made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwLJ_GeomW3W3_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Water3
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
79     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
81     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
83     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
84     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
85     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
86     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
87     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
88     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
89     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
90     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
91     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              nvdwtype;
94     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
95     int              *vdwtype;
96     real             *vdwparam;
97     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
98     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
99     __m128i          ewitab;
100     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
101     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
102     real             *ewtab;
103     __m256d          dummy_mask,cutoff_mask;
104     __m128           tmpmask0,tmpmask1;
105     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
106     __m256d          one     = _mm256_set1_pd(1.0);
107     __m256d          two     = _mm256_set1_pd(2.0);
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = _mm256_set1_pd(fr->epsfac);
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
126     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
127     beta2            = _mm256_mul_pd(beta,beta);
128     beta3            = _mm256_mul_pd(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
137     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
138     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     jq0              = _mm256_set1_pd(charge[inr+0]);
142     jq1              = _mm256_set1_pd(charge[inr+1]);
143     jq2              = _mm256_set1_pd(charge[inr+2]);
144     vdwjidx0A        = 2*vdwtype[inr+0];
145     qq00             = _mm256_mul_pd(iq0,jq0);
146     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
147     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
148     qq01             = _mm256_mul_pd(iq0,jq1);
149     qq02             = _mm256_mul_pd(iq0,jq2);
150     qq10             = _mm256_mul_pd(iq1,jq0);
151     qq11             = _mm256_mul_pd(iq1,jq1);
152     qq12             = _mm256_mul_pd(iq1,jq2);
153     qq20             = _mm256_mul_pd(iq2,jq0);
154     qq21             = _mm256_mul_pd(iq2,jq1);
155     qq22             = _mm256_mul_pd(iq2,jq2);
156
157     /* Avoid stupid compiler warnings */
158     jnrA = jnrB = jnrC = jnrD = 0;
159     j_coord_offsetA = 0;
160     j_coord_offsetB = 0;
161     j_coord_offsetC = 0;
162     j_coord_offsetD = 0;
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     for(iidx=0;iidx<4*DIM;iidx++)
168     {
169         scratch[iidx] = 0.0;
170     }
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177
178         /* Load limits for loop over neighbors */
179         j_index_start    = jindex[iidx];
180         j_index_end      = jindex[iidx+1];
181
182         /* Get outer coordinate index */
183         inr              = iinr[iidx];
184         i_coord_offset   = DIM*inr;
185
186         /* Load i particle coords and add shift vector */
187         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
188                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
189
190         fix0             = _mm256_setzero_pd();
191         fiy0             = _mm256_setzero_pd();
192         fiz0             = _mm256_setzero_pd();
193         fix1             = _mm256_setzero_pd();
194         fiy1             = _mm256_setzero_pd();
195         fiz1             = _mm256_setzero_pd();
196         fix2             = _mm256_setzero_pd();
197         fiy2             = _mm256_setzero_pd();
198         fiz2             = _mm256_setzero_pd();
199
200         /* Reset potential sums */
201         velecsum         = _mm256_setzero_pd();
202         vvdwsum          = _mm256_setzero_pd();
203
204         /* Start inner kernel loop */
205         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
206         {
207
208             /* Get j neighbor index, and coordinate index */
209             jnrA             = jjnr[jidx];
210             jnrB             = jjnr[jidx+1];
211             jnrC             = jjnr[jidx+2];
212             jnrD             = jjnr[jidx+3];
213             j_coord_offsetA  = DIM*jnrA;
214             j_coord_offsetB  = DIM*jnrB;
215             j_coord_offsetC  = DIM*jnrC;
216             j_coord_offsetD  = DIM*jnrD;
217
218             /* load j atom coordinates */
219             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
220                                                  x+j_coord_offsetC,x+j_coord_offsetD,
221                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
222
223             /* Calculate displacement vector */
224             dx00             = _mm256_sub_pd(ix0,jx0);
225             dy00             = _mm256_sub_pd(iy0,jy0);
226             dz00             = _mm256_sub_pd(iz0,jz0);
227             dx01             = _mm256_sub_pd(ix0,jx1);
228             dy01             = _mm256_sub_pd(iy0,jy1);
229             dz01             = _mm256_sub_pd(iz0,jz1);
230             dx02             = _mm256_sub_pd(ix0,jx2);
231             dy02             = _mm256_sub_pd(iy0,jy2);
232             dz02             = _mm256_sub_pd(iz0,jz2);
233             dx10             = _mm256_sub_pd(ix1,jx0);
234             dy10             = _mm256_sub_pd(iy1,jy0);
235             dz10             = _mm256_sub_pd(iz1,jz0);
236             dx11             = _mm256_sub_pd(ix1,jx1);
237             dy11             = _mm256_sub_pd(iy1,jy1);
238             dz11             = _mm256_sub_pd(iz1,jz1);
239             dx12             = _mm256_sub_pd(ix1,jx2);
240             dy12             = _mm256_sub_pd(iy1,jy2);
241             dz12             = _mm256_sub_pd(iz1,jz2);
242             dx20             = _mm256_sub_pd(ix2,jx0);
243             dy20             = _mm256_sub_pd(iy2,jy0);
244             dz20             = _mm256_sub_pd(iz2,jz0);
245             dx21             = _mm256_sub_pd(ix2,jx1);
246             dy21             = _mm256_sub_pd(iy2,jy1);
247             dz21             = _mm256_sub_pd(iz2,jz1);
248             dx22             = _mm256_sub_pd(ix2,jx2);
249             dy22             = _mm256_sub_pd(iy2,jy2);
250             dz22             = _mm256_sub_pd(iz2,jz2);
251
252             /* Calculate squared distance and things based on it */
253             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
254             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
255             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
256             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
257             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
258             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
259             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
260             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
261             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
262
263             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
264             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
265             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
266             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
267             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
268             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
269             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
270             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
271             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
272
273             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
274             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
275             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
276             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
277             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
278             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
279             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
280             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
281             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
282
283             fjx0             = _mm256_setzero_pd();
284             fjy0             = _mm256_setzero_pd();
285             fjz0             = _mm256_setzero_pd();
286             fjx1             = _mm256_setzero_pd();
287             fjy1             = _mm256_setzero_pd();
288             fjz1             = _mm256_setzero_pd();
289             fjx2             = _mm256_setzero_pd();
290             fjy2             = _mm256_setzero_pd();
291             fjz2             = _mm256_setzero_pd();
292
293             /**************************
294              * CALCULATE INTERACTIONS *
295              **************************/
296
297             r00              = _mm256_mul_pd(rsq00,rinv00);
298
299             /* EWALD ELECTROSTATICS */
300
301             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
302             ewrt             = _mm256_mul_pd(r00,ewtabscale);
303             ewitab           = _mm256_cvttpd_epi32(ewrt);
304             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
305             ewitab           = _mm_slli_epi32(ewitab,2);
306             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
307             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
308             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
309             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
310             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
311             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
312             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
313             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
314             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
315
316             /* LENNARD-JONES DISPERSION/REPULSION */
317
318             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
319             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
320             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
321             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
322             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
323
324             /* Update potential sum for this i atom from the interaction with this j atom. */
325             velecsum         = _mm256_add_pd(velecsum,velec);
326             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
327
328             fscal            = _mm256_add_pd(felec,fvdw);
329
330             /* Calculate temporary vectorial force */
331             tx               = _mm256_mul_pd(fscal,dx00);
332             ty               = _mm256_mul_pd(fscal,dy00);
333             tz               = _mm256_mul_pd(fscal,dz00);
334
335             /* Update vectorial force */
336             fix0             = _mm256_add_pd(fix0,tx);
337             fiy0             = _mm256_add_pd(fiy0,ty);
338             fiz0             = _mm256_add_pd(fiz0,tz);
339
340             fjx0             = _mm256_add_pd(fjx0,tx);
341             fjy0             = _mm256_add_pd(fjy0,ty);
342             fjz0             = _mm256_add_pd(fjz0,tz);
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             r01              = _mm256_mul_pd(rsq01,rinv01);
349
350             /* EWALD ELECTROSTATICS */
351
352             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
353             ewrt             = _mm256_mul_pd(r01,ewtabscale);
354             ewitab           = _mm256_cvttpd_epi32(ewrt);
355             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
356             ewitab           = _mm_slli_epi32(ewitab,2);
357             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
358             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
359             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
360             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
361             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
362             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
363             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
364             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(rinv01,velec));
365             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velecsum         = _mm256_add_pd(velecsum,velec);
369
370             fscal            = felec;
371
372             /* Calculate temporary vectorial force */
373             tx               = _mm256_mul_pd(fscal,dx01);
374             ty               = _mm256_mul_pd(fscal,dy01);
375             tz               = _mm256_mul_pd(fscal,dz01);
376
377             /* Update vectorial force */
378             fix0             = _mm256_add_pd(fix0,tx);
379             fiy0             = _mm256_add_pd(fiy0,ty);
380             fiz0             = _mm256_add_pd(fiz0,tz);
381
382             fjx1             = _mm256_add_pd(fjx1,tx);
383             fjy1             = _mm256_add_pd(fjy1,ty);
384             fjz1             = _mm256_add_pd(fjz1,tz);
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r02              = _mm256_mul_pd(rsq02,rinv02);
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = _mm256_mul_pd(r02,ewtabscale);
396             ewitab           = _mm256_cvttpd_epi32(ewrt);
397             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
398             ewitab           = _mm_slli_epi32(ewitab,2);
399             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
400             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
401             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
402             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
403             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
404             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
405             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
406             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(rinv02,velec));
407             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
408
409             /* Update potential sum for this i atom from the interaction with this j atom. */
410             velecsum         = _mm256_add_pd(velecsum,velec);
411
412             fscal            = felec;
413
414             /* Calculate temporary vectorial force */
415             tx               = _mm256_mul_pd(fscal,dx02);
416             ty               = _mm256_mul_pd(fscal,dy02);
417             tz               = _mm256_mul_pd(fscal,dz02);
418
419             /* Update vectorial force */
420             fix0             = _mm256_add_pd(fix0,tx);
421             fiy0             = _mm256_add_pd(fiy0,ty);
422             fiz0             = _mm256_add_pd(fiz0,tz);
423
424             fjx2             = _mm256_add_pd(fjx2,tx);
425             fjy2             = _mm256_add_pd(fjy2,ty);
426             fjz2             = _mm256_add_pd(fjz2,tz);
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             r10              = _mm256_mul_pd(rsq10,rinv10);
433
434             /* EWALD ELECTROSTATICS */
435
436             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
437             ewrt             = _mm256_mul_pd(r10,ewtabscale);
438             ewitab           = _mm256_cvttpd_epi32(ewrt);
439             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
440             ewitab           = _mm_slli_epi32(ewitab,2);
441             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
442             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
443             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
444             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
445             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
446             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
447             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
448             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
449             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
450
451             /* Update potential sum for this i atom from the interaction with this j atom. */
452             velecsum         = _mm256_add_pd(velecsum,velec);
453
454             fscal            = felec;
455
456             /* Calculate temporary vectorial force */
457             tx               = _mm256_mul_pd(fscal,dx10);
458             ty               = _mm256_mul_pd(fscal,dy10);
459             tz               = _mm256_mul_pd(fscal,dz10);
460
461             /* Update vectorial force */
462             fix1             = _mm256_add_pd(fix1,tx);
463             fiy1             = _mm256_add_pd(fiy1,ty);
464             fiz1             = _mm256_add_pd(fiz1,tz);
465
466             fjx0             = _mm256_add_pd(fjx0,tx);
467             fjy0             = _mm256_add_pd(fjy0,ty);
468             fjz0             = _mm256_add_pd(fjz0,tz);
469
470             /**************************
471              * CALCULATE INTERACTIONS *
472              **************************/
473
474             r11              = _mm256_mul_pd(rsq11,rinv11);
475
476             /* EWALD ELECTROSTATICS */
477
478             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
479             ewrt             = _mm256_mul_pd(r11,ewtabscale);
480             ewitab           = _mm256_cvttpd_epi32(ewrt);
481             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
482             ewitab           = _mm_slli_epi32(ewitab,2);
483             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
484             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
485             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
486             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
487             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
488             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
489             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
490             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
491             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
492
493             /* Update potential sum for this i atom from the interaction with this j atom. */
494             velecsum         = _mm256_add_pd(velecsum,velec);
495
496             fscal            = felec;
497
498             /* Calculate temporary vectorial force */
499             tx               = _mm256_mul_pd(fscal,dx11);
500             ty               = _mm256_mul_pd(fscal,dy11);
501             tz               = _mm256_mul_pd(fscal,dz11);
502
503             /* Update vectorial force */
504             fix1             = _mm256_add_pd(fix1,tx);
505             fiy1             = _mm256_add_pd(fiy1,ty);
506             fiz1             = _mm256_add_pd(fiz1,tz);
507
508             fjx1             = _mm256_add_pd(fjx1,tx);
509             fjy1             = _mm256_add_pd(fjy1,ty);
510             fjz1             = _mm256_add_pd(fjz1,tz);
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             r12              = _mm256_mul_pd(rsq12,rinv12);
517
518             /* EWALD ELECTROSTATICS */
519
520             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
521             ewrt             = _mm256_mul_pd(r12,ewtabscale);
522             ewitab           = _mm256_cvttpd_epi32(ewrt);
523             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
524             ewitab           = _mm_slli_epi32(ewitab,2);
525             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
526             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
527             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
528             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
529             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
530             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
531             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
532             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
533             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
534
535             /* Update potential sum for this i atom from the interaction with this j atom. */
536             velecsum         = _mm256_add_pd(velecsum,velec);
537
538             fscal            = felec;
539
540             /* Calculate temporary vectorial force */
541             tx               = _mm256_mul_pd(fscal,dx12);
542             ty               = _mm256_mul_pd(fscal,dy12);
543             tz               = _mm256_mul_pd(fscal,dz12);
544
545             /* Update vectorial force */
546             fix1             = _mm256_add_pd(fix1,tx);
547             fiy1             = _mm256_add_pd(fiy1,ty);
548             fiz1             = _mm256_add_pd(fiz1,tz);
549
550             fjx2             = _mm256_add_pd(fjx2,tx);
551             fjy2             = _mm256_add_pd(fjy2,ty);
552             fjz2             = _mm256_add_pd(fjz2,tz);
553
554             /**************************
555              * CALCULATE INTERACTIONS *
556              **************************/
557
558             r20              = _mm256_mul_pd(rsq20,rinv20);
559
560             /* EWALD ELECTROSTATICS */
561
562             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
563             ewrt             = _mm256_mul_pd(r20,ewtabscale);
564             ewitab           = _mm256_cvttpd_epi32(ewrt);
565             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
566             ewitab           = _mm_slli_epi32(ewitab,2);
567             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
568             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
569             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
570             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
571             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
572             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
573             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
574             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
575             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
576
577             /* Update potential sum for this i atom from the interaction with this j atom. */
578             velecsum         = _mm256_add_pd(velecsum,velec);
579
580             fscal            = felec;
581
582             /* Calculate temporary vectorial force */
583             tx               = _mm256_mul_pd(fscal,dx20);
584             ty               = _mm256_mul_pd(fscal,dy20);
585             tz               = _mm256_mul_pd(fscal,dz20);
586
587             /* Update vectorial force */
588             fix2             = _mm256_add_pd(fix2,tx);
589             fiy2             = _mm256_add_pd(fiy2,ty);
590             fiz2             = _mm256_add_pd(fiz2,tz);
591
592             fjx0             = _mm256_add_pd(fjx0,tx);
593             fjy0             = _mm256_add_pd(fjy0,ty);
594             fjz0             = _mm256_add_pd(fjz0,tz);
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r21              = _mm256_mul_pd(rsq21,rinv21);
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = _mm256_mul_pd(r21,ewtabscale);
606             ewitab           = _mm256_cvttpd_epi32(ewrt);
607             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
608             ewitab           = _mm_slli_epi32(ewitab,2);
609             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
610             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
611             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
612             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
613             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
614             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
615             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
616             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
617             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
618
619             /* Update potential sum for this i atom from the interaction with this j atom. */
620             velecsum         = _mm256_add_pd(velecsum,velec);
621
622             fscal            = felec;
623
624             /* Calculate temporary vectorial force */
625             tx               = _mm256_mul_pd(fscal,dx21);
626             ty               = _mm256_mul_pd(fscal,dy21);
627             tz               = _mm256_mul_pd(fscal,dz21);
628
629             /* Update vectorial force */
630             fix2             = _mm256_add_pd(fix2,tx);
631             fiy2             = _mm256_add_pd(fiy2,ty);
632             fiz2             = _mm256_add_pd(fiz2,tz);
633
634             fjx1             = _mm256_add_pd(fjx1,tx);
635             fjy1             = _mm256_add_pd(fjy1,ty);
636             fjz1             = _mm256_add_pd(fjz1,tz);
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             r22              = _mm256_mul_pd(rsq22,rinv22);
643
644             /* EWALD ELECTROSTATICS */
645
646             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
647             ewrt             = _mm256_mul_pd(r22,ewtabscale);
648             ewitab           = _mm256_cvttpd_epi32(ewrt);
649             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
650             ewitab           = _mm_slli_epi32(ewitab,2);
651             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
652             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
653             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
654             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
655             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
656             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
657             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
658             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
659             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
660
661             /* Update potential sum for this i atom from the interaction with this j atom. */
662             velecsum         = _mm256_add_pd(velecsum,velec);
663
664             fscal            = felec;
665
666             /* Calculate temporary vectorial force */
667             tx               = _mm256_mul_pd(fscal,dx22);
668             ty               = _mm256_mul_pd(fscal,dy22);
669             tz               = _mm256_mul_pd(fscal,dz22);
670
671             /* Update vectorial force */
672             fix2             = _mm256_add_pd(fix2,tx);
673             fiy2             = _mm256_add_pd(fiy2,ty);
674             fiz2             = _mm256_add_pd(fiz2,tz);
675
676             fjx2             = _mm256_add_pd(fjx2,tx);
677             fjy2             = _mm256_add_pd(fjy2,ty);
678             fjz2             = _mm256_add_pd(fjz2,tz);
679
680             fjptrA             = f+j_coord_offsetA;
681             fjptrB             = f+j_coord_offsetB;
682             fjptrC             = f+j_coord_offsetC;
683             fjptrD             = f+j_coord_offsetD;
684
685             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
686                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
687
688             /* Inner loop uses 381 flops */
689         }
690
691         if(jidx<j_index_end)
692         {
693
694             /* Get j neighbor index, and coordinate index */
695             jnrlistA         = jjnr[jidx];
696             jnrlistB         = jjnr[jidx+1];
697             jnrlistC         = jjnr[jidx+2];
698             jnrlistD         = jjnr[jidx+3];
699             /* Sign of each element will be negative for non-real atoms.
700              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
701              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
702              */
703             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
704
705             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
706             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
707             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
708
709             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
710             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
711             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
712             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
713             j_coord_offsetA  = DIM*jnrA;
714             j_coord_offsetB  = DIM*jnrB;
715             j_coord_offsetC  = DIM*jnrC;
716             j_coord_offsetD  = DIM*jnrD;
717
718             /* load j atom coordinates */
719             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
720                                                  x+j_coord_offsetC,x+j_coord_offsetD,
721                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
722
723             /* Calculate displacement vector */
724             dx00             = _mm256_sub_pd(ix0,jx0);
725             dy00             = _mm256_sub_pd(iy0,jy0);
726             dz00             = _mm256_sub_pd(iz0,jz0);
727             dx01             = _mm256_sub_pd(ix0,jx1);
728             dy01             = _mm256_sub_pd(iy0,jy1);
729             dz01             = _mm256_sub_pd(iz0,jz1);
730             dx02             = _mm256_sub_pd(ix0,jx2);
731             dy02             = _mm256_sub_pd(iy0,jy2);
732             dz02             = _mm256_sub_pd(iz0,jz2);
733             dx10             = _mm256_sub_pd(ix1,jx0);
734             dy10             = _mm256_sub_pd(iy1,jy0);
735             dz10             = _mm256_sub_pd(iz1,jz0);
736             dx11             = _mm256_sub_pd(ix1,jx1);
737             dy11             = _mm256_sub_pd(iy1,jy1);
738             dz11             = _mm256_sub_pd(iz1,jz1);
739             dx12             = _mm256_sub_pd(ix1,jx2);
740             dy12             = _mm256_sub_pd(iy1,jy2);
741             dz12             = _mm256_sub_pd(iz1,jz2);
742             dx20             = _mm256_sub_pd(ix2,jx0);
743             dy20             = _mm256_sub_pd(iy2,jy0);
744             dz20             = _mm256_sub_pd(iz2,jz0);
745             dx21             = _mm256_sub_pd(ix2,jx1);
746             dy21             = _mm256_sub_pd(iy2,jy1);
747             dz21             = _mm256_sub_pd(iz2,jz1);
748             dx22             = _mm256_sub_pd(ix2,jx2);
749             dy22             = _mm256_sub_pd(iy2,jy2);
750             dz22             = _mm256_sub_pd(iz2,jz2);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
754             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
755             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
756             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
757             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
758             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
759             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
760             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
761             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
762
763             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
764             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
765             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
766             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
767             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
768             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
769             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
770             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
771             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
772
773             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
774             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
775             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
776             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
777             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
778             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
779             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
780             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
781             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
782
783             fjx0             = _mm256_setzero_pd();
784             fjy0             = _mm256_setzero_pd();
785             fjz0             = _mm256_setzero_pd();
786             fjx1             = _mm256_setzero_pd();
787             fjy1             = _mm256_setzero_pd();
788             fjz1             = _mm256_setzero_pd();
789             fjx2             = _mm256_setzero_pd();
790             fjy2             = _mm256_setzero_pd();
791             fjz2             = _mm256_setzero_pd();
792
793             /**************************
794              * CALCULATE INTERACTIONS *
795              **************************/
796
797             r00              = _mm256_mul_pd(rsq00,rinv00);
798             r00              = _mm256_andnot_pd(dummy_mask,r00);
799
800             /* EWALD ELECTROSTATICS */
801
802             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
803             ewrt             = _mm256_mul_pd(r00,ewtabscale);
804             ewitab           = _mm256_cvttpd_epi32(ewrt);
805             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
806             ewitab           = _mm_slli_epi32(ewitab,2);
807             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
808             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
809             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
810             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
811             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
812             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
813             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
814             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
815             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
816
817             /* LENNARD-JONES DISPERSION/REPULSION */
818
819             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
820             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
821             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
822             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
823             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
824
825             /* Update potential sum for this i atom from the interaction with this j atom. */
826             velec            = _mm256_andnot_pd(dummy_mask,velec);
827             velecsum         = _mm256_add_pd(velecsum,velec);
828             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
829             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
830
831             fscal            = _mm256_add_pd(felec,fvdw);
832
833             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
834
835             /* Calculate temporary vectorial force */
836             tx               = _mm256_mul_pd(fscal,dx00);
837             ty               = _mm256_mul_pd(fscal,dy00);
838             tz               = _mm256_mul_pd(fscal,dz00);
839
840             /* Update vectorial force */
841             fix0             = _mm256_add_pd(fix0,tx);
842             fiy0             = _mm256_add_pd(fiy0,ty);
843             fiz0             = _mm256_add_pd(fiz0,tz);
844
845             fjx0             = _mm256_add_pd(fjx0,tx);
846             fjy0             = _mm256_add_pd(fjy0,ty);
847             fjz0             = _mm256_add_pd(fjz0,tz);
848
849             /**************************
850              * CALCULATE INTERACTIONS *
851              **************************/
852
853             r01              = _mm256_mul_pd(rsq01,rinv01);
854             r01              = _mm256_andnot_pd(dummy_mask,r01);
855
856             /* EWALD ELECTROSTATICS */
857
858             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
859             ewrt             = _mm256_mul_pd(r01,ewtabscale);
860             ewitab           = _mm256_cvttpd_epi32(ewrt);
861             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
862             ewitab           = _mm_slli_epi32(ewitab,2);
863             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
864             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
865             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
866             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
867             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
868             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
869             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
870             velec            = _mm256_mul_pd(qq01,_mm256_sub_pd(rinv01,velec));
871             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
872
873             /* Update potential sum for this i atom from the interaction with this j atom. */
874             velec            = _mm256_andnot_pd(dummy_mask,velec);
875             velecsum         = _mm256_add_pd(velecsum,velec);
876
877             fscal            = felec;
878
879             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
880
881             /* Calculate temporary vectorial force */
882             tx               = _mm256_mul_pd(fscal,dx01);
883             ty               = _mm256_mul_pd(fscal,dy01);
884             tz               = _mm256_mul_pd(fscal,dz01);
885
886             /* Update vectorial force */
887             fix0             = _mm256_add_pd(fix0,tx);
888             fiy0             = _mm256_add_pd(fiy0,ty);
889             fiz0             = _mm256_add_pd(fiz0,tz);
890
891             fjx1             = _mm256_add_pd(fjx1,tx);
892             fjy1             = _mm256_add_pd(fjy1,ty);
893             fjz1             = _mm256_add_pd(fjz1,tz);
894
895             /**************************
896              * CALCULATE INTERACTIONS *
897              **************************/
898
899             r02              = _mm256_mul_pd(rsq02,rinv02);
900             r02              = _mm256_andnot_pd(dummy_mask,r02);
901
902             /* EWALD ELECTROSTATICS */
903
904             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
905             ewrt             = _mm256_mul_pd(r02,ewtabscale);
906             ewitab           = _mm256_cvttpd_epi32(ewrt);
907             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
908             ewitab           = _mm_slli_epi32(ewitab,2);
909             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
910             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
911             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
912             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
913             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
914             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
915             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
916             velec            = _mm256_mul_pd(qq02,_mm256_sub_pd(rinv02,velec));
917             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
918
919             /* Update potential sum for this i atom from the interaction with this j atom. */
920             velec            = _mm256_andnot_pd(dummy_mask,velec);
921             velecsum         = _mm256_add_pd(velecsum,velec);
922
923             fscal            = felec;
924
925             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
926
927             /* Calculate temporary vectorial force */
928             tx               = _mm256_mul_pd(fscal,dx02);
929             ty               = _mm256_mul_pd(fscal,dy02);
930             tz               = _mm256_mul_pd(fscal,dz02);
931
932             /* Update vectorial force */
933             fix0             = _mm256_add_pd(fix0,tx);
934             fiy0             = _mm256_add_pd(fiy0,ty);
935             fiz0             = _mm256_add_pd(fiz0,tz);
936
937             fjx2             = _mm256_add_pd(fjx2,tx);
938             fjy2             = _mm256_add_pd(fjy2,ty);
939             fjz2             = _mm256_add_pd(fjz2,tz);
940
941             /**************************
942              * CALCULATE INTERACTIONS *
943              **************************/
944
945             r10              = _mm256_mul_pd(rsq10,rinv10);
946             r10              = _mm256_andnot_pd(dummy_mask,r10);
947
948             /* EWALD ELECTROSTATICS */
949
950             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
951             ewrt             = _mm256_mul_pd(r10,ewtabscale);
952             ewitab           = _mm256_cvttpd_epi32(ewrt);
953             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
954             ewitab           = _mm_slli_epi32(ewitab,2);
955             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
956             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
957             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
958             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
959             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
960             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
961             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
962             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
963             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
964
965             /* Update potential sum for this i atom from the interaction with this j atom. */
966             velec            = _mm256_andnot_pd(dummy_mask,velec);
967             velecsum         = _mm256_add_pd(velecsum,velec);
968
969             fscal            = felec;
970
971             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
972
973             /* Calculate temporary vectorial force */
974             tx               = _mm256_mul_pd(fscal,dx10);
975             ty               = _mm256_mul_pd(fscal,dy10);
976             tz               = _mm256_mul_pd(fscal,dz10);
977
978             /* Update vectorial force */
979             fix1             = _mm256_add_pd(fix1,tx);
980             fiy1             = _mm256_add_pd(fiy1,ty);
981             fiz1             = _mm256_add_pd(fiz1,tz);
982
983             fjx0             = _mm256_add_pd(fjx0,tx);
984             fjy0             = _mm256_add_pd(fjy0,ty);
985             fjz0             = _mm256_add_pd(fjz0,tz);
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             r11              = _mm256_mul_pd(rsq11,rinv11);
992             r11              = _mm256_andnot_pd(dummy_mask,r11);
993
994             /* EWALD ELECTROSTATICS */
995
996             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
997             ewrt             = _mm256_mul_pd(r11,ewtabscale);
998             ewitab           = _mm256_cvttpd_epi32(ewrt);
999             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1000             ewitab           = _mm_slli_epi32(ewitab,2);
1001             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1002             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1003             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1004             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1005             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1006             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1007             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1008             velec            = _mm256_mul_pd(qq11,_mm256_sub_pd(rinv11,velec));
1009             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1010
1011             /* Update potential sum for this i atom from the interaction with this j atom. */
1012             velec            = _mm256_andnot_pd(dummy_mask,velec);
1013             velecsum         = _mm256_add_pd(velecsum,velec);
1014
1015             fscal            = felec;
1016
1017             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1018
1019             /* Calculate temporary vectorial force */
1020             tx               = _mm256_mul_pd(fscal,dx11);
1021             ty               = _mm256_mul_pd(fscal,dy11);
1022             tz               = _mm256_mul_pd(fscal,dz11);
1023
1024             /* Update vectorial force */
1025             fix1             = _mm256_add_pd(fix1,tx);
1026             fiy1             = _mm256_add_pd(fiy1,ty);
1027             fiz1             = _mm256_add_pd(fiz1,tz);
1028
1029             fjx1             = _mm256_add_pd(fjx1,tx);
1030             fjy1             = _mm256_add_pd(fjy1,ty);
1031             fjz1             = _mm256_add_pd(fjz1,tz);
1032
1033             /**************************
1034              * CALCULATE INTERACTIONS *
1035              **************************/
1036
1037             r12              = _mm256_mul_pd(rsq12,rinv12);
1038             r12              = _mm256_andnot_pd(dummy_mask,r12);
1039
1040             /* EWALD ELECTROSTATICS */
1041
1042             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1043             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1044             ewitab           = _mm256_cvttpd_epi32(ewrt);
1045             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1046             ewitab           = _mm_slli_epi32(ewitab,2);
1047             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1048             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1049             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1050             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1051             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1052             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1053             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1054             velec            = _mm256_mul_pd(qq12,_mm256_sub_pd(rinv12,velec));
1055             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1056
1057             /* Update potential sum for this i atom from the interaction with this j atom. */
1058             velec            = _mm256_andnot_pd(dummy_mask,velec);
1059             velecsum         = _mm256_add_pd(velecsum,velec);
1060
1061             fscal            = felec;
1062
1063             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1064
1065             /* Calculate temporary vectorial force */
1066             tx               = _mm256_mul_pd(fscal,dx12);
1067             ty               = _mm256_mul_pd(fscal,dy12);
1068             tz               = _mm256_mul_pd(fscal,dz12);
1069
1070             /* Update vectorial force */
1071             fix1             = _mm256_add_pd(fix1,tx);
1072             fiy1             = _mm256_add_pd(fiy1,ty);
1073             fiz1             = _mm256_add_pd(fiz1,tz);
1074
1075             fjx2             = _mm256_add_pd(fjx2,tx);
1076             fjy2             = _mm256_add_pd(fjy2,ty);
1077             fjz2             = _mm256_add_pd(fjz2,tz);
1078
1079             /**************************
1080              * CALCULATE INTERACTIONS *
1081              **************************/
1082
1083             r20              = _mm256_mul_pd(rsq20,rinv20);
1084             r20              = _mm256_andnot_pd(dummy_mask,r20);
1085
1086             /* EWALD ELECTROSTATICS */
1087
1088             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1089             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1090             ewitab           = _mm256_cvttpd_epi32(ewrt);
1091             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1092             ewitab           = _mm_slli_epi32(ewitab,2);
1093             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1094             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1095             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1096             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1097             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1098             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1099             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1100             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1101             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1102
1103             /* Update potential sum for this i atom from the interaction with this j atom. */
1104             velec            = _mm256_andnot_pd(dummy_mask,velec);
1105             velecsum         = _mm256_add_pd(velecsum,velec);
1106
1107             fscal            = felec;
1108
1109             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1110
1111             /* Calculate temporary vectorial force */
1112             tx               = _mm256_mul_pd(fscal,dx20);
1113             ty               = _mm256_mul_pd(fscal,dy20);
1114             tz               = _mm256_mul_pd(fscal,dz20);
1115
1116             /* Update vectorial force */
1117             fix2             = _mm256_add_pd(fix2,tx);
1118             fiy2             = _mm256_add_pd(fiy2,ty);
1119             fiz2             = _mm256_add_pd(fiz2,tz);
1120
1121             fjx0             = _mm256_add_pd(fjx0,tx);
1122             fjy0             = _mm256_add_pd(fjy0,ty);
1123             fjz0             = _mm256_add_pd(fjz0,tz);
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             r21              = _mm256_mul_pd(rsq21,rinv21);
1130             r21              = _mm256_andnot_pd(dummy_mask,r21);
1131
1132             /* EWALD ELECTROSTATICS */
1133
1134             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1135             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1136             ewitab           = _mm256_cvttpd_epi32(ewrt);
1137             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1138             ewitab           = _mm_slli_epi32(ewitab,2);
1139             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1140             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1141             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1142             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1143             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1144             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1145             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1146             velec            = _mm256_mul_pd(qq21,_mm256_sub_pd(rinv21,velec));
1147             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1148
1149             /* Update potential sum for this i atom from the interaction with this j atom. */
1150             velec            = _mm256_andnot_pd(dummy_mask,velec);
1151             velecsum         = _mm256_add_pd(velecsum,velec);
1152
1153             fscal            = felec;
1154
1155             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1156
1157             /* Calculate temporary vectorial force */
1158             tx               = _mm256_mul_pd(fscal,dx21);
1159             ty               = _mm256_mul_pd(fscal,dy21);
1160             tz               = _mm256_mul_pd(fscal,dz21);
1161
1162             /* Update vectorial force */
1163             fix2             = _mm256_add_pd(fix2,tx);
1164             fiy2             = _mm256_add_pd(fiy2,ty);
1165             fiz2             = _mm256_add_pd(fiz2,tz);
1166
1167             fjx1             = _mm256_add_pd(fjx1,tx);
1168             fjy1             = _mm256_add_pd(fjy1,ty);
1169             fjz1             = _mm256_add_pd(fjz1,tz);
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             r22              = _mm256_mul_pd(rsq22,rinv22);
1176             r22              = _mm256_andnot_pd(dummy_mask,r22);
1177
1178             /* EWALD ELECTROSTATICS */
1179
1180             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1181             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1182             ewitab           = _mm256_cvttpd_epi32(ewrt);
1183             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1184             ewitab           = _mm_slli_epi32(ewitab,2);
1185             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1186             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1187             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1188             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1189             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1190             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1191             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1192             velec            = _mm256_mul_pd(qq22,_mm256_sub_pd(rinv22,velec));
1193             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1194
1195             /* Update potential sum for this i atom from the interaction with this j atom. */
1196             velec            = _mm256_andnot_pd(dummy_mask,velec);
1197             velecsum         = _mm256_add_pd(velecsum,velec);
1198
1199             fscal            = felec;
1200
1201             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1202
1203             /* Calculate temporary vectorial force */
1204             tx               = _mm256_mul_pd(fscal,dx22);
1205             ty               = _mm256_mul_pd(fscal,dy22);
1206             tz               = _mm256_mul_pd(fscal,dz22);
1207
1208             /* Update vectorial force */
1209             fix2             = _mm256_add_pd(fix2,tx);
1210             fiy2             = _mm256_add_pd(fiy2,ty);
1211             fiz2             = _mm256_add_pd(fiz2,tz);
1212
1213             fjx2             = _mm256_add_pd(fjx2,tx);
1214             fjy2             = _mm256_add_pd(fjy2,ty);
1215             fjz2             = _mm256_add_pd(fjz2,tz);
1216
1217             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1218             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1219             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1220             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1221
1222             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1223                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1224
1225             /* Inner loop uses 390 flops */
1226         }
1227
1228         /* End of innermost loop */
1229
1230         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1231                                                  f+i_coord_offset,fshift+i_shift_offset);
1232
1233         ggid                        = gid[iidx];
1234         /* Update potential energies */
1235         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
1236         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
1237
1238         /* Increment number of inner iterations */
1239         inneriter                  += j_index_end - j_index_start;
1240
1241         /* Outer loop uses 20 flops */
1242     }
1243
1244     /* Increment number of outer iterations */
1245     outeriter        += nri;
1246
1247     /* Update outer/inner flops */
1248
1249     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*20 + inneriter*390);
1250 }
1251 /*
1252  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_avx_256_double
1253  * Electrostatics interaction: Ewald
1254  * VdW interaction:            LennardJones
1255  * Geometry:                   Water3-Water3
1256  * Calculate force/pot:        Force
1257  */
1258 void
1259 nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_avx_256_double
1260                     (t_nblist * gmx_restrict                nlist,
1261                      rvec * gmx_restrict                    xx,
1262                      rvec * gmx_restrict                    ff,
1263                      t_forcerec * gmx_restrict              fr,
1264                      t_mdatoms * gmx_restrict               mdatoms,
1265                      nb_kernel_data_t * gmx_restrict        kernel_data,
1266                      t_nrnb * gmx_restrict                  nrnb)
1267 {
1268     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
1269      * just 0 for non-waters.
1270      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
1271      * jnr indices corresponding to data put in the four positions in the SIMD register.
1272      */
1273     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
1274     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
1275     int              jnrA,jnrB,jnrC,jnrD;
1276     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
1277     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
1278     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
1279     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
1280     real             rcutoff_scalar;
1281     real             *shiftvec,*fshift,*x,*f;
1282     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
1283     real             scratch[4*DIM];
1284     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
1285     real *           vdwioffsetptr0;
1286     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
1287     real *           vdwioffsetptr1;
1288     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
1289     real *           vdwioffsetptr2;
1290     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
1291     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
1292     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
1293     int              vdwjidx1A,vdwjidx1B,vdwjidx1C,vdwjidx1D;
1294     __m256d          jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
1295     int              vdwjidx2A,vdwjidx2B,vdwjidx2C,vdwjidx2D;
1296     __m256d          jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
1297     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
1298     __m256d          dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01;
1299     __m256d          dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02;
1300     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
1301     __m256d          dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11;
1302     __m256d          dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12;
1303     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
1304     __m256d          dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21;
1305     __m256d          dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22;
1306     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
1307     real             *charge;
1308     int              nvdwtype;
1309     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
1310     int              *vdwtype;
1311     real             *vdwparam;
1312     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
1313     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
1314     __m128i          ewitab;
1315     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
1316     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
1317     real             *ewtab;
1318     __m256d          dummy_mask,cutoff_mask;
1319     __m128           tmpmask0,tmpmask1;
1320     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
1321     __m256d          one     = _mm256_set1_pd(1.0);
1322     __m256d          two     = _mm256_set1_pd(2.0);
1323     x                = xx[0];
1324     f                = ff[0];
1325
1326     nri              = nlist->nri;
1327     iinr             = nlist->iinr;
1328     jindex           = nlist->jindex;
1329     jjnr             = nlist->jjnr;
1330     shiftidx         = nlist->shift;
1331     gid              = nlist->gid;
1332     shiftvec         = fr->shift_vec[0];
1333     fshift           = fr->fshift[0];
1334     facel            = _mm256_set1_pd(fr->epsfac);
1335     charge           = mdatoms->chargeA;
1336     nvdwtype         = fr->ntype;
1337     vdwparam         = fr->nbfp;
1338     vdwtype          = mdatoms->typeA;
1339
1340     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
1341     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
1342     beta2            = _mm256_mul_pd(beta,beta);
1343     beta3            = _mm256_mul_pd(beta,beta2);
1344
1345     ewtab            = fr->ic->tabq_coul_F;
1346     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
1347     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
1348
1349     /* Setup water-specific parameters */
1350     inr              = nlist->iinr[0];
1351     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
1352     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
1353     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
1354     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
1355
1356     jq0              = _mm256_set1_pd(charge[inr+0]);
1357     jq1              = _mm256_set1_pd(charge[inr+1]);
1358     jq2              = _mm256_set1_pd(charge[inr+2]);
1359     vdwjidx0A        = 2*vdwtype[inr+0];
1360     qq00             = _mm256_mul_pd(iq0,jq0);
1361     c6_00            = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A]);
1362     c12_00           = _mm256_set1_pd(vdwioffsetptr0[vdwjidx0A+1]);
1363     qq01             = _mm256_mul_pd(iq0,jq1);
1364     qq02             = _mm256_mul_pd(iq0,jq2);
1365     qq10             = _mm256_mul_pd(iq1,jq0);
1366     qq11             = _mm256_mul_pd(iq1,jq1);
1367     qq12             = _mm256_mul_pd(iq1,jq2);
1368     qq20             = _mm256_mul_pd(iq2,jq0);
1369     qq21             = _mm256_mul_pd(iq2,jq1);
1370     qq22             = _mm256_mul_pd(iq2,jq2);
1371
1372     /* Avoid stupid compiler warnings */
1373     jnrA = jnrB = jnrC = jnrD = 0;
1374     j_coord_offsetA = 0;
1375     j_coord_offsetB = 0;
1376     j_coord_offsetC = 0;
1377     j_coord_offsetD = 0;
1378
1379     outeriter        = 0;
1380     inneriter        = 0;
1381
1382     for(iidx=0;iidx<4*DIM;iidx++)
1383     {
1384         scratch[iidx] = 0.0;
1385     }
1386
1387     /* Start outer loop over neighborlists */
1388     for(iidx=0; iidx<nri; iidx++)
1389     {
1390         /* Load shift vector for this list */
1391         i_shift_offset   = DIM*shiftidx[iidx];
1392
1393         /* Load limits for loop over neighbors */
1394         j_index_start    = jindex[iidx];
1395         j_index_end      = jindex[iidx+1];
1396
1397         /* Get outer coordinate index */
1398         inr              = iinr[iidx];
1399         i_coord_offset   = DIM*inr;
1400
1401         /* Load i particle coords and add shift vector */
1402         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
1403                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
1404
1405         fix0             = _mm256_setzero_pd();
1406         fiy0             = _mm256_setzero_pd();
1407         fiz0             = _mm256_setzero_pd();
1408         fix1             = _mm256_setzero_pd();
1409         fiy1             = _mm256_setzero_pd();
1410         fiz1             = _mm256_setzero_pd();
1411         fix2             = _mm256_setzero_pd();
1412         fiy2             = _mm256_setzero_pd();
1413         fiz2             = _mm256_setzero_pd();
1414
1415         /* Start inner kernel loop */
1416         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
1417         {
1418
1419             /* Get j neighbor index, and coordinate index */
1420             jnrA             = jjnr[jidx];
1421             jnrB             = jjnr[jidx+1];
1422             jnrC             = jjnr[jidx+2];
1423             jnrD             = jjnr[jidx+3];
1424             j_coord_offsetA  = DIM*jnrA;
1425             j_coord_offsetB  = DIM*jnrB;
1426             j_coord_offsetC  = DIM*jnrC;
1427             j_coord_offsetD  = DIM*jnrD;
1428
1429             /* load j atom coordinates */
1430             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1431                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1432                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1433
1434             /* Calculate displacement vector */
1435             dx00             = _mm256_sub_pd(ix0,jx0);
1436             dy00             = _mm256_sub_pd(iy0,jy0);
1437             dz00             = _mm256_sub_pd(iz0,jz0);
1438             dx01             = _mm256_sub_pd(ix0,jx1);
1439             dy01             = _mm256_sub_pd(iy0,jy1);
1440             dz01             = _mm256_sub_pd(iz0,jz1);
1441             dx02             = _mm256_sub_pd(ix0,jx2);
1442             dy02             = _mm256_sub_pd(iy0,jy2);
1443             dz02             = _mm256_sub_pd(iz0,jz2);
1444             dx10             = _mm256_sub_pd(ix1,jx0);
1445             dy10             = _mm256_sub_pd(iy1,jy0);
1446             dz10             = _mm256_sub_pd(iz1,jz0);
1447             dx11             = _mm256_sub_pd(ix1,jx1);
1448             dy11             = _mm256_sub_pd(iy1,jy1);
1449             dz11             = _mm256_sub_pd(iz1,jz1);
1450             dx12             = _mm256_sub_pd(ix1,jx2);
1451             dy12             = _mm256_sub_pd(iy1,jy2);
1452             dz12             = _mm256_sub_pd(iz1,jz2);
1453             dx20             = _mm256_sub_pd(ix2,jx0);
1454             dy20             = _mm256_sub_pd(iy2,jy0);
1455             dz20             = _mm256_sub_pd(iz2,jz0);
1456             dx21             = _mm256_sub_pd(ix2,jx1);
1457             dy21             = _mm256_sub_pd(iy2,jy1);
1458             dz21             = _mm256_sub_pd(iz2,jz1);
1459             dx22             = _mm256_sub_pd(ix2,jx2);
1460             dy22             = _mm256_sub_pd(iy2,jy2);
1461             dz22             = _mm256_sub_pd(iz2,jz2);
1462
1463             /* Calculate squared distance and things based on it */
1464             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1465             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1466             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1467             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1468             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1469             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1470             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1471             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1472             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1473
1474             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1475             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1476             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1477             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1478             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1479             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1480             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1481             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1482             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1483
1484             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1485             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
1486             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
1487             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1488             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1489             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1490             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1491             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1492             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1493
1494             fjx0             = _mm256_setzero_pd();
1495             fjy0             = _mm256_setzero_pd();
1496             fjz0             = _mm256_setzero_pd();
1497             fjx1             = _mm256_setzero_pd();
1498             fjy1             = _mm256_setzero_pd();
1499             fjz1             = _mm256_setzero_pd();
1500             fjx2             = _mm256_setzero_pd();
1501             fjy2             = _mm256_setzero_pd();
1502             fjz2             = _mm256_setzero_pd();
1503
1504             /**************************
1505              * CALCULATE INTERACTIONS *
1506              **************************/
1507
1508             r00              = _mm256_mul_pd(rsq00,rinv00);
1509
1510             /* EWALD ELECTROSTATICS */
1511
1512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1513             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1514             ewitab           = _mm256_cvttpd_epi32(ewrt);
1515             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1516             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1517                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1518                                             &ewtabF,&ewtabFn);
1519             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1520             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1521
1522             /* LENNARD-JONES DISPERSION/REPULSION */
1523
1524             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1525             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1526
1527             fscal            = _mm256_add_pd(felec,fvdw);
1528
1529             /* Calculate temporary vectorial force */
1530             tx               = _mm256_mul_pd(fscal,dx00);
1531             ty               = _mm256_mul_pd(fscal,dy00);
1532             tz               = _mm256_mul_pd(fscal,dz00);
1533
1534             /* Update vectorial force */
1535             fix0             = _mm256_add_pd(fix0,tx);
1536             fiy0             = _mm256_add_pd(fiy0,ty);
1537             fiz0             = _mm256_add_pd(fiz0,tz);
1538
1539             fjx0             = _mm256_add_pd(fjx0,tx);
1540             fjy0             = _mm256_add_pd(fjy0,ty);
1541             fjz0             = _mm256_add_pd(fjz0,tz);
1542
1543             /**************************
1544              * CALCULATE INTERACTIONS *
1545              **************************/
1546
1547             r01              = _mm256_mul_pd(rsq01,rinv01);
1548
1549             /* EWALD ELECTROSTATICS */
1550
1551             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1552             ewrt             = _mm256_mul_pd(r01,ewtabscale);
1553             ewitab           = _mm256_cvttpd_epi32(ewrt);
1554             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1555             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1556                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1557                                             &ewtabF,&ewtabFn);
1558             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1559             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
1560
1561             fscal            = felec;
1562
1563             /* Calculate temporary vectorial force */
1564             tx               = _mm256_mul_pd(fscal,dx01);
1565             ty               = _mm256_mul_pd(fscal,dy01);
1566             tz               = _mm256_mul_pd(fscal,dz01);
1567
1568             /* Update vectorial force */
1569             fix0             = _mm256_add_pd(fix0,tx);
1570             fiy0             = _mm256_add_pd(fiy0,ty);
1571             fiz0             = _mm256_add_pd(fiz0,tz);
1572
1573             fjx1             = _mm256_add_pd(fjx1,tx);
1574             fjy1             = _mm256_add_pd(fjy1,ty);
1575             fjz1             = _mm256_add_pd(fjz1,tz);
1576
1577             /**************************
1578              * CALCULATE INTERACTIONS *
1579              **************************/
1580
1581             r02              = _mm256_mul_pd(rsq02,rinv02);
1582
1583             /* EWALD ELECTROSTATICS */
1584
1585             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1586             ewrt             = _mm256_mul_pd(r02,ewtabscale);
1587             ewitab           = _mm256_cvttpd_epi32(ewrt);
1588             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1589             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1590                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1591                                             &ewtabF,&ewtabFn);
1592             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1593             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
1594
1595             fscal            = felec;
1596
1597             /* Calculate temporary vectorial force */
1598             tx               = _mm256_mul_pd(fscal,dx02);
1599             ty               = _mm256_mul_pd(fscal,dy02);
1600             tz               = _mm256_mul_pd(fscal,dz02);
1601
1602             /* Update vectorial force */
1603             fix0             = _mm256_add_pd(fix0,tx);
1604             fiy0             = _mm256_add_pd(fiy0,ty);
1605             fiz0             = _mm256_add_pd(fiz0,tz);
1606
1607             fjx2             = _mm256_add_pd(fjx2,tx);
1608             fjy2             = _mm256_add_pd(fjy2,ty);
1609             fjz2             = _mm256_add_pd(fjz2,tz);
1610
1611             /**************************
1612              * CALCULATE INTERACTIONS *
1613              **************************/
1614
1615             r10              = _mm256_mul_pd(rsq10,rinv10);
1616
1617             /* EWALD ELECTROSTATICS */
1618
1619             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1620             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1621             ewitab           = _mm256_cvttpd_epi32(ewrt);
1622             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1623             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1624                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1625                                             &ewtabF,&ewtabFn);
1626             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1627             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1628
1629             fscal            = felec;
1630
1631             /* Calculate temporary vectorial force */
1632             tx               = _mm256_mul_pd(fscal,dx10);
1633             ty               = _mm256_mul_pd(fscal,dy10);
1634             tz               = _mm256_mul_pd(fscal,dz10);
1635
1636             /* Update vectorial force */
1637             fix1             = _mm256_add_pd(fix1,tx);
1638             fiy1             = _mm256_add_pd(fiy1,ty);
1639             fiz1             = _mm256_add_pd(fiz1,tz);
1640
1641             fjx0             = _mm256_add_pd(fjx0,tx);
1642             fjy0             = _mm256_add_pd(fjy0,ty);
1643             fjz0             = _mm256_add_pd(fjz0,tz);
1644
1645             /**************************
1646              * CALCULATE INTERACTIONS *
1647              **************************/
1648
1649             r11              = _mm256_mul_pd(rsq11,rinv11);
1650
1651             /* EWALD ELECTROSTATICS */
1652
1653             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1654             ewrt             = _mm256_mul_pd(r11,ewtabscale);
1655             ewitab           = _mm256_cvttpd_epi32(ewrt);
1656             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1657             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1658                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1659                                             &ewtabF,&ewtabFn);
1660             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1661             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
1662
1663             fscal            = felec;
1664
1665             /* Calculate temporary vectorial force */
1666             tx               = _mm256_mul_pd(fscal,dx11);
1667             ty               = _mm256_mul_pd(fscal,dy11);
1668             tz               = _mm256_mul_pd(fscal,dz11);
1669
1670             /* Update vectorial force */
1671             fix1             = _mm256_add_pd(fix1,tx);
1672             fiy1             = _mm256_add_pd(fiy1,ty);
1673             fiz1             = _mm256_add_pd(fiz1,tz);
1674
1675             fjx1             = _mm256_add_pd(fjx1,tx);
1676             fjy1             = _mm256_add_pd(fjy1,ty);
1677             fjz1             = _mm256_add_pd(fjz1,tz);
1678
1679             /**************************
1680              * CALCULATE INTERACTIONS *
1681              **************************/
1682
1683             r12              = _mm256_mul_pd(rsq12,rinv12);
1684
1685             /* EWALD ELECTROSTATICS */
1686
1687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1688             ewrt             = _mm256_mul_pd(r12,ewtabscale);
1689             ewitab           = _mm256_cvttpd_epi32(ewrt);
1690             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1691             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1692                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1693                                             &ewtabF,&ewtabFn);
1694             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1695             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
1696
1697             fscal            = felec;
1698
1699             /* Calculate temporary vectorial force */
1700             tx               = _mm256_mul_pd(fscal,dx12);
1701             ty               = _mm256_mul_pd(fscal,dy12);
1702             tz               = _mm256_mul_pd(fscal,dz12);
1703
1704             /* Update vectorial force */
1705             fix1             = _mm256_add_pd(fix1,tx);
1706             fiy1             = _mm256_add_pd(fiy1,ty);
1707             fiz1             = _mm256_add_pd(fiz1,tz);
1708
1709             fjx2             = _mm256_add_pd(fjx2,tx);
1710             fjy2             = _mm256_add_pd(fjy2,ty);
1711             fjz2             = _mm256_add_pd(fjz2,tz);
1712
1713             /**************************
1714              * CALCULATE INTERACTIONS *
1715              **************************/
1716
1717             r20              = _mm256_mul_pd(rsq20,rinv20);
1718
1719             /* EWALD ELECTROSTATICS */
1720
1721             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1722             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1723             ewitab           = _mm256_cvttpd_epi32(ewrt);
1724             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1725             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1726                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1727                                             &ewtabF,&ewtabFn);
1728             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1729             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1730
1731             fscal            = felec;
1732
1733             /* Calculate temporary vectorial force */
1734             tx               = _mm256_mul_pd(fscal,dx20);
1735             ty               = _mm256_mul_pd(fscal,dy20);
1736             tz               = _mm256_mul_pd(fscal,dz20);
1737
1738             /* Update vectorial force */
1739             fix2             = _mm256_add_pd(fix2,tx);
1740             fiy2             = _mm256_add_pd(fiy2,ty);
1741             fiz2             = _mm256_add_pd(fiz2,tz);
1742
1743             fjx0             = _mm256_add_pd(fjx0,tx);
1744             fjy0             = _mm256_add_pd(fjy0,ty);
1745             fjz0             = _mm256_add_pd(fjz0,tz);
1746
1747             /**************************
1748              * CALCULATE INTERACTIONS *
1749              **************************/
1750
1751             r21              = _mm256_mul_pd(rsq21,rinv21);
1752
1753             /* EWALD ELECTROSTATICS */
1754
1755             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1756             ewrt             = _mm256_mul_pd(r21,ewtabscale);
1757             ewitab           = _mm256_cvttpd_epi32(ewrt);
1758             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1759             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1760                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1761                                             &ewtabF,&ewtabFn);
1762             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1763             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
1764
1765             fscal            = felec;
1766
1767             /* Calculate temporary vectorial force */
1768             tx               = _mm256_mul_pd(fscal,dx21);
1769             ty               = _mm256_mul_pd(fscal,dy21);
1770             tz               = _mm256_mul_pd(fscal,dz21);
1771
1772             /* Update vectorial force */
1773             fix2             = _mm256_add_pd(fix2,tx);
1774             fiy2             = _mm256_add_pd(fiy2,ty);
1775             fiz2             = _mm256_add_pd(fiz2,tz);
1776
1777             fjx1             = _mm256_add_pd(fjx1,tx);
1778             fjy1             = _mm256_add_pd(fjy1,ty);
1779             fjz1             = _mm256_add_pd(fjz1,tz);
1780
1781             /**************************
1782              * CALCULATE INTERACTIONS *
1783              **************************/
1784
1785             r22              = _mm256_mul_pd(rsq22,rinv22);
1786
1787             /* EWALD ELECTROSTATICS */
1788
1789             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1790             ewrt             = _mm256_mul_pd(r22,ewtabscale);
1791             ewitab           = _mm256_cvttpd_epi32(ewrt);
1792             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1793             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1794                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1795                                             &ewtabF,&ewtabFn);
1796             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1797             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
1798
1799             fscal            = felec;
1800
1801             /* Calculate temporary vectorial force */
1802             tx               = _mm256_mul_pd(fscal,dx22);
1803             ty               = _mm256_mul_pd(fscal,dy22);
1804             tz               = _mm256_mul_pd(fscal,dz22);
1805
1806             /* Update vectorial force */
1807             fix2             = _mm256_add_pd(fix2,tx);
1808             fiy2             = _mm256_add_pd(fiy2,ty);
1809             fiz2             = _mm256_add_pd(fiz2,tz);
1810
1811             fjx2             = _mm256_add_pd(fjx2,tx);
1812             fjy2             = _mm256_add_pd(fjy2,ty);
1813             fjz2             = _mm256_add_pd(fjz2,tz);
1814
1815             fjptrA             = f+j_coord_offsetA;
1816             fjptrB             = f+j_coord_offsetB;
1817             fjptrC             = f+j_coord_offsetC;
1818             fjptrD             = f+j_coord_offsetD;
1819
1820             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
1821                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
1822
1823             /* Inner loop uses 331 flops */
1824         }
1825
1826         if(jidx<j_index_end)
1827         {
1828
1829             /* Get j neighbor index, and coordinate index */
1830             jnrlistA         = jjnr[jidx];
1831             jnrlistB         = jjnr[jidx+1];
1832             jnrlistC         = jjnr[jidx+2];
1833             jnrlistD         = jjnr[jidx+3];
1834             /* Sign of each element will be negative for non-real atoms.
1835              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1836              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1837              */
1838             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1839
1840             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1841             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1842             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1843
1844             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1845             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1846             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1847             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1848             j_coord_offsetA  = DIM*jnrA;
1849             j_coord_offsetB  = DIM*jnrB;
1850             j_coord_offsetC  = DIM*jnrC;
1851             j_coord_offsetD  = DIM*jnrD;
1852
1853             /* load j atom coordinates */
1854             gmx_mm256_load_3rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1855                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1856                                               &jx0,&jy0,&jz0,&jx1,&jy1,&jz1,&jx2,&jy2,&jz2);
1857
1858             /* Calculate displacement vector */
1859             dx00             = _mm256_sub_pd(ix0,jx0);
1860             dy00             = _mm256_sub_pd(iy0,jy0);
1861             dz00             = _mm256_sub_pd(iz0,jz0);
1862             dx01             = _mm256_sub_pd(ix0,jx1);
1863             dy01             = _mm256_sub_pd(iy0,jy1);
1864             dz01             = _mm256_sub_pd(iz0,jz1);
1865             dx02             = _mm256_sub_pd(ix0,jx2);
1866             dy02             = _mm256_sub_pd(iy0,jy2);
1867             dz02             = _mm256_sub_pd(iz0,jz2);
1868             dx10             = _mm256_sub_pd(ix1,jx0);
1869             dy10             = _mm256_sub_pd(iy1,jy0);
1870             dz10             = _mm256_sub_pd(iz1,jz0);
1871             dx11             = _mm256_sub_pd(ix1,jx1);
1872             dy11             = _mm256_sub_pd(iy1,jy1);
1873             dz11             = _mm256_sub_pd(iz1,jz1);
1874             dx12             = _mm256_sub_pd(ix1,jx2);
1875             dy12             = _mm256_sub_pd(iy1,jy2);
1876             dz12             = _mm256_sub_pd(iz1,jz2);
1877             dx20             = _mm256_sub_pd(ix2,jx0);
1878             dy20             = _mm256_sub_pd(iy2,jy0);
1879             dz20             = _mm256_sub_pd(iz2,jz0);
1880             dx21             = _mm256_sub_pd(ix2,jx1);
1881             dy21             = _mm256_sub_pd(iy2,jy1);
1882             dz21             = _mm256_sub_pd(iz2,jz1);
1883             dx22             = _mm256_sub_pd(ix2,jx2);
1884             dy22             = _mm256_sub_pd(iy2,jy2);
1885             dz22             = _mm256_sub_pd(iz2,jz2);
1886
1887             /* Calculate squared distance and things based on it */
1888             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1889             rsq01            = gmx_mm256_calc_rsq_pd(dx01,dy01,dz01);
1890             rsq02            = gmx_mm256_calc_rsq_pd(dx02,dy02,dz02);
1891             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1892             rsq11            = gmx_mm256_calc_rsq_pd(dx11,dy11,dz11);
1893             rsq12            = gmx_mm256_calc_rsq_pd(dx12,dy12,dz12);
1894             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1895             rsq21            = gmx_mm256_calc_rsq_pd(dx21,dy21,dz21);
1896             rsq22            = gmx_mm256_calc_rsq_pd(dx22,dy22,dz22);
1897
1898             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1899             rinv01           = gmx_mm256_invsqrt_pd(rsq01);
1900             rinv02           = gmx_mm256_invsqrt_pd(rsq02);
1901             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1902             rinv11           = gmx_mm256_invsqrt_pd(rsq11);
1903             rinv12           = gmx_mm256_invsqrt_pd(rsq12);
1904             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1905             rinv21           = gmx_mm256_invsqrt_pd(rsq21);
1906             rinv22           = gmx_mm256_invsqrt_pd(rsq22);
1907
1908             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1909             rinvsq01         = _mm256_mul_pd(rinv01,rinv01);
1910             rinvsq02         = _mm256_mul_pd(rinv02,rinv02);
1911             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1912             rinvsq11         = _mm256_mul_pd(rinv11,rinv11);
1913             rinvsq12         = _mm256_mul_pd(rinv12,rinv12);
1914             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1915             rinvsq21         = _mm256_mul_pd(rinv21,rinv21);
1916             rinvsq22         = _mm256_mul_pd(rinv22,rinv22);
1917
1918             fjx0             = _mm256_setzero_pd();
1919             fjy0             = _mm256_setzero_pd();
1920             fjz0             = _mm256_setzero_pd();
1921             fjx1             = _mm256_setzero_pd();
1922             fjy1             = _mm256_setzero_pd();
1923             fjz1             = _mm256_setzero_pd();
1924             fjx2             = _mm256_setzero_pd();
1925             fjy2             = _mm256_setzero_pd();
1926             fjz2             = _mm256_setzero_pd();
1927
1928             /**************************
1929              * CALCULATE INTERACTIONS *
1930              **************************/
1931
1932             r00              = _mm256_mul_pd(rsq00,rinv00);
1933             r00              = _mm256_andnot_pd(dummy_mask,r00);
1934
1935             /* EWALD ELECTROSTATICS */
1936
1937             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1938             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1939             ewitab           = _mm256_cvttpd_epi32(ewrt);
1940             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1941             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1942                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1943                                             &ewtabF,&ewtabFn);
1944             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1945             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1946
1947             /* LENNARD-JONES DISPERSION/REPULSION */
1948
1949             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1950             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1951
1952             fscal            = _mm256_add_pd(felec,fvdw);
1953
1954             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1955
1956             /* Calculate temporary vectorial force */
1957             tx               = _mm256_mul_pd(fscal,dx00);
1958             ty               = _mm256_mul_pd(fscal,dy00);
1959             tz               = _mm256_mul_pd(fscal,dz00);
1960
1961             /* Update vectorial force */
1962             fix0             = _mm256_add_pd(fix0,tx);
1963             fiy0             = _mm256_add_pd(fiy0,ty);
1964             fiz0             = _mm256_add_pd(fiz0,tz);
1965
1966             fjx0             = _mm256_add_pd(fjx0,tx);
1967             fjy0             = _mm256_add_pd(fjy0,ty);
1968             fjz0             = _mm256_add_pd(fjz0,tz);
1969
1970             /**************************
1971              * CALCULATE INTERACTIONS *
1972              **************************/
1973
1974             r01              = _mm256_mul_pd(rsq01,rinv01);
1975             r01              = _mm256_andnot_pd(dummy_mask,r01);
1976
1977             /* EWALD ELECTROSTATICS */
1978
1979             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1980             ewrt             = _mm256_mul_pd(r01,ewtabscale);
1981             ewitab           = _mm256_cvttpd_epi32(ewrt);
1982             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1983             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1984                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1985                                             &ewtabF,&ewtabFn);
1986             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1987             felec            = _mm256_mul_pd(_mm256_mul_pd(qq01,rinv01),_mm256_sub_pd(rinvsq01,felec));
1988
1989             fscal            = felec;
1990
1991             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1992
1993             /* Calculate temporary vectorial force */
1994             tx               = _mm256_mul_pd(fscal,dx01);
1995             ty               = _mm256_mul_pd(fscal,dy01);
1996             tz               = _mm256_mul_pd(fscal,dz01);
1997
1998             /* Update vectorial force */
1999             fix0             = _mm256_add_pd(fix0,tx);
2000             fiy0             = _mm256_add_pd(fiy0,ty);
2001             fiz0             = _mm256_add_pd(fiz0,tz);
2002
2003             fjx1             = _mm256_add_pd(fjx1,tx);
2004             fjy1             = _mm256_add_pd(fjy1,ty);
2005             fjz1             = _mm256_add_pd(fjz1,tz);
2006
2007             /**************************
2008              * CALCULATE INTERACTIONS *
2009              **************************/
2010
2011             r02              = _mm256_mul_pd(rsq02,rinv02);
2012             r02              = _mm256_andnot_pd(dummy_mask,r02);
2013
2014             /* EWALD ELECTROSTATICS */
2015
2016             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2017             ewrt             = _mm256_mul_pd(r02,ewtabscale);
2018             ewitab           = _mm256_cvttpd_epi32(ewrt);
2019             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2020             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2021                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2022                                             &ewtabF,&ewtabFn);
2023             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2024             felec            = _mm256_mul_pd(_mm256_mul_pd(qq02,rinv02),_mm256_sub_pd(rinvsq02,felec));
2025
2026             fscal            = felec;
2027
2028             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2029
2030             /* Calculate temporary vectorial force */
2031             tx               = _mm256_mul_pd(fscal,dx02);
2032             ty               = _mm256_mul_pd(fscal,dy02);
2033             tz               = _mm256_mul_pd(fscal,dz02);
2034
2035             /* Update vectorial force */
2036             fix0             = _mm256_add_pd(fix0,tx);
2037             fiy0             = _mm256_add_pd(fiy0,ty);
2038             fiz0             = _mm256_add_pd(fiz0,tz);
2039
2040             fjx2             = _mm256_add_pd(fjx2,tx);
2041             fjy2             = _mm256_add_pd(fjy2,ty);
2042             fjz2             = _mm256_add_pd(fjz2,tz);
2043
2044             /**************************
2045              * CALCULATE INTERACTIONS *
2046              **************************/
2047
2048             r10              = _mm256_mul_pd(rsq10,rinv10);
2049             r10              = _mm256_andnot_pd(dummy_mask,r10);
2050
2051             /* EWALD ELECTROSTATICS */
2052
2053             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2054             ewrt             = _mm256_mul_pd(r10,ewtabscale);
2055             ewitab           = _mm256_cvttpd_epi32(ewrt);
2056             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2057             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2058                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2059                                             &ewtabF,&ewtabFn);
2060             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2061             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
2062
2063             fscal            = felec;
2064
2065             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2066
2067             /* Calculate temporary vectorial force */
2068             tx               = _mm256_mul_pd(fscal,dx10);
2069             ty               = _mm256_mul_pd(fscal,dy10);
2070             tz               = _mm256_mul_pd(fscal,dz10);
2071
2072             /* Update vectorial force */
2073             fix1             = _mm256_add_pd(fix1,tx);
2074             fiy1             = _mm256_add_pd(fiy1,ty);
2075             fiz1             = _mm256_add_pd(fiz1,tz);
2076
2077             fjx0             = _mm256_add_pd(fjx0,tx);
2078             fjy0             = _mm256_add_pd(fjy0,ty);
2079             fjz0             = _mm256_add_pd(fjz0,tz);
2080
2081             /**************************
2082              * CALCULATE INTERACTIONS *
2083              **************************/
2084
2085             r11              = _mm256_mul_pd(rsq11,rinv11);
2086             r11              = _mm256_andnot_pd(dummy_mask,r11);
2087
2088             /* EWALD ELECTROSTATICS */
2089
2090             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2091             ewrt             = _mm256_mul_pd(r11,ewtabscale);
2092             ewitab           = _mm256_cvttpd_epi32(ewrt);
2093             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2094             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2095                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2096                                             &ewtabF,&ewtabFn);
2097             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2098             felec            = _mm256_mul_pd(_mm256_mul_pd(qq11,rinv11),_mm256_sub_pd(rinvsq11,felec));
2099
2100             fscal            = felec;
2101
2102             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2103
2104             /* Calculate temporary vectorial force */
2105             tx               = _mm256_mul_pd(fscal,dx11);
2106             ty               = _mm256_mul_pd(fscal,dy11);
2107             tz               = _mm256_mul_pd(fscal,dz11);
2108
2109             /* Update vectorial force */
2110             fix1             = _mm256_add_pd(fix1,tx);
2111             fiy1             = _mm256_add_pd(fiy1,ty);
2112             fiz1             = _mm256_add_pd(fiz1,tz);
2113
2114             fjx1             = _mm256_add_pd(fjx1,tx);
2115             fjy1             = _mm256_add_pd(fjy1,ty);
2116             fjz1             = _mm256_add_pd(fjz1,tz);
2117
2118             /**************************
2119              * CALCULATE INTERACTIONS *
2120              **************************/
2121
2122             r12              = _mm256_mul_pd(rsq12,rinv12);
2123             r12              = _mm256_andnot_pd(dummy_mask,r12);
2124
2125             /* EWALD ELECTROSTATICS */
2126
2127             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2128             ewrt             = _mm256_mul_pd(r12,ewtabscale);
2129             ewitab           = _mm256_cvttpd_epi32(ewrt);
2130             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2131             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2132                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2133                                             &ewtabF,&ewtabFn);
2134             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2135             felec            = _mm256_mul_pd(_mm256_mul_pd(qq12,rinv12),_mm256_sub_pd(rinvsq12,felec));
2136
2137             fscal            = felec;
2138
2139             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2140
2141             /* Calculate temporary vectorial force */
2142             tx               = _mm256_mul_pd(fscal,dx12);
2143             ty               = _mm256_mul_pd(fscal,dy12);
2144             tz               = _mm256_mul_pd(fscal,dz12);
2145
2146             /* Update vectorial force */
2147             fix1             = _mm256_add_pd(fix1,tx);
2148             fiy1             = _mm256_add_pd(fiy1,ty);
2149             fiz1             = _mm256_add_pd(fiz1,tz);
2150
2151             fjx2             = _mm256_add_pd(fjx2,tx);
2152             fjy2             = _mm256_add_pd(fjy2,ty);
2153             fjz2             = _mm256_add_pd(fjz2,tz);
2154
2155             /**************************
2156              * CALCULATE INTERACTIONS *
2157              **************************/
2158
2159             r20              = _mm256_mul_pd(rsq20,rinv20);
2160             r20              = _mm256_andnot_pd(dummy_mask,r20);
2161
2162             /* EWALD ELECTROSTATICS */
2163
2164             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2165             ewrt             = _mm256_mul_pd(r20,ewtabscale);
2166             ewitab           = _mm256_cvttpd_epi32(ewrt);
2167             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2168             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2169                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2170                                             &ewtabF,&ewtabFn);
2171             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2172             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
2173
2174             fscal            = felec;
2175
2176             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2177
2178             /* Calculate temporary vectorial force */
2179             tx               = _mm256_mul_pd(fscal,dx20);
2180             ty               = _mm256_mul_pd(fscal,dy20);
2181             tz               = _mm256_mul_pd(fscal,dz20);
2182
2183             /* Update vectorial force */
2184             fix2             = _mm256_add_pd(fix2,tx);
2185             fiy2             = _mm256_add_pd(fiy2,ty);
2186             fiz2             = _mm256_add_pd(fiz2,tz);
2187
2188             fjx0             = _mm256_add_pd(fjx0,tx);
2189             fjy0             = _mm256_add_pd(fjy0,ty);
2190             fjz0             = _mm256_add_pd(fjz0,tz);
2191
2192             /**************************
2193              * CALCULATE INTERACTIONS *
2194              **************************/
2195
2196             r21              = _mm256_mul_pd(rsq21,rinv21);
2197             r21              = _mm256_andnot_pd(dummy_mask,r21);
2198
2199             /* EWALD ELECTROSTATICS */
2200
2201             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2202             ewrt             = _mm256_mul_pd(r21,ewtabscale);
2203             ewitab           = _mm256_cvttpd_epi32(ewrt);
2204             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2205             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2206                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2207                                             &ewtabF,&ewtabFn);
2208             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2209             felec            = _mm256_mul_pd(_mm256_mul_pd(qq21,rinv21),_mm256_sub_pd(rinvsq21,felec));
2210
2211             fscal            = felec;
2212
2213             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2214
2215             /* Calculate temporary vectorial force */
2216             tx               = _mm256_mul_pd(fscal,dx21);
2217             ty               = _mm256_mul_pd(fscal,dy21);
2218             tz               = _mm256_mul_pd(fscal,dz21);
2219
2220             /* Update vectorial force */
2221             fix2             = _mm256_add_pd(fix2,tx);
2222             fiy2             = _mm256_add_pd(fiy2,ty);
2223             fiz2             = _mm256_add_pd(fiz2,tz);
2224
2225             fjx1             = _mm256_add_pd(fjx1,tx);
2226             fjy1             = _mm256_add_pd(fjy1,ty);
2227             fjz1             = _mm256_add_pd(fjz1,tz);
2228
2229             /**************************
2230              * CALCULATE INTERACTIONS *
2231              **************************/
2232
2233             r22              = _mm256_mul_pd(rsq22,rinv22);
2234             r22              = _mm256_andnot_pd(dummy_mask,r22);
2235
2236             /* EWALD ELECTROSTATICS */
2237
2238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
2239             ewrt             = _mm256_mul_pd(r22,ewtabscale);
2240             ewitab           = _mm256_cvttpd_epi32(ewrt);
2241             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
2242             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
2243                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
2244                                             &ewtabF,&ewtabFn);
2245             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
2246             felec            = _mm256_mul_pd(_mm256_mul_pd(qq22,rinv22),_mm256_sub_pd(rinvsq22,felec));
2247
2248             fscal            = felec;
2249
2250             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
2251
2252             /* Calculate temporary vectorial force */
2253             tx               = _mm256_mul_pd(fscal,dx22);
2254             ty               = _mm256_mul_pd(fscal,dy22);
2255             tz               = _mm256_mul_pd(fscal,dz22);
2256
2257             /* Update vectorial force */
2258             fix2             = _mm256_add_pd(fix2,tx);
2259             fiy2             = _mm256_add_pd(fiy2,ty);
2260             fiz2             = _mm256_add_pd(fiz2,tz);
2261
2262             fjx2             = _mm256_add_pd(fjx2,tx);
2263             fjy2             = _mm256_add_pd(fjy2,ty);
2264             fjz2             = _mm256_add_pd(fjz2,tz);
2265
2266             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
2267             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
2268             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
2269             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
2270
2271             gmx_mm256_decrement_3rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
2272                                                       fjx0,fjy0,fjz0,fjx1,fjy1,fjz1,fjx2,fjy2,fjz2);
2273
2274             /* Inner loop uses 340 flops */
2275         }
2276
2277         /* End of innermost loop */
2278
2279         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
2280                                                  f+i_coord_offset,fshift+i_shift_offset);
2281
2282         /* Increment number of inner iterations */
2283         inneriter                  += j_index_end - j_index_start;
2284
2285         /* Outer loop uses 18 flops */
2286     }
2287
2288     /* Increment number of outer iterations */
2289     outeriter        += nri;
2290
2291     /* Update outer/inner flops */
2292
2293     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*18 + inneriter*340);
2294 }