Update copyright statements and change license to LGPL
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            LennardJones
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_avx_256_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          gbitab;
94     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
95     __m256d          minushalf = _mm256_set1_pd(-0.5);
96     real             *invsqrta,*dvda,*gbtab;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     invsqrta         = fr->invsqrta;
130     dvda             = fr->dvda;
131     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
132     gbtab            = fr->gbtab.data;
133     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
134
135     /* Avoid stupid compiler warnings */
136     jnrA = jnrB = jnrC = jnrD = 0;
137     j_coord_offsetA = 0;
138     j_coord_offsetB = 0;
139     j_coord_offsetC = 0;
140     j_coord_offsetD = 0;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     for(iidx=0;iidx<4*DIM;iidx++)
146     {
147         scratch[iidx] = 0.0;
148     }
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155
156         /* Load limits for loop over neighbors */
157         j_index_start    = jindex[iidx];
158         j_index_end      = jindex[iidx+1];
159
160         /* Get outer coordinate index */
161         inr              = iinr[iidx];
162         i_coord_offset   = DIM*inr;
163
164         /* Load i particle coords and add shift vector */
165         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
166
167         fix0             = _mm256_setzero_pd();
168         fiy0             = _mm256_setzero_pd();
169         fiz0             = _mm256_setzero_pd();
170
171         /* Load parameters for i particles */
172         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
173         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
174         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
175
176         /* Reset potential sums */
177         velecsum         = _mm256_setzero_pd();
178         vgbsum           = _mm256_setzero_pd();
179         vvdwsum          = _mm256_setzero_pd();
180         dvdasum          = _mm256_setzero_pd();
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184         {
185
186             /* Get j neighbor index, and coordinate index */
187             jnrA             = jjnr[jidx];
188             jnrB             = jjnr[jidx+1];
189             jnrC             = jjnr[jidx+2];
190             jnrD             = jjnr[jidx+3];
191             j_coord_offsetA  = DIM*jnrA;
192             j_coord_offsetB  = DIM*jnrB;
193             j_coord_offsetC  = DIM*jnrC;
194             j_coord_offsetD  = DIM*jnrD;
195
196             /* load j atom coordinates */
197             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
198                                                  x+j_coord_offsetC,x+j_coord_offsetD,
199                                                  &jx0,&jy0,&jz0);
200
201             /* Calculate displacement vector */
202             dx00             = _mm256_sub_pd(ix0,jx0);
203             dy00             = _mm256_sub_pd(iy0,jy0);
204             dz00             = _mm256_sub_pd(iz0,jz0);
205
206             /* Calculate squared distance and things based on it */
207             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
208
209             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
210
211             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
215                                                                  charge+jnrC+0,charge+jnrD+0);
216             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
217                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220             vdwjidx0C        = 2*vdwtype[jnrC+0];
221             vdwjidx0D        = 2*vdwtype[jnrD+0];
222
223             /**************************
224              * CALCULATE INTERACTIONS *
225              **************************/
226
227             r00              = _mm256_mul_pd(rsq00,rinv00);
228
229             /* Compute parameters for interactions between i and j atoms */
230             qq00             = _mm256_mul_pd(iq0,jq0);
231             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
232                                             vdwioffsetptr0+vdwjidx0B,
233                                             vdwioffsetptr0+vdwjidx0C,
234                                             vdwioffsetptr0+vdwjidx0D,
235                                             &c6_00,&c12_00);
236
237             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
238             isaprod          = _mm256_mul_pd(isai0,isaj0);
239             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
240             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
241
242             /* Calculate generalized born table index - this is a separate table from the normal one,
243              * but we use the same procedure by multiplying r with scale and truncating to integer.
244              */
245             rt               = _mm256_mul_pd(r00,gbscale);
246             gbitab           = _mm256_cvttpd_epi32(rt);
247             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
248             gbitab           = _mm_slli_epi32(gbitab,2);
249             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
250             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
251             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
252             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
253             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
254             Heps             = _mm256_mul_pd(gbeps,H);
255             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
256             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
257             vgb              = _mm256_mul_pd(gbqqfactor,VV);
258
259             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
260             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
261             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
262             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
263             fjptrA           = dvda+jnrA;
264             fjptrB           = dvda+jnrB;
265             fjptrC           = dvda+jnrC;
266             fjptrD           = dvda+jnrD;
267             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
268                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
269             velec            = _mm256_mul_pd(qq00,rinv00);
270             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
271
272             /* LENNARD-JONES DISPERSION/REPULSION */
273
274             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
275             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
276             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
277             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
278             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm256_add_pd(velecsum,velec);
282             vgbsum           = _mm256_add_pd(vgbsum,vgb);
283             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
284
285             fscal            = _mm256_add_pd(felec,fvdw);
286
287             /* Calculate temporary vectorial force */
288             tx               = _mm256_mul_pd(fscal,dx00);
289             ty               = _mm256_mul_pd(fscal,dy00);
290             tz               = _mm256_mul_pd(fscal,dz00);
291
292             /* Update vectorial force */
293             fix0             = _mm256_add_pd(fix0,tx);
294             fiy0             = _mm256_add_pd(fiy0,ty);
295             fiz0             = _mm256_add_pd(fiz0,tz);
296
297             fjptrA             = f+j_coord_offsetA;
298             fjptrB             = f+j_coord_offsetB;
299             fjptrC             = f+j_coord_offsetC;
300             fjptrD             = f+j_coord_offsetD;
301             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
302
303             /* Inner loop uses 70 flops */
304         }
305
306         if(jidx<j_index_end)
307         {
308
309             /* Get j neighbor index, and coordinate index */
310             jnrlistA         = jjnr[jidx];
311             jnrlistB         = jjnr[jidx+1];
312             jnrlistC         = jjnr[jidx+2];
313             jnrlistD         = jjnr[jidx+3];
314             /* Sign of each element will be negative for non-real atoms.
315              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
317              */
318             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319
320             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
321             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
322             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
323
324             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
325             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
326             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
327             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
328             j_coord_offsetA  = DIM*jnrA;
329             j_coord_offsetB  = DIM*jnrB;
330             j_coord_offsetC  = DIM*jnrC;
331             j_coord_offsetD  = DIM*jnrD;
332
333             /* load j atom coordinates */
334             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
335                                                  x+j_coord_offsetC,x+j_coord_offsetD,
336                                                  &jx0,&jy0,&jz0);
337
338             /* Calculate displacement vector */
339             dx00             = _mm256_sub_pd(ix0,jx0);
340             dy00             = _mm256_sub_pd(iy0,jy0);
341             dz00             = _mm256_sub_pd(iz0,jz0);
342
343             /* Calculate squared distance and things based on it */
344             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
345
346             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
347
348             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
349
350             /* Load parameters for j particles */
351             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
352                                                                  charge+jnrC+0,charge+jnrD+0);
353             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
354                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
355             vdwjidx0A        = 2*vdwtype[jnrA+0];
356             vdwjidx0B        = 2*vdwtype[jnrB+0];
357             vdwjidx0C        = 2*vdwtype[jnrC+0];
358             vdwjidx0D        = 2*vdwtype[jnrD+0];
359
360             /**************************
361              * CALCULATE INTERACTIONS *
362              **************************/
363
364             r00              = _mm256_mul_pd(rsq00,rinv00);
365             r00              = _mm256_andnot_pd(dummy_mask,r00);
366
367             /* Compute parameters for interactions between i and j atoms */
368             qq00             = _mm256_mul_pd(iq0,jq0);
369             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
370                                             vdwioffsetptr0+vdwjidx0B,
371                                             vdwioffsetptr0+vdwjidx0C,
372                                             vdwioffsetptr0+vdwjidx0D,
373                                             &c6_00,&c12_00);
374
375             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
376             isaprod          = _mm256_mul_pd(isai0,isaj0);
377             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
378             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
379
380             /* Calculate generalized born table index - this is a separate table from the normal one,
381              * but we use the same procedure by multiplying r with scale and truncating to integer.
382              */
383             rt               = _mm256_mul_pd(r00,gbscale);
384             gbitab           = _mm256_cvttpd_epi32(rt);
385             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
386             gbitab           = _mm_slli_epi32(gbitab,2);
387             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
388             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
389             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
390             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
391             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
392             Heps             = _mm256_mul_pd(gbeps,H);
393             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
394             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
395             vgb              = _mm256_mul_pd(gbqqfactor,VV);
396
397             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
398             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
399             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
400             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
401             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
402             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
403             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
404             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
405             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
406             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
407                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
408             velec            = _mm256_mul_pd(qq00,rinv00);
409             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
410
411             /* LENNARD-JONES DISPERSION/REPULSION */
412
413             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
414             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
415             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
416             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
417             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
418
419             /* Update potential sum for this i atom from the interaction with this j atom. */
420             velec            = _mm256_andnot_pd(dummy_mask,velec);
421             velecsum         = _mm256_add_pd(velecsum,velec);
422             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
423             vgbsum           = _mm256_add_pd(vgbsum,vgb);
424             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
425             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
426
427             fscal            = _mm256_add_pd(felec,fvdw);
428
429             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
430
431             /* Calculate temporary vectorial force */
432             tx               = _mm256_mul_pd(fscal,dx00);
433             ty               = _mm256_mul_pd(fscal,dy00);
434             tz               = _mm256_mul_pd(fscal,dz00);
435
436             /* Update vectorial force */
437             fix0             = _mm256_add_pd(fix0,tx);
438             fiy0             = _mm256_add_pd(fiy0,ty);
439             fiz0             = _mm256_add_pd(fiz0,tz);
440
441             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
442             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
443             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
444             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
445             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
446
447             /* Inner loop uses 71 flops */
448         }
449
450         /* End of innermost loop */
451
452         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
453                                                  f+i_coord_offset,fshift+i_shift_offset);
454
455         ggid                        = gid[iidx];
456         /* Update potential energies */
457         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
458         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
459         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
460         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
461         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
462
463         /* Increment number of inner iterations */
464         inneriter                  += j_index_end - j_index_start;
465
466         /* Outer loop uses 10 flops */
467     }
468
469     /* Increment number of outer iterations */
470     outeriter        += nri;
471
472     /* Update outer/inner flops */
473
474     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*71);
475 }
476 /*
477  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
478  * Electrostatics interaction: GeneralizedBorn
479  * VdW interaction:            LennardJones
480  * Geometry:                   Particle-Particle
481  * Calculate force/pot:        Force
482  */
483 void
484 nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_avx_256_double
485                     (t_nblist * gmx_restrict                nlist,
486                      rvec * gmx_restrict                    xx,
487                      rvec * gmx_restrict                    ff,
488                      t_forcerec * gmx_restrict              fr,
489                      t_mdatoms * gmx_restrict               mdatoms,
490                      nb_kernel_data_t * gmx_restrict        kernel_data,
491                      t_nrnb * gmx_restrict                  nrnb)
492 {
493     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
494      * just 0 for non-waters.
495      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
496      * jnr indices corresponding to data put in the four positions in the SIMD register.
497      */
498     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
499     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
500     int              jnrA,jnrB,jnrC,jnrD;
501     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
502     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
503     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
504     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
505     real             rcutoff_scalar;
506     real             *shiftvec,*fshift,*x,*f;
507     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
508     real             scratch[4*DIM];
509     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
510     real *           vdwioffsetptr0;
511     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
512     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
513     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
514     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
515     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
516     real             *charge;
517     __m128i          gbitab;
518     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
519     __m256d          minushalf = _mm256_set1_pd(-0.5);
520     real             *invsqrta,*dvda,*gbtab;
521     int              nvdwtype;
522     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
523     int              *vdwtype;
524     real             *vdwparam;
525     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
526     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
527     __m128i          vfitab;
528     __m128i          ifour       = _mm_set1_epi32(4);
529     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
530     real             *vftab;
531     __m256d          dummy_mask,cutoff_mask;
532     __m128           tmpmask0,tmpmask1;
533     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
534     __m256d          one     = _mm256_set1_pd(1.0);
535     __m256d          two     = _mm256_set1_pd(2.0);
536     x                = xx[0];
537     f                = ff[0];
538
539     nri              = nlist->nri;
540     iinr             = nlist->iinr;
541     jindex           = nlist->jindex;
542     jjnr             = nlist->jjnr;
543     shiftidx         = nlist->shift;
544     gid              = nlist->gid;
545     shiftvec         = fr->shift_vec[0];
546     fshift           = fr->fshift[0];
547     facel            = _mm256_set1_pd(fr->epsfac);
548     charge           = mdatoms->chargeA;
549     nvdwtype         = fr->ntype;
550     vdwparam         = fr->nbfp;
551     vdwtype          = mdatoms->typeA;
552
553     invsqrta         = fr->invsqrta;
554     dvda             = fr->dvda;
555     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
556     gbtab            = fr->gbtab.data;
557     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
558
559     /* Avoid stupid compiler warnings */
560     jnrA = jnrB = jnrC = jnrD = 0;
561     j_coord_offsetA = 0;
562     j_coord_offsetB = 0;
563     j_coord_offsetC = 0;
564     j_coord_offsetD = 0;
565
566     outeriter        = 0;
567     inneriter        = 0;
568
569     for(iidx=0;iidx<4*DIM;iidx++)
570     {
571         scratch[iidx] = 0.0;
572     }
573
574     /* Start outer loop over neighborlists */
575     for(iidx=0; iidx<nri; iidx++)
576     {
577         /* Load shift vector for this list */
578         i_shift_offset   = DIM*shiftidx[iidx];
579
580         /* Load limits for loop over neighbors */
581         j_index_start    = jindex[iidx];
582         j_index_end      = jindex[iidx+1];
583
584         /* Get outer coordinate index */
585         inr              = iinr[iidx];
586         i_coord_offset   = DIM*inr;
587
588         /* Load i particle coords and add shift vector */
589         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
590
591         fix0             = _mm256_setzero_pd();
592         fiy0             = _mm256_setzero_pd();
593         fiz0             = _mm256_setzero_pd();
594
595         /* Load parameters for i particles */
596         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
597         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
598         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
599
600         dvdasum          = _mm256_setzero_pd();
601
602         /* Start inner kernel loop */
603         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
604         {
605
606             /* Get j neighbor index, and coordinate index */
607             jnrA             = jjnr[jidx];
608             jnrB             = jjnr[jidx+1];
609             jnrC             = jjnr[jidx+2];
610             jnrD             = jjnr[jidx+3];
611             j_coord_offsetA  = DIM*jnrA;
612             j_coord_offsetB  = DIM*jnrB;
613             j_coord_offsetC  = DIM*jnrC;
614             j_coord_offsetD  = DIM*jnrD;
615
616             /* load j atom coordinates */
617             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
618                                                  x+j_coord_offsetC,x+j_coord_offsetD,
619                                                  &jx0,&jy0,&jz0);
620
621             /* Calculate displacement vector */
622             dx00             = _mm256_sub_pd(ix0,jx0);
623             dy00             = _mm256_sub_pd(iy0,jy0);
624             dz00             = _mm256_sub_pd(iz0,jz0);
625
626             /* Calculate squared distance and things based on it */
627             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
628
629             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
630
631             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
632
633             /* Load parameters for j particles */
634             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
635                                                                  charge+jnrC+0,charge+jnrD+0);
636             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
637                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
638             vdwjidx0A        = 2*vdwtype[jnrA+0];
639             vdwjidx0B        = 2*vdwtype[jnrB+0];
640             vdwjidx0C        = 2*vdwtype[jnrC+0];
641             vdwjidx0D        = 2*vdwtype[jnrD+0];
642
643             /**************************
644              * CALCULATE INTERACTIONS *
645              **************************/
646
647             r00              = _mm256_mul_pd(rsq00,rinv00);
648
649             /* Compute parameters for interactions between i and j atoms */
650             qq00             = _mm256_mul_pd(iq0,jq0);
651             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
652                                             vdwioffsetptr0+vdwjidx0B,
653                                             vdwioffsetptr0+vdwjidx0C,
654                                             vdwioffsetptr0+vdwjidx0D,
655                                             &c6_00,&c12_00);
656
657             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
658             isaprod          = _mm256_mul_pd(isai0,isaj0);
659             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
660             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
661
662             /* Calculate generalized born table index - this is a separate table from the normal one,
663              * but we use the same procedure by multiplying r with scale and truncating to integer.
664              */
665             rt               = _mm256_mul_pd(r00,gbscale);
666             gbitab           = _mm256_cvttpd_epi32(rt);
667             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
668             gbitab           = _mm_slli_epi32(gbitab,2);
669             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
670             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
671             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
672             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
673             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
674             Heps             = _mm256_mul_pd(gbeps,H);
675             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
676             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
677             vgb              = _mm256_mul_pd(gbqqfactor,VV);
678
679             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
680             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
681             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
682             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
683             fjptrA           = dvda+jnrA;
684             fjptrB           = dvda+jnrB;
685             fjptrC           = dvda+jnrC;
686             fjptrD           = dvda+jnrD;
687             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
688                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
689             velec            = _mm256_mul_pd(qq00,rinv00);
690             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
691
692             /* LENNARD-JONES DISPERSION/REPULSION */
693
694             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
695             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
696
697             fscal            = _mm256_add_pd(felec,fvdw);
698
699             /* Calculate temporary vectorial force */
700             tx               = _mm256_mul_pd(fscal,dx00);
701             ty               = _mm256_mul_pd(fscal,dy00);
702             tz               = _mm256_mul_pd(fscal,dz00);
703
704             /* Update vectorial force */
705             fix0             = _mm256_add_pd(fix0,tx);
706             fiy0             = _mm256_add_pd(fiy0,ty);
707             fiz0             = _mm256_add_pd(fiz0,tz);
708
709             fjptrA             = f+j_coord_offsetA;
710             fjptrB             = f+j_coord_offsetB;
711             fjptrC             = f+j_coord_offsetC;
712             fjptrD             = f+j_coord_offsetD;
713             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
714
715             /* Inner loop uses 63 flops */
716         }
717
718         if(jidx<j_index_end)
719         {
720
721             /* Get j neighbor index, and coordinate index */
722             jnrlistA         = jjnr[jidx];
723             jnrlistB         = jjnr[jidx+1];
724             jnrlistC         = jjnr[jidx+2];
725             jnrlistD         = jjnr[jidx+3];
726             /* Sign of each element will be negative for non-real atoms.
727              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
728              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
729              */
730             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
731
732             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
733             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
734             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
735
736             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
737             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
738             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
739             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
740             j_coord_offsetA  = DIM*jnrA;
741             j_coord_offsetB  = DIM*jnrB;
742             j_coord_offsetC  = DIM*jnrC;
743             j_coord_offsetD  = DIM*jnrD;
744
745             /* load j atom coordinates */
746             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
747                                                  x+j_coord_offsetC,x+j_coord_offsetD,
748                                                  &jx0,&jy0,&jz0);
749
750             /* Calculate displacement vector */
751             dx00             = _mm256_sub_pd(ix0,jx0);
752             dy00             = _mm256_sub_pd(iy0,jy0);
753             dz00             = _mm256_sub_pd(iz0,jz0);
754
755             /* Calculate squared distance and things based on it */
756             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
757
758             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
759
760             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
761
762             /* Load parameters for j particles */
763             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
764                                                                  charge+jnrC+0,charge+jnrD+0);
765             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
766                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
767             vdwjidx0A        = 2*vdwtype[jnrA+0];
768             vdwjidx0B        = 2*vdwtype[jnrB+0];
769             vdwjidx0C        = 2*vdwtype[jnrC+0];
770             vdwjidx0D        = 2*vdwtype[jnrD+0];
771
772             /**************************
773              * CALCULATE INTERACTIONS *
774              **************************/
775
776             r00              = _mm256_mul_pd(rsq00,rinv00);
777             r00              = _mm256_andnot_pd(dummy_mask,r00);
778
779             /* Compute parameters for interactions between i and j atoms */
780             qq00             = _mm256_mul_pd(iq0,jq0);
781             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
782                                             vdwioffsetptr0+vdwjidx0B,
783                                             vdwioffsetptr0+vdwjidx0C,
784                                             vdwioffsetptr0+vdwjidx0D,
785                                             &c6_00,&c12_00);
786
787             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
788             isaprod          = _mm256_mul_pd(isai0,isaj0);
789             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
790             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
791
792             /* Calculate generalized born table index - this is a separate table from the normal one,
793              * but we use the same procedure by multiplying r with scale and truncating to integer.
794              */
795             rt               = _mm256_mul_pd(r00,gbscale);
796             gbitab           = _mm256_cvttpd_epi32(rt);
797             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
798             gbitab           = _mm_slli_epi32(gbitab,2);
799             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
800             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
801             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
802             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
803             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
804             Heps             = _mm256_mul_pd(gbeps,H);
805             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
806             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
807             vgb              = _mm256_mul_pd(gbqqfactor,VV);
808
809             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
810             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
811             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
812             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
813             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
814             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
815             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
816             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
817             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
818             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
819                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
820             velec            = _mm256_mul_pd(qq00,rinv00);
821             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
822
823             /* LENNARD-JONES DISPERSION/REPULSION */
824
825             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
826             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
827
828             fscal            = _mm256_add_pd(felec,fvdw);
829
830             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
831
832             /* Calculate temporary vectorial force */
833             tx               = _mm256_mul_pd(fscal,dx00);
834             ty               = _mm256_mul_pd(fscal,dy00);
835             tz               = _mm256_mul_pd(fscal,dz00);
836
837             /* Update vectorial force */
838             fix0             = _mm256_add_pd(fix0,tx);
839             fiy0             = _mm256_add_pd(fiy0,ty);
840             fiz0             = _mm256_add_pd(fiz0,tz);
841
842             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
843             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
844             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
845             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
846             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
847
848             /* Inner loop uses 64 flops */
849         }
850
851         /* End of innermost loop */
852
853         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
854                                                  f+i_coord_offset,fshift+i_shift_offset);
855
856         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
857         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
858
859         /* Increment number of inner iterations */
860         inneriter                  += j_index_end - j_index_start;
861
862         /* Outer loop uses 7 flops */
863     }
864
865     /* Increment number of outer iterations */
866     outeriter        += nri;
867
868     /* Update outer/inner flops */
869
870     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*64);
871 }