made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          gbitab;
78     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
79     __m256d          minushalf = _mm256_set1_pd(-0.5);
80     real             *invsqrta,*dvda,*gbtab;
81     int              nvdwtype;
82     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
83     int              *vdwtype;
84     real             *vdwparam;
85     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
86     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
87     __m128i          vfitab;
88     __m128i          ifour       = _mm_set1_epi32(4);
89     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
90     real             *vftab;
91     __m256d          dummy_mask,cutoff_mask;
92     __m128           tmpmask0,tmpmask1;
93     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
94     __m256d          one     = _mm256_set1_pd(1.0);
95     __m256d          two     = _mm256_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     invsqrta         = fr->invsqrta;
114     dvda             = fr->dvda;
115     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
116     gbtab            = fr->gbtab.data;
117     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
118
119     /* Avoid stupid compiler warnings */
120     jnrA = jnrB = jnrC = jnrD = 0;
121     j_coord_offsetA = 0;
122     j_coord_offsetB = 0;
123     j_coord_offsetC = 0;
124     j_coord_offsetD = 0;
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     for(iidx=0;iidx<4*DIM;iidx++)
130     {
131         scratch[iidx] = 0.0;
132     }
133
134     /* Start outer loop over neighborlists */
135     for(iidx=0; iidx<nri; iidx++)
136     {
137         /* Load shift vector for this list */
138         i_shift_offset   = DIM*shiftidx[iidx];
139
140         /* Load limits for loop over neighbors */
141         j_index_start    = jindex[iidx];
142         j_index_end      = jindex[iidx+1];
143
144         /* Get outer coordinate index */
145         inr              = iinr[iidx];
146         i_coord_offset   = DIM*inr;
147
148         /* Load i particle coords and add shift vector */
149         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
150
151         fix0             = _mm256_setzero_pd();
152         fiy0             = _mm256_setzero_pd();
153         fiz0             = _mm256_setzero_pd();
154
155         /* Load parameters for i particles */
156         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
157         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
158         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
159
160         /* Reset potential sums */
161         velecsum         = _mm256_setzero_pd();
162         vgbsum           = _mm256_setzero_pd();
163         vvdwsum          = _mm256_setzero_pd();
164         dvdasum          = _mm256_setzero_pd();
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168         {
169
170             /* Get j neighbor index, and coordinate index */
171             jnrA             = jjnr[jidx];
172             jnrB             = jjnr[jidx+1];
173             jnrC             = jjnr[jidx+2];
174             jnrD             = jjnr[jidx+3];
175             j_coord_offsetA  = DIM*jnrA;
176             j_coord_offsetB  = DIM*jnrB;
177             j_coord_offsetC  = DIM*jnrC;
178             j_coord_offsetD  = DIM*jnrD;
179
180             /* load j atom coordinates */
181             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
182                                                  x+j_coord_offsetC,x+j_coord_offsetD,
183                                                  &jx0,&jy0,&jz0);
184
185             /* Calculate displacement vector */
186             dx00             = _mm256_sub_pd(ix0,jx0);
187             dy00             = _mm256_sub_pd(iy0,jy0);
188             dz00             = _mm256_sub_pd(iz0,jz0);
189
190             /* Calculate squared distance and things based on it */
191             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
192
193             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
194
195             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
196
197             /* Load parameters for j particles */
198             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
199                                                                  charge+jnrC+0,charge+jnrD+0);
200             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
201                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
202             vdwjidx0A        = 2*vdwtype[jnrA+0];
203             vdwjidx0B        = 2*vdwtype[jnrB+0];
204             vdwjidx0C        = 2*vdwtype[jnrC+0];
205             vdwjidx0D        = 2*vdwtype[jnrD+0];
206
207             /**************************
208              * CALCULATE INTERACTIONS *
209              **************************/
210
211             r00              = _mm256_mul_pd(rsq00,rinv00);
212
213             /* Compute parameters for interactions between i and j atoms */
214             qq00             = _mm256_mul_pd(iq0,jq0);
215             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
216                                             vdwioffsetptr0+vdwjidx0B,
217                                             vdwioffsetptr0+vdwjidx0C,
218                                             vdwioffsetptr0+vdwjidx0D,
219                                             &c6_00,&c12_00);
220
221             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
222             isaprod          = _mm256_mul_pd(isai0,isaj0);
223             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
224             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
225
226             /* Calculate generalized born table index - this is a separate table from the normal one,
227              * but we use the same procedure by multiplying r with scale and truncating to integer.
228              */
229             rt               = _mm256_mul_pd(r00,gbscale);
230             gbitab           = _mm256_cvttpd_epi32(rt);
231             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
232             gbitab           = _mm_slli_epi32(gbitab,2);
233             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
234             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
235             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
236             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
237             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
238             Heps             = _mm256_mul_pd(gbeps,H);
239             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
240             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
241             vgb              = _mm256_mul_pd(gbqqfactor,VV);
242
243             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
244             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
245             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
246             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
247             fjptrA           = dvda+jnrA;
248             fjptrB           = dvda+jnrB;
249             fjptrC           = dvda+jnrC;
250             fjptrD           = dvda+jnrD;
251             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
252                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
253             velec            = _mm256_mul_pd(qq00,rinv00);
254             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
255
256             /* LENNARD-JONES DISPERSION/REPULSION */
257
258             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
259             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
260             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
261             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
262             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
263
264             /* Update potential sum for this i atom from the interaction with this j atom. */
265             velecsum         = _mm256_add_pd(velecsum,velec);
266             vgbsum           = _mm256_add_pd(vgbsum,vgb);
267             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
268
269             fscal            = _mm256_add_pd(felec,fvdw);
270
271             /* Calculate temporary vectorial force */
272             tx               = _mm256_mul_pd(fscal,dx00);
273             ty               = _mm256_mul_pd(fscal,dy00);
274             tz               = _mm256_mul_pd(fscal,dz00);
275
276             /* Update vectorial force */
277             fix0             = _mm256_add_pd(fix0,tx);
278             fiy0             = _mm256_add_pd(fiy0,ty);
279             fiz0             = _mm256_add_pd(fiz0,tz);
280
281             fjptrA             = f+j_coord_offsetA;
282             fjptrB             = f+j_coord_offsetB;
283             fjptrC             = f+j_coord_offsetC;
284             fjptrD             = f+j_coord_offsetD;
285             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
286
287             /* Inner loop uses 70 flops */
288         }
289
290         if(jidx<j_index_end)
291         {
292
293             /* Get j neighbor index, and coordinate index */
294             jnrlistA         = jjnr[jidx];
295             jnrlistB         = jjnr[jidx+1];
296             jnrlistC         = jjnr[jidx+2];
297             jnrlistD         = jjnr[jidx+3];
298             /* Sign of each element will be negative for non-real atoms.
299              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
300              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
301              */
302             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
303
304             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
305             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
306             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
307
308             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
309             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
310             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
311             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
312             j_coord_offsetA  = DIM*jnrA;
313             j_coord_offsetB  = DIM*jnrB;
314             j_coord_offsetC  = DIM*jnrC;
315             j_coord_offsetD  = DIM*jnrD;
316
317             /* load j atom coordinates */
318             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
319                                                  x+j_coord_offsetC,x+j_coord_offsetD,
320                                                  &jx0,&jy0,&jz0);
321
322             /* Calculate displacement vector */
323             dx00             = _mm256_sub_pd(ix0,jx0);
324             dy00             = _mm256_sub_pd(iy0,jy0);
325             dz00             = _mm256_sub_pd(iz0,jz0);
326
327             /* Calculate squared distance and things based on it */
328             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
329
330             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
331
332             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
333
334             /* Load parameters for j particles */
335             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
336                                                                  charge+jnrC+0,charge+jnrD+0);
337             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
338                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
339             vdwjidx0A        = 2*vdwtype[jnrA+0];
340             vdwjidx0B        = 2*vdwtype[jnrB+0];
341             vdwjidx0C        = 2*vdwtype[jnrC+0];
342             vdwjidx0D        = 2*vdwtype[jnrD+0];
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r00              = _mm256_mul_pd(rsq00,rinv00);
349             r00              = _mm256_andnot_pd(dummy_mask,r00);
350
351             /* Compute parameters for interactions between i and j atoms */
352             qq00             = _mm256_mul_pd(iq0,jq0);
353             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
354                                             vdwioffsetptr0+vdwjidx0B,
355                                             vdwioffsetptr0+vdwjidx0C,
356                                             vdwioffsetptr0+vdwjidx0D,
357                                             &c6_00,&c12_00);
358
359             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
360             isaprod          = _mm256_mul_pd(isai0,isaj0);
361             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
362             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
363
364             /* Calculate generalized born table index - this is a separate table from the normal one,
365              * but we use the same procedure by multiplying r with scale and truncating to integer.
366              */
367             rt               = _mm256_mul_pd(r00,gbscale);
368             gbitab           = _mm256_cvttpd_epi32(rt);
369             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
370             gbitab           = _mm_slli_epi32(gbitab,2);
371             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
372             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
373             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
374             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
375             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
376             Heps             = _mm256_mul_pd(gbeps,H);
377             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
378             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
379             vgb              = _mm256_mul_pd(gbqqfactor,VV);
380
381             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
382             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
383             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
384             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
385             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
386             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
387             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
388             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
389             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
390             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
391                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
392             velec            = _mm256_mul_pd(qq00,rinv00);
393             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
394
395             /* LENNARD-JONES DISPERSION/REPULSION */
396
397             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
398             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
399             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
400             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
401             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
402
403             /* Update potential sum for this i atom from the interaction with this j atom. */
404             velec            = _mm256_andnot_pd(dummy_mask,velec);
405             velecsum         = _mm256_add_pd(velecsum,velec);
406             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
407             vgbsum           = _mm256_add_pd(vgbsum,vgb);
408             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
409             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
410
411             fscal            = _mm256_add_pd(felec,fvdw);
412
413             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
414
415             /* Calculate temporary vectorial force */
416             tx               = _mm256_mul_pd(fscal,dx00);
417             ty               = _mm256_mul_pd(fscal,dy00);
418             tz               = _mm256_mul_pd(fscal,dz00);
419
420             /* Update vectorial force */
421             fix0             = _mm256_add_pd(fix0,tx);
422             fiy0             = _mm256_add_pd(fiy0,ty);
423             fiz0             = _mm256_add_pd(fiz0,tz);
424
425             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
426             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
427             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
428             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
429             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
430
431             /* Inner loop uses 71 flops */
432         }
433
434         /* End of innermost loop */
435
436         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
437                                                  f+i_coord_offset,fshift+i_shift_offset);
438
439         ggid                        = gid[iidx];
440         /* Update potential energies */
441         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
442         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
443         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
444         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
445         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
446
447         /* Increment number of inner iterations */
448         inneriter                  += j_index_end - j_index_start;
449
450         /* Outer loop uses 10 flops */
451     }
452
453     /* Increment number of outer iterations */
454     outeriter        += nri;
455
456     /* Update outer/inner flops */
457
458     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
459 }
460 /*
461  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
462  * Electrostatics interaction: GeneralizedBorn
463  * VdW interaction:            LennardJones
464  * Geometry:                   Particle-Particle
465  * Calculate force/pot:        Force
466  */
467 void
468 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
469                     (t_nblist * gmx_restrict                nlist,
470                      rvec * gmx_restrict                    xx,
471                      rvec * gmx_restrict                    ff,
472                      t_forcerec * gmx_restrict              fr,
473                      t_mdatoms * gmx_restrict               mdatoms,
474                      nb_kernel_data_t * gmx_restrict        kernel_data,
475                      t_nrnb * gmx_restrict                  nrnb)
476 {
477     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
478      * just 0 for non-waters.
479      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
480      * jnr indices corresponding to data put in the four positions in the SIMD register.
481      */
482     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
483     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
484     int              jnrA,jnrB,jnrC,jnrD;
485     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
486     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
487     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
488     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
489     real             rcutoff_scalar;
490     real             *shiftvec,*fshift,*x,*f;
491     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
492     real             scratch[4*DIM];
493     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
494     real *           vdwioffsetptr0;
495     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
496     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
497     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
498     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
499     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
500     real             *charge;
501     __m128i          gbitab;
502     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
503     __m256d          minushalf = _mm256_set1_pd(-0.5);
504     real             *invsqrta,*dvda,*gbtab;
505     int              nvdwtype;
506     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
507     int              *vdwtype;
508     real             *vdwparam;
509     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
510     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
511     __m128i          vfitab;
512     __m128i          ifour       = _mm_set1_epi32(4);
513     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
514     real             *vftab;
515     __m256d          dummy_mask,cutoff_mask;
516     __m128           tmpmask0,tmpmask1;
517     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
518     __m256d          one     = _mm256_set1_pd(1.0);
519     __m256d          two     = _mm256_set1_pd(2.0);
520     x                = xx[0];
521     f                = ff[0];
522
523     nri              = nlist->nri;
524     iinr             = nlist->iinr;
525     jindex           = nlist->jindex;
526     jjnr             = nlist->jjnr;
527     shiftidx         = nlist->shift;
528     gid              = nlist->gid;
529     shiftvec         = fr->shift_vec[0];
530     fshift           = fr->fshift[0];
531     facel            = _mm256_set1_pd(fr->epsfac);
532     charge           = mdatoms->chargeA;
533     nvdwtype         = fr->ntype;
534     vdwparam         = fr->nbfp;
535     vdwtype          = mdatoms->typeA;
536
537     invsqrta         = fr->invsqrta;
538     dvda             = fr->dvda;
539     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
540     gbtab            = fr->gbtab.data;
541     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
542
543     /* Avoid stupid compiler warnings */
544     jnrA = jnrB = jnrC = jnrD = 0;
545     j_coord_offsetA = 0;
546     j_coord_offsetB = 0;
547     j_coord_offsetC = 0;
548     j_coord_offsetD = 0;
549
550     outeriter        = 0;
551     inneriter        = 0;
552
553     for(iidx=0;iidx<4*DIM;iidx++)
554     {
555         scratch[iidx] = 0.0;
556     }
557
558     /* Start outer loop over neighborlists */
559     for(iidx=0; iidx<nri; iidx++)
560     {
561         /* Load shift vector for this list */
562         i_shift_offset   = DIM*shiftidx[iidx];
563
564         /* Load limits for loop over neighbors */
565         j_index_start    = jindex[iidx];
566         j_index_end      = jindex[iidx+1];
567
568         /* Get outer coordinate index */
569         inr              = iinr[iidx];
570         i_coord_offset   = DIM*inr;
571
572         /* Load i particle coords and add shift vector */
573         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
574
575         fix0             = _mm256_setzero_pd();
576         fiy0             = _mm256_setzero_pd();
577         fiz0             = _mm256_setzero_pd();
578
579         /* Load parameters for i particles */
580         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
581         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
582         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
583
584         dvdasum          = _mm256_setzero_pd();
585
586         /* Start inner kernel loop */
587         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
588         {
589
590             /* Get j neighbor index, and coordinate index */
591             jnrA             = jjnr[jidx];
592             jnrB             = jjnr[jidx+1];
593             jnrC             = jjnr[jidx+2];
594             jnrD             = jjnr[jidx+3];
595             j_coord_offsetA  = DIM*jnrA;
596             j_coord_offsetB  = DIM*jnrB;
597             j_coord_offsetC  = DIM*jnrC;
598             j_coord_offsetD  = DIM*jnrD;
599
600             /* load j atom coordinates */
601             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
602                                                  x+j_coord_offsetC,x+j_coord_offsetD,
603                                                  &jx0,&jy0,&jz0);
604
605             /* Calculate displacement vector */
606             dx00             = _mm256_sub_pd(ix0,jx0);
607             dy00             = _mm256_sub_pd(iy0,jy0);
608             dz00             = _mm256_sub_pd(iz0,jz0);
609
610             /* Calculate squared distance and things based on it */
611             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
612
613             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
614
615             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
616
617             /* Load parameters for j particles */
618             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
619                                                                  charge+jnrC+0,charge+jnrD+0);
620             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
621                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
622             vdwjidx0A        = 2*vdwtype[jnrA+0];
623             vdwjidx0B        = 2*vdwtype[jnrB+0];
624             vdwjidx0C        = 2*vdwtype[jnrC+0];
625             vdwjidx0D        = 2*vdwtype[jnrD+0];
626
627             /**************************
628              * CALCULATE INTERACTIONS *
629              **************************/
630
631             r00              = _mm256_mul_pd(rsq00,rinv00);
632
633             /* Compute parameters for interactions between i and j atoms */
634             qq00             = _mm256_mul_pd(iq0,jq0);
635             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
636                                             vdwioffsetptr0+vdwjidx0B,
637                                             vdwioffsetptr0+vdwjidx0C,
638                                             vdwioffsetptr0+vdwjidx0D,
639                                             &c6_00,&c12_00);
640
641             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
642             isaprod          = _mm256_mul_pd(isai0,isaj0);
643             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
644             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
645
646             /* Calculate generalized born table index - this is a separate table from the normal one,
647              * but we use the same procedure by multiplying r with scale and truncating to integer.
648              */
649             rt               = _mm256_mul_pd(r00,gbscale);
650             gbitab           = _mm256_cvttpd_epi32(rt);
651             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
652             gbitab           = _mm_slli_epi32(gbitab,2);
653             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
654             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
655             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
656             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
657             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
658             Heps             = _mm256_mul_pd(gbeps,H);
659             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
660             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
661             vgb              = _mm256_mul_pd(gbqqfactor,VV);
662
663             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
664             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
665             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
666             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
667             fjptrA           = dvda+jnrA;
668             fjptrB           = dvda+jnrB;
669             fjptrC           = dvda+jnrC;
670             fjptrD           = dvda+jnrD;
671             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
672                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
673             velec            = _mm256_mul_pd(qq00,rinv00);
674             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
675
676             /* LENNARD-JONES DISPERSION/REPULSION */
677
678             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
679             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
680
681             fscal            = _mm256_add_pd(felec,fvdw);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm256_mul_pd(fscal,dx00);
685             ty               = _mm256_mul_pd(fscal,dy00);
686             tz               = _mm256_mul_pd(fscal,dz00);
687
688             /* Update vectorial force */
689             fix0             = _mm256_add_pd(fix0,tx);
690             fiy0             = _mm256_add_pd(fiy0,ty);
691             fiz0             = _mm256_add_pd(fiz0,tz);
692
693             fjptrA             = f+j_coord_offsetA;
694             fjptrB             = f+j_coord_offsetB;
695             fjptrC             = f+j_coord_offsetC;
696             fjptrD             = f+j_coord_offsetD;
697             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
698
699             /* Inner loop uses 63 flops */
700         }
701
702         if(jidx<j_index_end)
703         {
704
705             /* Get j neighbor index, and coordinate index */
706             jnrlistA         = jjnr[jidx];
707             jnrlistB         = jjnr[jidx+1];
708             jnrlistC         = jjnr[jidx+2];
709             jnrlistD         = jjnr[jidx+3];
710             /* Sign of each element will be negative for non-real atoms.
711              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
712              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
713              */
714             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
715
716             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
717             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
718             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
719
720             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
721             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
722             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
723             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
724             j_coord_offsetA  = DIM*jnrA;
725             j_coord_offsetB  = DIM*jnrB;
726             j_coord_offsetC  = DIM*jnrC;
727             j_coord_offsetD  = DIM*jnrD;
728
729             /* load j atom coordinates */
730             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
731                                                  x+j_coord_offsetC,x+j_coord_offsetD,
732                                                  &jx0,&jy0,&jz0);
733
734             /* Calculate displacement vector */
735             dx00             = _mm256_sub_pd(ix0,jx0);
736             dy00             = _mm256_sub_pd(iy0,jy0);
737             dz00             = _mm256_sub_pd(iz0,jz0);
738
739             /* Calculate squared distance and things based on it */
740             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
741
742             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
743
744             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
745
746             /* Load parameters for j particles */
747             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
748                                                                  charge+jnrC+0,charge+jnrD+0);
749             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
750                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
751             vdwjidx0A        = 2*vdwtype[jnrA+0];
752             vdwjidx0B        = 2*vdwtype[jnrB+0];
753             vdwjidx0C        = 2*vdwtype[jnrC+0];
754             vdwjidx0D        = 2*vdwtype[jnrD+0];
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             r00              = _mm256_mul_pd(rsq00,rinv00);
761             r00              = _mm256_andnot_pd(dummy_mask,r00);
762
763             /* Compute parameters for interactions between i and j atoms */
764             qq00             = _mm256_mul_pd(iq0,jq0);
765             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
766                                             vdwioffsetptr0+vdwjidx0B,
767                                             vdwioffsetptr0+vdwjidx0C,
768                                             vdwioffsetptr0+vdwjidx0D,
769                                             &c6_00,&c12_00);
770
771             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
772             isaprod          = _mm256_mul_pd(isai0,isaj0);
773             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
774             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
775
776             /* Calculate generalized born table index - this is a separate table from the normal one,
777              * but we use the same procedure by multiplying r with scale and truncating to integer.
778              */
779             rt               = _mm256_mul_pd(r00,gbscale);
780             gbitab           = _mm256_cvttpd_epi32(rt);
781             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
782             gbitab           = _mm_slli_epi32(gbitab,2);
783             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
784             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
785             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
786             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
787             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
788             Heps             = _mm256_mul_pd(gbeps,H);
789             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
790             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
791             vgb              = _mm256_mul_pd(gbqqfactor,VV);
792
793             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
794             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
795             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
796             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
797             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
798             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
799             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
800             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
801             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
802             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
803                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
804             velec            = _mm256_mul_pd(qq00,rinv00);
805             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
806
807             /* LENNARD-JONES DISPERSION/REPULSION */
808
809             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
810             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
811
812             fscal            = _mm256_add_pd(felec,fvdw);
813
814             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
815
816             /* Calculate temporary vectorial force */
817             tx               = _mm256_mul_pd(fscal,dx00);
818             ty               = _mm256_mul_pd(fscal,dy00);
819             tz               = _mm256_mul_pd(fscal,dz00);
820
821             /* Update vectorial force */
822             fix0             = _mm256_add_pd(fix0,tx);
823             fiy0             = _mm256_add_pd(fiy0,ty);
824             fiz0             = _mm256_add_pd(fiz0,tz);
825
826             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
827             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
828             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
829             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
830             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
831
832             /* Inner loop uses 64 flops */
833         }
834
835         /* End of innermost loop */
836
837         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
838                                                  f+i_coord_offset,fshift+i_shift_offset);
839
840         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
841         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
842
843         /* Increment number of inner iterations */
844         inneriter                  += j_index_end - j_index_start;
845
846         /* Outer loop uses 7 flops */
847     }
848
849     /* Increment number of outer iterations */
850     outeriter        += nri;
851
852     /* Update outer/inner flops */
853
854     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
855 }