93dddf903f5196b121cc8b5741e7473d1dd8d239
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012, by the GROMACS development team, led by
5  * David van der Spoel, Berk Hess, Erik Lindahl, and including many
6  * others, as listed in the AUTHORS file in the top-level source
7  * directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_double kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 #include "gmx_math_x86_avx_256_double.h"
50 #include "kernelutil_x86_avx_256_double.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
54  * Electrostatics interaction: GeneralizedBorn
55  * VdW interaction:            CubicSplineTable
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
61                     (t_nblist * gmx_restrict                nlist,
62                      rvec * gmx_restrict                    xx,
63                      rvec * gmx_restrict                    ff,
64                      t_forcerec * gmx_restrict              fr,
65                      t_mdatoms * gmx_restrict               mdatoms,
66                      nb_kernel_data_t * gmx_restrict        kernel_data,
67                      t_nrnb * gmx_restrict                  nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
79     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
80     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
81     real             rcutoff_scalar;
82     real             *shiftvec,*fshift,*x,*f;
83     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
84     real             scratch[4*DIM];
85     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
86     real *           vdwioffsetptr0;
87     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
88     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
89     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
90     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     __m128i          gbitab;
94     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
95     __m256d          minushalf = _mm256_set1_pd(-0.5);
96     real             *invsqrta,*dvda,*gbtab;
97     int              nvdwtype;
98     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
99     int              *vdwtype;
100     real             *vdwparam;
101     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
102     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
103     __m128i          vfitab;
104     __m128i          ifour       = _mm_set1_epi32(4);
105     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
106     real             *vftab;
107     __m256d          dummy_mask,cutoff_mask;
108     __m128           tmpmask0,tmpmask1;
109     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
110     __m256d          one     = _mm256_set1_pd(1.0);
111     __m256d          two     = _mm256_set1_pd(2.0);
112     x                = xx[0];
113     f                = ff[0];
114
115     nri              = nlist->nri;
116     iinr             = nlist->iinr;
117     jindex           = nlist->jindex;
118     jjnr             = nlist->jjnr;
119     shiftidx         = nlist->shift;
120     gid              = nlist->gid;
121     shiftvec         = fr->shift_vec[0];
122     fshift           = fr->fshift[0];
123     facel            = _mm256_set1_pd(fr->epsfac);
124     charge           = mdatoms->chargeA;
125     nvdwtype         = fr->ntype;
126     vdwparam         = fr->nbfp;
127     vdwtype          = mdatoms->typeA;
128
129     vftab            = kernel_data->table_vdw->data;
130     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
131
132     invsqrta         = fr->invsqrta;
133     dvda             = fr->dvda;
134     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
135     gbtab            = fr->gbtab.data;
136     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
137
138     /* Avoid stupid compiler warnings */
139     jnrA = jnrB = jnrC = jnrD = 0;
140     j_coord_offsetA = 0;
141     j_coord_offsetB = 0;
142     j_coord_offsetC = 0;
143     j_coord_offsetD = 0;
144
145     outeriter        = 0;
146     inneriter        = 0;
147
148     for(iidx=0;iidx<4*DIM;iidx++)
149     {
150         scratch[iidx] = 0.0;
151     }
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
169
170         fix0             = _mm256_setzero_pd();
171         fiy0             = _mm256_setzero_pd();
172         fiz0             = _mm256_setzero_pd();
173
174         /* Load parameters for i particles */
175         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
176         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
177         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
178
179         /* Reset potential sums */
180         velecsum         = _mm256_setzero_pd();
181         vgbsum           = _mm256_setzero_pd();
182         vvdwsum          = _mm256_setzero_pd();
183         dvdasum          = _mm256_setzero_pd();
184
185         /* Start inner kernel loop */
186         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187         {
188
189             /* Get j neighbor index, and coordinate index */
190             jnrA             = jjnr[jidx];
191             jnrB             = jjnr[jidx+1];
192             jnrC             = jjnr[jidx+2];
193             jnrD             = jjnr[jidx+3];
194             j_coord_offsetA  = DIM*jnrA;
195             j_coord_offsetB  = DIM*jnrB;
196             j_coord_offsetC  = DIM*jnrC;
197             j_coord_offsetD  = DIM*jnrD;
198
199             /* load j atom coordinates */
200             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
201                                                  x+j_coord_offsetC,x+j_coord_offsetD,
202                                                  &jx0,&jy0,&jz0);
203
204             /* Calculate displacement vector */
205             dx00             = _mm256_sub_pd(ix0,jx0);
206             dy00             = _mm256_sub_pd(iy0,jy0);
207             dz00             = _mm256_sub_pd(iz0,jz0);
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
211
212             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
213
214             /* Load parameters for j particles */
215             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
216                                                                  charge+jnrC+0,charge+jnrD+0);
217             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
218                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
219             vdwjidx0A        = 2*vdwtype[jnrA+0];
220             vdwjidx0B        = 2*vdwtype[jnrB+0];
221             vdwjidx0C        = 2*vdwtype[jnrC+0];
222             vdwjidx0D        = 2*vdwtype[jnrD+0];
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             r00              = _mm256_mul_pd(rsq00,rinv00);
229
230             /* Compute parameters for interactions between i and j atoms */
231             qq00             = _mm256_mul_pd(iq0,jq0);
232             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
233                                             vdwioffsetptr0+vdwjidx0B,
234                                             vdwioffsetptr0+vdwjidx0C,
235                                             vdwioffsetptr0+vdwjidx0D,
236                                             &c6_00,&c12_00);
237
238             /* Calculate table index by multiplying r with table scale and truncate to integer */
239             rt               = _mm256_mul_pd(r00,vftabscale);
240             vfitab           = _mm256_cvttpd_epi32(rt);
241             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
242             vfitab           = _mm_slli_epi32(vfitab,3);
243
244             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
245             isaprod          = _mm256_mul_pd(isai0,isaj0);
246             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
247             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
248
249             /* Calculate generalized born table index - this is a separate table from the normal one,
250              * but we use the same procedure by multiplying r with scale and truncating to integer.
251              */
252             rt               = _mm256_mul_pd(r00,gbscale);
253             gbitab           = _mm256_cvttpd_epi32(rt);
254             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
255             gbitab           = _mm_slli_epi32(gbitab,2);
256             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
257             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
258             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
259             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
260             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
261             Heps             = _mm256_mul_pd(gbeps,H);
262             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
263             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
264             vgb              = _mm256_mul_pd(gbqqfactor,VV);
265
266             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
267             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
268             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
269             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
270             fjptrA           = dvda+jnrA;
271             fjptrB           = dvda+jnrB;
272             fjptrC           = dvda+jnrC;
273             fjptrD           = dvda+jnrD;
274             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
275                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
276             velec            = _mm256_mul_pd(qq00,rinv00);
277             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
278
279             /* CUBIC SPLINE TABLE DISPERSION */
280             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
281             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
282             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
283             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
284             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
285             Heps             = _mm256_mul_pd(vfeps,H);
286             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
287             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
288             vvdw6            = _mm256_mul_pd(c6_00,VV);
289             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
290             fvdw6            = _mm256_mul_pd(c6_00,FF);
291
292             /* CUBIC SPLINE TABLE REPULSION */
293             vfitab           = _mm_add_epi32(vfitab,ifour);
294             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
295             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
296             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
297             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
298             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
299             Heps             = _mm256_mul_pd(vfeps,H);
300             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
301             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
302             vvdw12           = _mm256_mul_pd(c12_00,VV);
303             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
304             fvdw12           = _mm256_mul_pd(c12_00,FF);
305             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
306             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
307
308             /* Update potential sum for this i atom from the interaction with this j atom. */
309             velecsum         = _mm256_add_pd(velecsum,velec);
310             vgbsum           = _mm256_add_pd(vgbsum,vgb);
311             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
312
313             fscal            = _mm256_add_pd(felec,fvdw);
314
315             /* Calculate temporary vectorial force */
316             tx               = _mm256_mul_pd(fscal,dx00);
317             ty               = _mm256_mul_pd(fscal,dy00);
318             tz               = _mm256_mul_pd(fscal,dz00);
319
320             /* Update vectorial force */
321             fix0             = _mm256_add_pd(fix0,tx);
322             fiy0             = _mm256_add_pd(fiy0,ty);
323             fiz0             = _mm256_add_pd(fiz0,tz);
324
325             fjptrA             = f+j_coord_offsetA;
326             fjptrB             = f+j_coord_offsetB;
327             fjptrC             = f+j_coord_offsetC;
328             fjptrD             = f+j_coord_offsetD;
329             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
330
331             /* Inner loop uses 91 flops */
332         }
333
334         if(jidx<j_index_end)
335         {
336
337             /* Get j neighbor index, and coordinate index */
338             jnrlistA         = jjnr[jidx];
339             jnrlistB         = jjnr[jidx+1];
340             jnrlistC         = jjnr[jidx+2];
341             jnrlistD         = jjnr[jidx+3];
342             /* Sign of each element will be negative for non-real atoms.
343              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
344              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
345              */
346             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
347
348             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
349             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
350             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
351
352             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
353             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
354             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
355             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
356             j_coord_offsetA  = DIM*jnrA;
357             j_coord_offsetB  = DIM*jnrB;
358             j_coord_offsetC  = DIM*jnrC;
359             j_coord_offsetD  = DIM*jnrD;
360
361             /* load j atom coordinates */
362             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
363                                                  x+j_coord_offsetC,x+j_coord_offsetD,
364                                                  &jx0,&jy0,&jz0);
365
366             /* Calculate displacement vector */
367             dx00             = _mm256_sub_pd(ix0,jx0);
368             dy00             = _mm256_sub_pd(iy0,jy0);
369             dz00             = _mm256_sub_pd(iz0,jz0);
370
371             /* Calculate squared distance and things based on it */
372             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
373
374             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
375
376             /* Load parameters for j particles */
377             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
378                                                                  charge+jnrC+0,charge+jnrD+0);
379             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
380                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
381             vdwjidx0A        = 2*vdwtype[jnrA+0];
382             vdwjidx0B        = 2*vdwtype[jnrB+0];
383             vdwjidx0C        = 2*vdwtype[jnrC+0];
384             vdwjidx0D        = 2*vdwtype[jnrD+0];
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r00              = _mm256_mul_pd(rsq00,rinv00);
391             r00              = _mm256_andnot_pd(dummy_mask,r00);
392
393             /* Compute parameters for interactions between i and j atoms */
394             qq00             = _mm256_mul_pd(iq0,jq0);
395             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
396                                             vdwioffsetptr0+vdwjidx0B,
397                                             vdwioffsetptr0+vdwjidx0C,
398                                             vdwioffsetptr0+vdwjidx0D,
399                                             &c6_00,&c12_00);
400
401             /* Calculate table index by multiplying r with table scale and truncate to integer */
402             rt               = _mm256_mul_pd(r00,vftabscale);
403             vfitab           = _mm256_cvttpd_epi32(rt);
404             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
405             vfitab           = _mm_slli_epi32(vfitab,3);
406
407             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
408             isaprod          = _mm256_mul_pd(isai0,isaj0);
409             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
410             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
411
412             /* Calculate generalized born table index - this is a separate table from the normal one,
413              * but we use the same procedure by multiplying r with scale and truncating to integer.
414              */
415             rt               = _mm256_mul_pd(r00,gbscale);
416             gbitab           = _mm256_cvttpd_epi32(rt);
417             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
418             gbitab           = _mm_slli_epi32(gbitab,2);
419             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
420             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
421             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
422             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
423             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
424             Heps             = _mm256_mul_pd(gbeps,H);
425             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
426             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
427             vgb              = _mm256_mul_pd(gbqqfactor,VV);
428
429             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
430             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
431             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
432             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
433             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
434             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
435             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
436             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
437             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
438             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
439                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
440             velec            = _mm256_mul_pd(qq00,rinv00);
441             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
442
443             /* CUBIC SPLINE TABLE DISPERSION */
444             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
445             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
446             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
447             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
448             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
449             Heps             = _mm256_mul_pd(vfeps,H);
450             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
451             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
452             vvdw6            = _mm256_mul_pd(c6_00,VV);
453             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
454             fvdw6            = _mm256_mul_pd(c6_00,FF);
455
456             /* CUBIC SPLINE TABLE REPULSION */
457             vfitab           = _mm_add_epi32(vfitab,ifour);
458             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
459             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
460             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
461             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
462             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
463             Heps             = _mm256_mul_pd(vfeps,H);
464             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
465             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
466             vvdw12           = _mm256_mul_pd(c12_00,VV);
467             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
468             fvdw12           = _mm256_mul_pd(c12_00,FF);
469             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
470             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
471
472             /* Update potential sum for this i atom from the interaction with this j atom. */
473             velec            = _mm256_andnot_pd(dummy_mask,velec);
474             velecsum         = _mm256_add_pd(velecsum,velec);
475             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
476             vgbsum           = _mm256_add_pd(vgbsum,vgb);
477             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
478             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
479
480             fscal            = _mm256_add_pd(felec,fvdw);
481
482             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
483
484             /* Calculate temporary vectorial force */
485             tx               = _mm256_mul_pd(fscal,dx00);
486             ty               = _mm256_mul_pd(fscal,dy00);
487             tz               = _mm256_mul_pd(fscal,dz00);
488
489             /* Update vectorial force */
490             fix0             = _mm256_add_pd(fix0,tx);
491             fiy0             = _mm256_add_pd(fiy0,ty);
492             fiz0             = _mm256_add_pd(fiz0,tz);
493
494             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
495             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
496             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
497             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
498             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
499
500             /* Inner loop uses 92 flops */
501         }
502
503         /* End of innermost loop */
504
505         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
506                                                  f+i_coord_offset,fshift+i_shift_offset);
507
508         ggid                        = gid[iidx];
509         /* Update potential energies */
510         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
511         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
512         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
513         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
514         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
515
516         /* Increment number of inner iterations */
517         inneriter                  += j_index_end - j_index_start;
518
519         /* Outer loop uses 10 flops */
520     }
521
522     /* Increment number of outer iterations */
523     outeriter        += nri;
524
525     /* Update outer/inner flops */
526
527     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
528 }
529 /*
530  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
531  * Electrostatics interaction: GeneralizedBorn
532  * VdW interaction:            CubicSplineTable
533  * Geometry:                   Particle-Particle
534  * Calculate force/pot:        Force
535  */
536 void
537 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
538                     (t_nblist * gmx_restrict                nlist,
539                      rvec * gmx_restrict                    xx,
540                      rvec * gmx_restrict                    ff,
541                      t_forcerec * gmx_restrict              fr,
542                      t_mdatoms * gmx_restrict               mdatoms,
543                      nb_kernel_data_t * gmx_restrict        kernel_data,
544                      t_nrnb * gmx_restrict                  nrnb)
545 {
546     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
547      * just 0 for non-waters.
548      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
549      * jnr indices corresponding to data put in the four positions in the SIMD register.
550      */
551     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
552     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
553     int              jnrA,jnrB,jnrC,jnrD;
554     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
555     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
556     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
557     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
558     real             rcutoff_scalar;
559     real             *shiftvec,*fshift,*x,*f;
560     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
561     real             scratch[4*DIM];
562     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
563     real *           vdwioffsetptr0;
564     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
565     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
566     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
567     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
568     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
569     real             *charge;
570     __m128i          gbitab;
571     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
572     __m256d          minushalf = _mm256_set1_pd(-0.5);
573     real             *invsqrta,*dvda,*gbtab;
574     int              nvdwtype;
575     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
576     int              *vdwtype;
577     real             *vdwparam;
578     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
579     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
580     __m128i          vfitab;
581     __m128i          ifour       = _mm_set1_epi32(4);
582     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
583     real             *vftab;
584     __m256d          dummy_mask,cutoff_mask;
585     __m128           tmpmask0,tmpmask1;
586     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
587     __m256d          one     = _mm256_set1_pd(1.0);
588     __m256d          two     = _mm256_set1_pd(2.0);
589     x                = xx[0];
590     f                = ff[0];
591
592     nri              = nlist->nri;
593     iinr             = nlist->iinr;
594     jindex           = nlist->jindex;
595     jjnr             = nlist->jjnr;
596     shiftidx         = nlist->shift;
597     gid              = nlist->gid;
598     shiftvec         = fr->shift_vec[0];
599     fshift           = fr->fshift[0];
600     facel            = _mm256_set1_pd(fr->epsfac);
601     charge           = mdatoms->chargeA;
602     nvdwtype         = fr->ntype;
603     vdwparam         = fr->nbfp;
604     vdwtype          = mdatoms->typeA;
605
606     vftab            = kernel_data->table_vdw->data;
607     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
608
609     invsqrta         = fr->invsqrta;
610     dvda             = fr->dvda;
611     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
612     gbtab            = fr->gbtab.data;
613     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
614
615     /* Avoid stupid compiler warnings */
616     jnrA = jnrB = jnrC = jnrD = 0;
617     j_coord_offsetA = 0;
618     j_coord_offsetB = 0;
619     j_coord_offsetC = 0;
620     j_coord_offsetD = 0;
621
622     outeriter        = 0;
623     inneriter        = 0;
624
625     for(iidx=0;iidx<4*DIM;iidx++)
626     {
627         scratch[iidx] = 0.0;
628     }
629
630     /* Start outer loop over neighborlists */
631     for(iidx=0; iidx<nri; iidx++)
632     {
633         /* Load shift vector for this list */
634         i_shift_offset   = DIM*shiftidx[iidx];
635
636         /* Load limits for loop over neighbors */
637         j_index_start    = jindex[iidx];
638         j_index_end      = jindex[iidx+1];
639
640         /* Get outer coordinate index */
641         inr              = iinr[iidx];
642         i_coord_offset   = DIM*inr;
643
644         /* Load i particle coords and add shift vector */
645         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
646
647         fix0             = _mm256_setzero_pd();
648         fiy0             = _mm256_setzero_pd();
649         fiz0             = _mm256_setzero_pd();
650
651         /* Load parameters for i particles */
652         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
653         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
654         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
655
656         dvdasum          = _mm256_setzero_pd();
657
658         /* Start inner kernel loop */
659         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
660         {
661
662             /* Get j neighbor index, and coordinate index */
663             jnrA             = jjnr[jidx];
664             jnrB             = jjnr[jidx+1];
665             jnrC             = jjnr[jidx+2];
666             jnrD             = jjnr[jidx+3];
667             j_coord_offsetA  = DIM*jnrA;
668             j_coord_offsetB  = DIM*jnrB;
669             j_coord_offsetC  = DIM*jnrC;
670             j_coord_offsetD  = DIM*jnrD;
671
672             /* load j atom coordinates */
673             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
674                                                  x+j_coord_offsetC,x+j_coord_offsetD,
675                                                  &jx0,&jy0,&jz0);
676
677             /* Calculate displacement vector */
678             dx00             = _mm256_sub_pd(ix0,jx0);
679             dy00             = _mm256_sub_pd(iy0,jy0);
680             dz00             = _mm256_sub_pd(iz0,jz0);
681
682             /* Calculate squared distance and things based on it */
683             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
684
685             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
686
687             /* Load parameters for j particles */
688             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
689                                                                  charge+jnrC+0,charge+jnrD+0);
690             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
691                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
692             vdwjidx0A        = 2*vdwtype[jnrA+0];
693             vdwjidx0B        = 2*vdwtype[jnrB+0];
694             vdwjidx0C        = 2*vdwtype[jnrC+0];
695             vdwjidx0D        = 2*vdwtype[jnrD+0];
696
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             r00              = _mm256_mul_pd(rsq00,rinv00);
702
703             /* Compute parameters for interactions between i and j atoms */
704             qq00             = _mm256_mul_pd(iq0,jq0);
705             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
706                                             vdwioffsetptr0+vdwjidx0B,
707                                             vdwioffsetptr0+vdwjidx0C,
708                                             vdwioffsetptr0+vdwjidx0D,
709                                             &c6_00,&c12_00);
710
711             /* Calculate table index by multiplying r with table scale and truncate to integer */
712             rt               = _mm256_mul_pd(r00,vftabscale);
713             vfitab           = _mm256_cvttpd_epi32(rt);
714             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
715             vfitab           = _mm_slli_epi32(vfitab,3);
716
717             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
718             isaprod          = _mm256_mul_pd(isai0,isaj0);
719             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
720             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
721
722             /* Calculate generalized born table index - this is a separate table from the normal one,
723              * but we use the same procedure by multiplying r with scale and truncating to integer.
724              */
725             rt               = _mm256_mul_pd(r00,gbscale);
726             gbitab           = _mm256_cvttpd_epi32(rt);
727             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
728             gbitab           = _mm_slli_epi32(gbitab,2);
729             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
730             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
731             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
732             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
733             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
734             Heps             = _mm256_mul_pd(gbeps,H);
735             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
736             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
737             vgb              = _mm256_mul_pd(gbqqfactor,VV);
738
739             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
740             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
741             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
742             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
743             fjptrA           = dvda+jnrA;
744             fjptrB           = dvda+jnrB;
745             fjptrC           = dvda+jnrC;
746             fjptrD           = dvda+jnrD;
747             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
748                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
749             velec            = _mm256_mul_pd(qq00,rinv00);
750             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
751
752             /* CUBIC SPLINE TABLE DISPERSION */
753             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
754             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
755             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
756             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
757             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
758             Heps             = _mm256_mul_pd(vfeps,H);
759             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
760             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
761             fvdw6            = _mm256_mul_pd(c6_00,FF);
762
763             /* CUBIC SPLINE TABLE REPULSION */
764             vfitab           = _mm_add_epi32(vfitab,ifour);
765             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
766             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
767             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
768             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
769             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
770             Heps             = _mm256_mul_pd(vfeps,H);
771             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
772             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
773             fvdw12           = _mm256_mul_pd(c12_00,FF);
774             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
775
776             fscal            = _mm256_add_pd(felec,fvdw);
777
778             /* Calculate temporary vectorial force */
779             tx               = _mm256_mul_pd(fscal,dx00);
780             ty               = _mm256_mul_pd(fscal,dy00);
781             tz               = _mm256_mul_pd(fscal,dz00);
782
783             /* Update vectorial force */
784             fix0             = _mm256_add_pd(fix0,tx);
785             fiy0             = _mm256_add_pd(fiy0,ty);
786             fiz0             = _mm256_add_pd(fiz0,tz);
787
788             fjptrA             = f+j_coord_offsetA;
789             fjptrB             = f+j_coord_offsetB;
790             fjptrC             = f+j_coord_offsetC;
791             fjptrD             = f+j_coord_offsetD;
792             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
793
794             /* Inner loop uses 81 flops */
795         }
796
797         if(jidx<j_index_end)
798         {
799
800             /* Get j neighbor index, and coordinate index */
801             jnrlistA         = jjnr[jidx];
802             jnrlistB         = jjnr[jidx+1];
803             jnrlistC         = jjnr[jidx+2];
804             jnrlistD         = jjnr[jidx+3];
805             /* Sign of each element will be negative for non-real atoms.
806              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
807              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
808              */
809             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
810
811             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
812             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
813             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
814
815             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
816             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
817             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
818             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
819             j_coord_offsetA  = DIM*jnrA;
820             j_coord_offsetB  = DIM*jnrB;
821             j_coord_offsetC  = DIM*jnrC;
822             j_coord_offsetD  = DIM*jnrD;
823
824             /* load j atom coordinates */
825             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
826                                                  x+j_coord_offsetC,x+j_coord_offsetD,
827                                                  &jx0,&jy0,&jz0);
828
829             /* Calculate displacement vector */
830             dx00             = _mm256_sub_pd(ix0,jx0);
831             dy00             = _mm256_sub_pd(iy0,jy0);
832             dz00             = _mm256_sub_pd(iz0,jz0);
833
834             /* Calculate squared distance and things based on it */
835             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
836
837             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
838
839             /* Load parameters for j particles */
840             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
841                                                                  charge+jnrC+0,charge+jnrD+0);
842             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
843                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
844             vdwjidx0A        = 2*vdwtype[jnrA+0];
845             vdwjidx0B        = 2*vdwtype[jnrB+0];
846             vdwjidx0C        = 2*vdwtype[jnrC+0];
847             vdwjidx0D        = 2*vdwtype[jnrD+0];
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             r00              = _mm256_mul_pd(rsq00,rinv00);
854             r00              = _mm256_andnot_pd(dummy_mask,r00);
855
856             /* Compute parameters for interactions between i and j atoms */
857             qq00             = _mm256_mul_pd(iq0,jq0);
858             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
859                                             vdwioffsetptr0+vdwjidx0B,
860                                             vdwioffsetptr0+vdwjidx0C,
861                                             vdwioffsetptr0+vdwjidx0D,
862                                             &c6_00,&c12_00);
863
864             /* Calculate table index by multiplying r with table scale and truncate to integer */
865             rt               = _mm256_mul_pd(r00,vftabscale);
866             vfitab           = _mm256_cvttpd_epi32(rt);
867             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
868             vfitab           = _mm_slli_epi32(vfitab,3);
869
870             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
871             isaprod          = _mm256_mul_pd(isai0,isaj0);
872             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
873             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
874
875             /* Calculate generalized born table index - this is a separate table from the normal one,
876              * but we use the same procedure by multiplying r with scale and truncating to integer.
877              */
878             rt               = _mm256_mul_pd(r00,gbscale);
879             gbitab           = _mm256_cvttpd_epi32(rt);
880             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
881             gbitab           = _mm_slli_epi32(gbitab,2);
882             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
883             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
884             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
885             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
886             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
887             Heps             = _mm256_mul_pd(gbeps,H);
888             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
889             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
890             vgb              = _mm256_mul_pd(gbqqfactor,VV);
891
892             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
893             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
894             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
895             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
896             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
897             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
898             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
899             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
900             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
901             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
902                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
903             velec            = _mm256_mul_pd(qq00,rinv00);
904             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
905
906             /* CUBIC SPLINE TABLE DISPERSION */
907             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
908             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
909             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
910             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
911             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
912             Heps             = _mm256_mul_pd(vfeps,H);
913             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
914             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
915             fvdw6            = _mm256_mul_pd(c6_00,FF);
916
917             /* CUBIC SPLINE TABLE REPULSION */
918             vfitab           = _mm_add_epi32(vfitab,ifour);
919             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
920             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
921             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
922             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
923             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
924             Heps             = _mm256_mul_pd(vfeps,H);
925             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
926             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
927             fvdw12           = _mm256_mul_pd(c12_00,FF);
928             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
929
930             fscal            = _mm256_add_pd(felec,fvdw);
931
932             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
933
934             /* Calculate temporary vectorial force */
935             tx               = _mm256_mul_pd(fscal,dx00);
936             ty               = _mm256_mul_pd(fscal,dy00);
937             tz               = _mm256_mul_pd(fscal,dz00);
938
939             /* Update vectorial force */
940             fix0             = _mm256_add_pd(fix0,tx);
941             fiy0             = _mm256_add_pd(fiy0,ty);
942             fiz0             = _mm256_add_pd(fiz0,tz);
943
944             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
945             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
946             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
947             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
948             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
949
950             /* Inner loop uses 82 flops */
951         }
952
953         /* End of innermost loop */
954
955         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
956                                                  f+i_coord_offset,fshift+i_shift_offset);
957
958         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
959         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
960
961         /* Increment number of inner iterations */
962         inneriter                  += j_index_end - j_index_start;
963
964         /* Outer loop uses 7 flops */
965     }
966
967     /* Increment number of outer iterations */
968     outeriter        += nri;
969
970     /* Update outer/inner flops */
971
972     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
973 }