862e4d39eda2b0d229df59d29619416f515e6645
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwNone_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwNone_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     __m128i          ewitab;
84     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
85     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
86     real             *ewtab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105
106     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
107     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
108     beta2            = _mm256_mul_pd(beta,beta);
109     beta3            = _mm256_mul_pd(beta,beta2);
110
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
113     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
118     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
119     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127
128     outeriter        = 0;
129     inneriter        = 0;
130
131     for(iidx=0;iidx<4*DIM;iidx++)
132     {
133         scratch[iidx] = 0.0;
134     }
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
152                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157         fix1             = _mm256_setzero_pd();
158         fiy1             = _mm256_setzero_pd();
159         fiz1             = _mm256_setzero_pd();
160         fix2             = _mm256_setzero_pd();
161         fiy2             = _mm256_setzero_pd();
162         fiz2             = _mm256_setzero_pd();
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_pd();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             j_coord_offsetA  = DIM*jnrA;
177             j_coord_offsetB  = DIM*jnrB;
178             j_coord_offsetC  = DIM*jnrC;
179             j_coord_offsetD  = DIM*jnrD;
180
181             /* load j atom coordinates */
182             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
183                                                  x+j_coord_offsetC,x+j_coord_offsetD,
184                                                  &jx0,&jy0,&jz0);
185
186             /* Calculate displacement vector */
187             dx00             = _mm256_sub_pd(ix0,jx0);
188             dy00             = _mm256_sub_pd(iy0,jy0);
189             dz00             = _mm256_sub_pd(iz0,jz0);
190             dx10             = _mm256_sub_pd(ix1,jx0);
191             dy10             = _mm256_sub_pd(iy1,jy0);
192             dz10             = _mm256_sub_pd(iz1,jz0);
193             dx20             = _mm256_sub_pd(ix2,jx0);
194             dy20             = _mm256_sub_pd(iy2,jy0);
195             dz20             = _mm256_sub_pd(iz2,jz0);
196
197             /* Calculate squared distance and things based on it */
198             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
199             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
200             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
201
202             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
203             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
204             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
205
206             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
207             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
208             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
209
210             /* Load parameters for j particles */
211             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
212                                                                  charge+jnrC+0,charge+jnrD+0);
213
214             fjx0             = _mm256_setzero_pd();
215             fjy0             = _mm256_setzero_pd();
216             fjz0             = _mm256_setzero_pd();
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r00              = _mm256_mul_pd(rsq00,rinv00);
223
224             /* Compute parameters for interactions between i and j atoms */
225             qq00             = _mm256_mul_pd(iq0,jq0);
226
227             /* EWALD ELECTROSTATICS */
228
229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
230             ewrt             = _mm256_mul_pd(r00,ewtabscale);
231             ewitab           = _mm256_cvttpd_epi32(ewrt);
232             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
233             ewitab           = _mm_slli_epi32(ewitab,2);
234             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
235             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
236             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
237             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
238             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
239             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
240             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
241             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
242             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
243
244             /* Update potential sum for this i atom from the interaction with this j atom. */
245             velecsum         = _mm256_add_pd(velecsum,velec);
246
247             fscal            = felec;
248
249             /* Calculate temporary vectorial force */
250             tx               = _mm256_mul_pd(fscal,dx00);
251             ty               = _mm256_mul_pd(fscal,dy00);
252             tz               = _mm256_mul_pd(fscal,dz00);
253
254             /* Update vectorial force */
255             fix0             = _mm256_add_pd(fix0,tx);
256             fiy0             = _mm256_add_pd(fiy0,ty);
257             fiz0             = _mm256_add_pd(fiz0,tz);
258
259             fjx0             = _mm256_add_pd(fjx0,tx);
260             fjy0             = _mm256_add_pd(fjy0,ty);
261             fjz0             = _mm256_add_pd(fjz0,tz);
262
263             /**************************
264              * CALCULATE INTERACTIONS *
265              **************************/
266
267             r10              = _mm256_mul_pd(rsq10,rinv10);
268
269             /* Compute parameters for interactions between i and j atoms */
270             qq10             = _mm256_mul_pd(iq1,jq0);
271
272             /* EWALD ELECTROSTATICS */
273
274             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
275             ewrt             = _mm256_mul_pd(r10,ewtabscale);
276             ewitab           = _mm256_cvttpd_epi32(ewrt);
277             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
278             ewitab           = _mm_slli_epi32(ewitab,2);
279             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
280             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
281             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
282             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
283             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
284             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
285             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
286             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
287             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
288
289             /* Update potential sum for this i atom from the interaction with this j atom. */
290             velecsum         = _mm256_add_pd(velecsum,velec);
291
292             fscal            = felec;
293
294             /* Calculate temporary vectorial force */
295             tx               = _mm256_mul_pd(fscal,dx10);
296             ty               = _mm256_mul_pd(fscal,dy10);
297             tz               = _mm256_mul_pd(fscal,dz10);
298
299             /* Update vectorial force */
300             fix1             = _mm256_add_pd(fix1,tx);
301             fiy1             = _mm256_add_pd(fiy1,ty);
302             fiz1             = _mm256_add_pd(fiz1,tz);
303
304             fjx0             = _mm256_add_pd(fjx0,tx);
305             fjy0             = _mm256_add_pd(fjy0,ty);
306             fjz0             = _mm256_add_pd(fjz0,tz);
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             r20              = _mm256_mul_pd(rsq20,rinv20);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq20             = _mm256_mul_pd(iq2,jq0);
316
317             /* EWALD ELECTROSTATICS */
318
319             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
320             ewrt             = _mm256_mul_pd(r20,ewtabscale);
321             ewitab           = _mm256_cvttpd_epi32(ewrt);
322             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
323             ewitab           = _mm_slli_epi32(ewitab,2);
324             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
325             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
326             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
327             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
328             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
329             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
330             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
331             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
332             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
333
334             /* Update potential sum for this i atom from the interaction with this j atom. */
335             velecsum         = _mm256_add_pd(velecsum,velec);
336
337             fscal            = felec;
338
339             /* Calculate temporary vectorial force */
340             tx               = _mm256_mul_pd(fscal,dx20);
341             ty               = _mm256_mul_pd(fscal,dy20);
342             tz               = _mm256_mul_pd(fscal,dz20);
343
344             /* Update vectorial force */
345             fix2             = _mm256_add_pd(fix2,tx);
346             fiy2             = _mm256_add_pd(fiy2,ty);
347             fiz2             = _mm256_add_pd(fiz2,tz);
348
349             fjx0             = _mm256_add_pd(fjx0,tx);
350             fjy0             = _mm256_add_pd(fjy0,ty);
351             fjz0             = _mm256_add_pd(fjz0,tz);
352
353             fjptrA             = f+j_coord_offsetA;
354             fjptrB             = f+j_coord_offsetB;
355             fjptrC             = f+j_coord_offsetC;
356             fjptrD             = f+j_coord_offsetD;
357
358             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
359
360             /* Inner loop uses 126 flops */
361         }
362
363         if(jidx<j_index_end)
364         {
365
366             /* Get j neighbor index, and coordinate index */
367             jnrlistA         = jjnr[jidx];
368             jnrlistB         = jjnr[jidx+1];
369             jnrlistC         = jjnr[jidx+2];
370             jnrlistD         = jjnr[jidx+3];
371             /* Sign of each element will be negative for non-real atoms.
372              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
373              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
374              */
375             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
376
377             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
378             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
379             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
380
381             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
382             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
383             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
384             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
385             j_coord_offsetA  = DIM*jnrA;
386             j_coord_offsetB  = DIM*jnrB;
387             j_coord_offsetC  = DIM*jnrC;
388             j_coord_offsetD  = DIM*jnrD;
389
390             /* load j atom coordinates */
391             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
392                                                  x+j_coord_offsetC,x+j_coord_offsetD,
393                                                  &jx0,&jy0,&jz0);
394
395             /* Calculate displacement vector */
396             dx00             = _mm256_sub_pd(ix0,jx0);
397             dy00             = _mm256_sub_pd(iy0,jy0);
398             dz00             = _mm256_sub_pd(iz0,jz0);
399             dx10             = _mm256_sub_pd(ix1,jx0);
400             dy10             = _mm256_sub_pd(iy1,jy0);
401             dz10             = _mm256_sub_pd(iz1,jz0);
402             dx20             = _mm256_sub_pd(ix2,jx0);
403             dy20             = _mm256_sub_pd(iy2,jy0);
404             dz20             = _mm256_sub_pd(iz2,jz0);
405
406             /* Calculate squared distance and things based on it */
407             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
408             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
409             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
410
411             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
412             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
413             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
414
415             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
416             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
417             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
418
419             /* Load parameters for j particles */
420             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
421                                                                  charge+jnrC+0,charge+jnrD+0);
422
423             fjx0             = _mm256_setzero_pd();
424             fjy0             = _mm256_setzero_pd();
425             fjz0             = _mm256_setzero_pd();
426
427             /**************************
428              * CALCULATE INTERACTIONS *
429              **************************/
430
431             r00              = _mm256_mul_pd(rsq00,rinv00);
432             r00              = _mm256_andnot_pd(dummy_mask,r00);
433
434             /* Compute parameters for interactions between i and j atoms */
435             qq00             = _mm256_mul_pd(iq0,jq0);
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
440             ewrt             = _mm256_mul_pd(r00,ewtabscale);
441             ewitab           = _mm256_cvttpd_epi32(ewrt);
442             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
443             ewitab           = _mm_slli_epi32(ewitab,2);
444             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
445             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
446             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
447             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
448             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
449             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
450             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
451             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
452             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
453
454             /* Update potential sum for this i atom from the interaction with this j atom. */
455             velec            = _mm256_andnot_pd(dummy_mask,velec);
456             velecsum         = _mm256_add_pd(velecsum,velec);
457
458             fscal            = felec;
459
460             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
461
462             /* Calculate temporary vectorial force */
463             tx               = _mm256_mul_pd(fscal,dx00);
464             ty               = _mm256_mul_pd(fscal,dy00);
465             tz               = _mm256_mul_pd(fscal,dz00);
466
467             /* Update vectorial force */
468             fix0             = _mm256_add_pd(fix0,tx);
469             fiy0             = _mm256_add_pd(fiy0,ty);
470             fiz0             = _mm256_add_pd(fiz0,tz);
471
472             fjx0             = _mm256_add_pd(fjx0,tx);
473             fjy0             = _mm256_add_pd(fjy0,ty);
474             fjz0             = _mm256_add_pd(fjz0,tz);
475
476             /**************************
477              * CALCULATE INTERACTIONS *
478              **************************/
479
480             r10              = _mm256_mul_pd(rsq10,rinv10);
481             r10              = _mm256_andnot_pd(dummy_mask,r10);
482
483             /* Compute parameters for interactions between i and j atoms */
484             qq10             = _mm256_mul_pd(iq1,jq0);
485
486             /* EWALD ELECTROSTATICS */
487
488             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
489             ewrt             = _mm256_mul_pd(r10,ewtabscale);
490             ewitab           = _mm256_cvttpd_epi32(ewrt);
491             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
492             ewitab           = _mm_slli_epi32(ewitab,2);
493             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
494             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
495             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
496             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
497             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
498             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
499             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
500             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
501             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
502
503             /* Update potential sum for this i atom from the interaction with this j atom. */
504             velec            = _mm256_andnot_pd(dummy_mask,velec);
505             velecsum         = _mm256_add_pd(velecsum,velec);
506
507             fscal            = felec;
508
509             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
510
511             /* Calculate temporary vectorial force */
512             tx               = _mm256_mul_pd(fscal,dx10);
513             ty               = _mm256_mul_pd(fscal,dy10);
514             tz               = _mm256_mul_pd(fscal,dz10);
515
516             /* Update vectorial force */
517             fix1             = _mm256_add_pd(fix1,tx);
518             fiy1             = _mm256_add_pd(fiy1,ty);
519             fiz1             = _mm256_add_pd(fiz1,tz);
520
521             fjx0             = _mm256_add_pd(fjx0,tx);
522             fjy0             = _mm256_add_pd(fjy0,ty);
523             fjz0             = _mm256_add_pd(fjz0,tz);
524
525             /**************************
526              * CALCULATE INTERACTIONS *
527              **************************/
528
529             r20              = _mm256_mul_pd(rsq20,rinv20);
530             r20              = _mm256_andnot_pd(dummy_mask,r20);
531
532             /* Compute parameters for interactions between i and j atoms */
533             qq20             = _mm256_mul_pd(iq2,jq0);
534
535             /* EWALD ELECTROSTATICS */
536
537             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
538             ewrt             = _mm256_mul_pd(r20,ewtabscale);
539             ewitab           = _mm256_cvttpd_epi32(ewrt);
540             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
541             ewitab           = _mm_slli_epi32(ewitab,2);
542             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
543             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
544             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
545             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
546             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
547             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
548             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
549             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
550             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
551
552             /* Update potential sum for this i atom from the interaction with this j atom. */
553             velec            = _mm256_andnot_pd(dummy_mask,velec);
554             velecsum         = _mm256_add_pd(velecsum,velec);
555
556             fscal            = felec;
557
558             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
559
560             /* Calculate temporary vectorial force */
561             tx               = _mm256_mul_pd(fscal,dx20);
562             ty               = _mm256_mul_pd(fscal,dy20);
563             tz               = _mm256_mul_pd(fscal,dz20);
564
565             /* Update vectorial force */
566             fix2             = _mm256_add_pd(fix2,tx);
567             fiy2             = _mm256_add_pd(fiy2,ty);
568             fiz2             = _mm256_add_pd(fiz2,tz);
569
570             fjx0             = _mm256_add_pd(fjx0,tx);
571             fjy0             = _mm256_add_pd(fjy0,ty);
572             fjz0             = _mm256_add_pd(fjz0,tz);
573
574             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
575             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
576             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
577             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
578
579             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
580
581             /* Inner loop uses 129 flops */
582         }
583
584         /* End of innermost loop */
585
586         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
587                                                  f+i_coord_offset,fshift+i_shift_offset);
588
589         ggid                        = gid[iidx];
590         /* Update potential energies */
591         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
592
593         /* Increment number of inner iterations */
594         inneriter                  += j_index_end - j_index_start;
595
596         /* Outer loop uses 19 flops */
597     }
598
599     /* Increment number of outer iterations */
600     outeriter        += nri;
601
602     /* Update outer/inner flops */
603
604     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*19 + inneriter*129);
605 }
606 /*
607  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_double
608  * Electrostatics interaction: Ewald
609  * VdW interaction:            None
610  * Geometry:                   Water3-Particle
611  * Calculate force/pot:        Force
612  */
613 void
614 nb_kernel_ElecEw_VdwNone_GeomW3P1_F_avx_256_double
615                     (t_nblist * gmx_restrict                nlist,
616                      rvec * gmx_restrict                    xx,
617                      rvec * gmx_restrict                    ff,
618                      t_forcerec * gmx_restrict              fr,
619                      t_mdatoms * gmx_restrict               mdatoms,
620                      nb_kernel_data_t * gmx_restrict        kernel_data,
621                      t_nrnb * gmx_restrict                  nrnb)
622 {
623     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
624      * just 0 for non-waters.
625      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
626      * jnr indices corresponding to data put in the four positions in the SIMD register.
627      */
628     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
629     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
630     int              jnrA,jnrB,jnrC,jnrD;
631     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
632     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
633     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
634     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
635     real             rcutoff_scalar;
636     real             *shiftvec,*fshift,*x,*f;
637     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
638     real             scratch[4*DIM];
639     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
640     real *           vdwioffsetptr0;
641     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
642     real *           vdwioffsetptr1;
643     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
644     real *           vdwioffsetptr2;
645     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
646     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
647     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
648     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
649     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
650     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
651     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
652     real             *charge;
653     __m128i          ewitab;
654     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
655     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
656     real             *ewtab;
657     __m256d          dummy_mask,cutoff_mask;
658     __m128           tmpmask0,tmpmask1;
659     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
660     __m256d          one     = _mm256_set1_pd(1.0);
661     __m256d          two     = _mm256_set1_pd(2.0);
662     x                = xx[0];
663     f                = ff[0];
664
665     nri              = nlist->nri;
666     iinr             = nlist->iinr;
667     jindex           = nlist->jindex;
668     jjnr             = nlist->jjnr;
669     shiftidx         = nlist->shift;
670     gid              = nlist->gid;
671     shiftvec         = fr->shift_vec[0];
672     fshift           = fr->fshift[0];
673     facel            = _mm256_set1_pd(fr->epsfac);
674     charge           = mdatoms->chargeA;
675
676     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
677     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
678     beta2            = _mm256_mul_pd(beta,beta);
679     beta3            = _mm256_mul_pd(beta,beta2);
680
681     ewtab            = fr->ic->tabq_coul_F;
682     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
683     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
684
685     /* Setup water-specific parameters */
686     inr              = nlist->iinr[0];
687     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
688     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
689     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
690
691     /* Avoid stupid compiler warnings */
692     jnrA = jnrB = jnrC = jnrD = 0;
693     j_coord_offsetA = 0;
694     j_coord_offsetB = 0;
695     j_coord_offsetC = 0;
696     j_coord_offsetD = 0;
697
698     outeriter        = 0;
699     inneriter        = 0;
700
701     for(iidx=0;iidx<4*DIM;iidx++)
702     {
703         scratch[iidx] = 0.0;
704     }
705
706     /* Start outer loop over neighborlists */
707     for(iidx=0; iidx<nri; iidx++)
708     {
709         /* Load shift vector for this list */
710         i_shift_offset   = DIM*shiftidx[iidx];
711
712         /* Load limits for loop over neighbors */
713         j_index_start    = jindex[iidx];
714         j_index_end      = jindex[iidx+1];
715
716         /* Get outer coordinate index */
717         inr              = iinr[iidx];
718         i_coord_offset   = DIM*inr;
719
720         /* Load i particle coords and add shift vector */
721         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
722                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
723
724         fix0             = _mm256_setzero_pd();
725         fiy0             = _mm256_setzero_pd();
726         fiz0             = _mm256_setzero_pd();
727         fix1             = _mm256_setzero_pd();
728         fiy1             = _mm256_setzero_pd();
729         fiz1             = _mm256_setzero_pd();
730         fix2             = _mm256_setzero_pd();
731         fiy2             = _mm256_setzero_pd();
732         fiz2             = _mm256_setzero_pd();
733
734         /* Start inner kernel loop */
735         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
736         {
737
738             /* Get j neighbor index, and coordinate index */
739             jnrA             = jjnr[jidx];
740             jnrB             = jjnr[jidx+1];
741             jnrC             = jjnr[jidx+2];
742             jnrD             = jjnr[jidx+3];
743             j_coord_offsetA  = DIM*jnrA;
744             j_coord_offsetB  = DIM*jnrB;
745             j_coord_offsetC  = DIM*jnrC;
746             j_coord_offsetD  = DIM*jnrD;
747
748             /* load j atom coordinates */
749             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
750                                                  x+j_coord_offsetC,x+j_coord_offsetD,
751                                                  &jx0,&jy0,&jz0);
752
753             /* Calculate displacement vector */
754             dx00             = _mm256_sub_pd(ix0,jx0);
755             dy00             = _mm256_sub_pd(iy0,jy0);
756             dz00             = _mm256_sub_pd(iz0,jz0);
757             dx10             = _mm256_sub_pd(ix1,jx0);
758             dy10             = _mm256_sub_pd(iy1,jy0);
759             dz10             = _mm256_sub_pd(iz1,jz0);
760             dx20             = _mm256_sub_pd(ix2,jx0);
761             dy20             = _mm256_sub_pd(iy2,jy0);
762             dz20             = _mm256_sub_pd(iz2,jz0);
763
764             /* Calculate squared distance and things based on it */
765             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
766             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
767             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
768
769             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
770             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
771             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
772
773             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
774             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
775             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
776
777             /* Load parameters for j particles */
778             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
779                                                                  charge+jnrC+0,charge+jnrD+0);
780
781             fjx0             = _mm256_setzero_pd();
782             fjy0             = _mm256_setzero_pd();
783             fjz0             = _mm256_setzero_pd();
784
785             /**************************
786              * CALCULATE INTERACTIONS *
787              **************************/
788
789             r00              = _mm256_mul_pd(rsq00,rinv00);
790
791             /* Compute parameters for interactions between i and j atoms */
792             qq00             = _mm256_mul_pd(iq0,jq0);
793
794             /* EWALD ELECTROSTATICS */
795
796             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
797             ewrt             = _mm256_mul_pd(r00,ewtabscale);
798             ewitab           = _mm256_cvttpd_epi32(ewrt);
799             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
800             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
801                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
802                                             &ewtabF,&ewtabFn);
803             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
804             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
805
806             fscal            = felec;
807
808             /* Calculate temporary vectorial force */
809             tx               = _mm256_mul_pd(fscal,dx00);
810             ty               = _mm256_mul_pd(fscal,dy00);
811             tz               = _mm256_mul_pd(fscal,dz00);
812
813             /* Update vectorial force */
814             fix0             = _mm256_add_pd(fix0,tx);
815             fiy0             = _mm256_add_pd(fiy0,ty);
816             fiz0             = _mm256_add_pd(fiz0,tz);
817
818             fjx0             = _mm256_add_pd(fjx0,tx);
819             fjy0             = _mm256_add_pd(fjy0,ty);
820             fjz0             = _mm256_add_pd(fjz0,tz);
821
822             /**************************
823              * CALCULATE INTERACTIONS *
824              **************************/
825
826             r10              = _mm256_mul_pd(rsq10,rinv10);
827
828             /* Compute parameters for interactions between i and j atoms */
829             qq10             = _mm256_mul_pd(iq1,jq0);
830
831             /* EWALD ELECTROSTATICS */
832
833             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
834             ewrt             = _mm256_mul_pd(r10,ewtabscale);
835             ewitab           = _mm256_cvttpd_epi32(ewrt);
836             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
837             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
838                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
839                                             &ewtabF,&ewtabFn);
840             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
841             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
842
843             fscal            = felec;
844
845             /* Calculate temporary vectorial force */
846             tx               = _mm256_mul_pd(fscal,dx10);
847             ty               = _mm256_mul_pd(fscal,dy10);
848             tz               = _mm256_mul_pd(fscal,dz10);
849
850             /* Update vectorial force */
851             fix1             = _mm256_add_pd(fix1,tx);
852             fiy1             = _mm256_add_pd(fiy1,ty);
853             fiz1             = _mm256_add_pd(fiz1,tz);
854
855             fjx0             = _mm256_add_pd(fjx0,tx);
856             fjy0             = _mm256_add_pd(fjy0,ty);
857             fjz0             = _mm256_add_pd(fjz0,tz);
858
859             /**************************
860              * CALCULATE INTERACTIONS *
861              **************************/
862
863             r20              = _mm256_mul_pd(rsq20,rinv20);
864
865             /* Compute parameters for interactions between i and j atoms */
866             qq20             = _mm256_mul_pd(iq2,jq0);
867
868             /* EWALD ELECTROSTATICS */
869
870             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
871             ewrt             = _mm256_mul_pd(r20,ewtabscale);
872             ewitab           = _mm256_cvttpd_epi32(ewrt);
873             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
874             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
875                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
876                                             &ewtabF,&ewtabFn);
877             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
878             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
879
880             fscal            = felec;
881
882             /* Calculate temporary vectorial force */
883             tx               = _mm256_mul_pd(fscal,dx20);
884             ty               = _mm256_mul_pd(fscal,dy20);
885             tz               = _mm256_mul_pd(fscal,dz20);
886
887             /* Update vectorial force */
888             fix2             = _mm256_add_pd(fix2,tx);
889             fiy2             = _mm256_add_pd(fiy2,ty);
890             fiz2             = _mm256_add_pd(fiz2,tz);
891
892             fjx0             = _mm256_add_pd(fjx0,tx);
893             fjy0             = _mm256_add_pd(fjy0,ty);
894             fjz0             = _mm256_add_pd(fjz0,tz);
895
896             fjptrA             = f+j_coord_offsetA;
897             fjptrB             = f+j_coord_offsetB;
898             fjptrC             = f+j_coord_offsetC;
899             fjptrD             = f+j_coord_offsetD;
900
901             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
902
903             /* Inner loop uses 111 flops */
904         }
905
906         if(jidx<j_index_end)
907         {
908
909             /* Get j neighbor index, and coordinate index */
910             jnrlistA         = jjnr[jidx];
911             jnrlistB         = jjnr[jidx+1];
912             jnrlistC         = jjnr[jidx+2];
913             jnrlistD         = jjnr[jidx+3];
914             /* Sign of each element will be negative for non-real atoms.
915              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
916              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
917              */
918             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
919
920             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
921             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
922             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
923
924             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
925             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
926             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
927             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
928             j_coord_offsetA  = DIM*jnrA;
929             j_coord_offsetB  = DIM*jnrB;
930             j_coord_offsetC  = DIM*jnrC;
931             j_coord_offsetD  = DIM*jnrD;
932
933             /* load j atom coordinates */
934             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
935                                                  x+j_coord_offsetC,x+j_coord_offsetD,
936                                                  &jx0,&jy0,&jz0);
937
938             /* Calculate displacement vector */
939             dx00             = _mm256_sub_pd(ix0,jx0);
940             dy00             = _mm256_sub_pd(iy0,jy0);
941             dz00             = _mm256_sub_pd(iz0,jz0);
942             dx10             = _mm256_sub_pd(ix1,jx0);
943             dy10             = _mm256_sub_pd(iy1,jy0);
944             dz10             = _mm256_sub_pd(iz1,jz0);
945             dx20             = _mm256_sub_pd(ix2,jx0);
946             dy20             = _mm256_sub_pd(iy2,jy0);
947             dz20             = _mm256_sub_pd(iz2,jz0);
948
949             /* Calculate squared distance and things based on it */
950             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
951             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
952             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
953
954             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
955             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
956             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
957
958             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
959             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
960             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
961
962             /* Load parameters for j particles */
963             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
964                                                                  charge+jnrC+0,charge+jnrD+0);
965
966             fjx0             = _mm256_setzero_pd();
967             fjy0             = _mm256_setzero_pd();
968             fjz0             = _mm256_setzero_pd();
969
970             /**************************
971              * CALCULATE INTERACTIONS *
972              **************************/
973
974             r00              = _mm256_mul_pd(rsq00,rinv00);
975             r00              = _mm256_andnot_pd(dummy_mask,r00);
976
977             /* Compute parameters for interactions between i and j atoms */
978             qq00             = _mm256_mul_pd(iq0,jq0);
979
980             /* EWALD ELECTROSTATICS */
981
982             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
983             ewrt             = _mm256_mul_pd(r00,ewtabscale);
984             ewitab           = _mm256_cvttpd_epi32(ewrt);
985             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
986             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
987                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
988                                             &ewtabF,&ewtabFn);
989             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
990             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
991
992             fscal            = felec;
993
994             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
995
996             /* Calculate temporary vectorial force */
997             tx               = _mm256_mul_pd(fscal,dx00);
998             ty               = _mm256_mul_pd(fscal,dy00);
999             tz               = _mm256_mul_pd(fscal,dz00);
1000
1001             /* Update vectorial force */
1002             fix0             = _mm256_add_pd(fix0,tx);
1003             fiy0             = _mm256_add_pd(fiy0,ty);
1004             fiz0             = _mm256_add_pd(fiz0,tz);
1005
1006             fjx0             = _mm256_add_pd(fjx0,tx);
1007             fjy0             = _mm256_add_pd(fjy0,ty);
1008             fjz0             = _mm256_add_pd(fjz0,tz);
1009
1010             /**************************
1011              * CALCULATE INTERACTIONS *
1012              **************************/
1013
1014             r10              = _mm256_mul_pd(rsq10,rinv10);
1015             r10              = _mm256_andnot_pd(dummy_mask,r10);
1016
1017             /* Compute parameters for interactions between i and j atoms */
1018             qq10             = _mm256_mul_pd(iq1,jq0);
1019
1020             /* EWALD ELECTROSTATICS */
1021
1022             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1023             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1024             ewitab           = _mm256_cvttpd_epi32(ewrt);
1025             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1026             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1027                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1028                                             &ewtabF,&ewtabFn);
1029             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1030             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1031
1032             fscal            = felec;
1033
1034             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1035
1036             /* Calculate temporary vectorial force */
1037             tx               = _mm256_mul_pd(fscal,dx10);
1038             ty               = _mm256_mul_pd(fscal,dy10);
1039             tz               = _mm256_mul_pd(fscal,dz10);
1040
1041             /* Update vectorial force */
1042             fix1             = _mm256_add_pd(fix1,tx);
1043             fiy1             = _mm256_add_pd(fiy1,ty);
1044             fiz1             = _mm256_add_pd(fiz1,tz);
1045
1046             fjx0             = _mm256_add_pd(fjx0,tx);
1047             fjy0             = _mm256_add_pd(fjy0,ty);
1048             fjz0             = _mm256_add_pd(fjz0,tz);
1049
1050             /**************************
1051              * CALCULATE INTERACTIONS *
1052              **************************/
1053
1054             r20              = _mm256_mul_pd(rsq20,rinv20);
1055             r20              = _mm256_andnot_pd(dummy_mask,r20);
1056
1057             /* Compute parameters for interactions between i and j atoms */
1058             qq20             = _mm256_mul_pd(iq2,jq0);
1059
1060             /* EWALD ELECTROSTATICS */
1061
1062             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1063             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1064             ewitab           = _mm256_cvttpd_epi32(ewrt);
1065             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1066             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1067                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1068                                             &ewtabF,&ewtabFn);
1069             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1070             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1071
1072             fscal            = felec;
1073
1074             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1075
1076             /* Calculate temporary vectorial force */
1077             tx               = _mm256_mul_pd(fscal,dx20);
1078             ty               = _mm256_mul_pd(fscal,dy20);
1079             tz               = _mm256_mul_pd(fscal,dz20);
1080
1081             /* Update vectorial force */
1082             fix2             = _mm256_add_pd(fix2,tx);
1083             fiy2             = _mm256_add_pd(fiy2,ty);
1084             fiz2             = _mm256_add_pd(fiz2,tz);
1085
1086             fjx0             = _mm256_add_pd(fjx0,tx);
1087             fjy0             = _mm256_add_pd(fjy0,ty);
1088             fjz0             = _mm256_add_pd(fjz0,tz);
1089
1090             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1091             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1092             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1093             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1094
1095             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1096
1097             /* Inner loop uses 114 flops */
1098         }
1099
1100         /* End of innermost loop */
1101
1102         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1103                                                  f+i_coord_offset,fshift+i_shift_offset);
1104
1105         /* Increment number of inner iterations */
1106         inneriter                  += j_index_end - j_index_start;
1107
1108         /* Outer loop uses 18 flops */
1109     }
1110
1111     /* Increment number of outer iterations */
1112     outeriter        += nri;
1113
1114     /* Update outer/inner flops */
1115
1116     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*18 + inneriter*114);
1117 }