ifour       = _mm_set1_epi32(4);
454     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
455     real             *vftab;
456     __m256d          dummy_mask,cutoff_mask;
457     __m128           tmpmask0,tmpmask1;
458     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
459     __m256d          one     = _mm256_set1_pd(1.0);
460     __m256d          two     = _mm256_set1_pd(2.0);
461     x                = xx[0];
462     f                = ff[0];
463
464     nri              = nlist->nri;
465     iinr             = nlist->iinr;
466     jindex           = nlist->jindex;
467     jjnr             = nlist->jjnr;
468     shiftidx         = nlist->shift;
469     gid              = nlist->gid;
470     shiftvec         = fr->shift_vec[0];
471     fshift           = fr->fshift[0];
472     facel            = _mm256_set1_pd(fr->epsfac);
473     charge           = mdatoms->chargeA;
474
475     invsqrta         = fr->invsqrta;
476     dvda             = fr->dvda;
477     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
478     gbtab            = fr->gbtab.data;
479     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
480
481     /* Avoid stupid compiler warnings */
482     jnrA = jnrB = jnrC = jnrD = 0;
483     j_coord_offsetA = 0;
484     j_coord_offsetB = 0;
485     j_coord_offsetC = 0;
486     j_coord_offsetD = 0;
487
488     outeriter        = 0;
489     inneriter        = 0;
490
491     for(iidx=0;iidx<4*DIM;iidx++)
492     {
493         scratch[iidx] = 0.0;
494     }
495
496     /* Start outer loop over neighborlists */
497     for(iidx=0; iidx<nri; iidx++)
498     {
499         /* Load shift vector for this list */
500         i_shift_offset   = DIM*shiftidx[iidx];
501
502         /* Load limits for loop over neighbors */
503         j_index_start    = jindex[iidx];
504         j_index_end      = jindex[iidx+1];
505
506         /* Get outer coordinate index */
507         inr              = iinr[iidx];
508         i_coord_offset   = DIM*inr;
509
510         /* Load i particle coords and add shift vector */
511         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
512
513         fix0             = _mm256_setzero_pd();
514         fiy0             = _mm256_setzero_pd();
515         fiz0             = _mm256_setzero_pd();
516
517         /* Load parameters for i particles */
518         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
519         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
520
521         dvdasum          = _mm256_setzero_pd();
522
523         /* Start inner kernel loop */
524         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
525         {
526
527             /* Get j neighbor index, and coordinate index */
528             jnrA             = jjnr[jidx];
529             jnrB             = jjnr[jidx+1];
530             jnrC             = jjnr[jidx+2];
531             jnrD             = jjnr[jidx+3];
532             j_coord_offsetA  = DIM*jnrA;
533             j_coord_offsetB  = DIM*jnrB;
534             j_coord_offsetC  = DIM*jnrC;
535             j_coord_offsetD  = DIM*jnrD;
536
537             /* load j atom coordinates */
538             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
539                                                  x+j_coord_offsetC,x+j_coord_offsetD,
540                                                  &jx0,&jy0,&jz0);
541
542             /* Calculate displacement vector */
543             dx00             = _mm256_sub_pd(ix0,jx0);
544             dy00             = _mm256_sub_pd(iy0,jy0);
545             dz00             = _mm256_sub_pd(iz0,jz0);
546
547             /* Calculate squared distance and things based on it */
548             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
549
550             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
551
552             /* Load parameters for j particles */
553             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
554                                                                  charge+jnrC+0,charge+jnrD+0);
555             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
556                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
557
558             /**************************
559              * CALCULATE INTERACTIONS *
560              **************************/
561
562             r00              = _mm256_mul_pd(rsq00,rinv00);
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq00             = _mm256_mul_pd(iq0,jq0);
566
567             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
568             isaprod          = _mm256_mul_pd(isai0,isaj0);
569             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
570             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
571
572             /* Calculate generalized born table index - this is a separate table from the normal one,
573              * but we use the same procedure by multiplying r with scale and truncating to integer.
574              */
575             rt               = _mm256_mul_pd(r00,gbscale);
576             gbitab           = _mm256_cvttpd_epi32(rt);
577             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
578             gbitab           = _mm_slli_epi32(gbitab,2);
579             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
580             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
581             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
582             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
583             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
584             Heps             = _mm256_mul_pd(gbeps,H);
585             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
586             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
587             vgb              = _mm256_mul_pd(gbqqfactor,VV);
588
589             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
590             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
591             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
592             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
593             fjptrA           = dvda+jnrA;
594             fjptrB           = dvda+jnrB;
595             fjptrC           = dvda+jnrC;
596             fjptrD           = dvda+jnrD;
597             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
598                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
599             velec            = _mm256_mul_pd(qq00,rinv00);
600             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
601
602             fscal            = felec;
603
604             /* Calculate temporary vectorial force */
605             tx               = _mm256_mul_pd(fscal,dx00);
606             ty               = _mm256_mul_pd(fscal,dy00);
607             tz               = _mm256_mul_pd(fscal,dz00);
608
609             /* Update vectorial force */
610             fix0             = _mm256_add_pd(fix0,tx);
611             fiy0             = _mm256_add_pd(fiy0,ty);
612             fiz0             = _mm256_add_pd(fiz0,tz);
613
614             fjptrA             = f+j_coord_offsetA;
615             fjptrB             = f+j_coord_offsetB;
616             fjptrC             = f+j_coord_offsetC;
617             fjptrD             = f+j_coord_offsetD;
618             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
619
620             /* Inner loop uses 55 flops */
621         }
622
623         if(jidx<j_index_end)
624         {
625
626             /* Get j neighbor index, and coordinate index */
627             jnrlistA         = jjnr[jidx];
628             jnrlistB         = jjnr[jidx+1];
629             jnrlistC         = jjnr[jidx+2];
630             jnrlistD         = jjnr[jidx+3];
631             /* Sign of each element will be negative for non-real atoms.
632              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
633              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
634              */
635             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
636
637             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
638             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
639             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
640
641             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
642             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
643             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
644             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
645             j_coord_offsetA  = DIM*jnrA;
646             j_coord_offsetB  = DIM*jnrB;
647             j_coord_offsetC  = DIM*jnrC;
648             j_coord_offsetD  = DIM*jnrD;
649
650             /* load j atom coordinates */
651             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
652                                                  x+j_coord_offsetC,x+j_coord_offsetD,
653                                                  &jx0,&jy0,&jz0);
654
655             /* Calculate displacement vector */
656             dx00             = _mm256_sub_pd(ix0,jx0);
657             dy00             = _mm256_sub_pd(iy0,jy0);
658             dz00             = _mm256_sub_pd(iz0,jz0);
659
660             /* Calculate squared distance and things based on it */
661             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
662
663             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
664
665             /* Load parameters for j particles */
666             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
667                                                                  charge+jnrC+0,charge+jnrD+0);
668             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
669                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
670
671             /**************************
672              * CALCULATE INTERACTIONS *
673              **************************/
674
675             r00              = _mm256_mul_pd(rsq00,rinv00);
676             r00              = _mm256_andnot_pd(dummy_mask,r00);
677
678             /* Compute parameters for interactions between i and j atoms */
679             qq00             = _mm256_mul_pd(iq0,jq0);
680
681             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
682             isaprod          = _mm256_mul_pd(isai0,isaj0);
683             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
684             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
685
686             /* Calculate generalized born table index - this is a separate table from the normal one,
687              * but we use the same procedure by multiplying r with scale and truncating to integer.
688              */
689             rt               = _mm256_mul_pd(r00,gbscale);
690             gbitab           = _mm256_cvttpd_epi32(rt);
691             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
692             gbitab           = _mm_slli_epi32(gbitab,2);
693             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
694             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
695             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
696             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
697             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
698             Heps             = _mm256_mul_pd(gbeps,H);
699             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
700             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
701             vgb              = _mm256_mul_pd(gbqqfactor,VV);
702
703             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
704             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
705             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
706             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
707             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
708             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
709             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
710             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
711             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
712             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
713                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
714             velec            = _mm256_mul_pd(qq00,rinv00);
715             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
716
717             fscal            = felec;
718
719             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
720
721             /* Calculate temporary vectorial force */
722             tx               = _mm256_mul_pd(fscal,dx00);
723             ty               = _mm256_mul_pd(fscal,dy00);
724             tz               = _mm256_mul_pd(fscal,dz00);
725
726             /* Update vectorial force */
727             fix0             = _mm256_add_pd(fix0,tx);
728             fiy0             = _mm256_add_pd(fiy0,ty);
729             fiz0             = _mm256_add_pd(fiz0,tz);
730
731             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
732             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
733             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
734             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
735             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
736
737             /* Inner loop uses 56 flops */
738         }
739
740         /* End of innermost loop */
741
742         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
743                                                  f+i_coord_offset,fshift+i_shift_offset);
744
745         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
746         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
747
748         /* Increment number of inner iterations */
749         inneriter                  += j_index_end - j_index_start;
750
751         /* Outer loop uses 7 flops */
752     }
753
754     /* Increment number of outer iterations */
755     outeriter        += nri;
756
757     /* Update outer/inner flops */
758
759     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
760 }