made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m128i          vfitab;
93     __m128i          ifour       = _mm_set1_epi32(4);
94     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
95     real             *vftab;
96     __m128i          ewitab;
97     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
98     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
99     real             *ewtab;
100     __m256d          dummy_mask,cutoff_mask;
101     __m128           tmpmask0,tmpmask1;
102     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
103     __m256d          one     = _mm256_set1_pd(1.0);
104     __m256d          two     = _mm256_set1_pd(2.0);
105     x                = xx[0];
106     f                = ff[0];
107
108     nri              = nlist->nri;
109     iinr             = nlist->iinr;
110     jindex           = nlist->jindex;
111     jjnr             = nlist->jjnr;
112     shiftidx         = nlist->shift;
113     gid              = nlist->gid;
114     shiftvec         = fr->shift_vec[0];
115     fshift           = fr->fshift[0];
116     facel            = _mm256_set1_pd(fr->epsfac);
117     charge           = mdatoms->chargeA;
118     nvdwtype         = fr->ntype;
119     vdwparam         = fr->nbfp;
120     vdwtype          = mdatoms->typeA;
121
122     vftab            = kernel_data->table_vdw->data;
123     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
124
125     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
126     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
127     beta2            = _mm256_mul_pd(beta,beta);
128     beta3            = _mm256_mul_pd(beta,beta2);
129
130     ewtab            = fr->ic->tabq_coul_FDV0;
131     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
132     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
133
134     /* Setup water-specific parameters */
135     inr              = nlist->iinr[0];
136     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
137     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
138     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
139     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
140
141     /* Avoid stupid compiler warnings */
142     jnrA = jnrB = jnrC = jnrD = 0;
143     j_coord_offsetA = 0;
144     j_coord_offsetB = 0;
145     j_coord_offsetC = 0;
146     j_coord_offsetD = 0;
147
148     outeriter        = 0;
149     inneriter        = 0;
150
151     for(iidx=0;iidx<4*DIM;iidx++)
152     {
153         scratch[iidx] = 0.0;
154     }
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
172                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
173
174         fix0             = _mm256_setzero_pd();
175         fiy0             = _mm256_setzero_pd();
176         fiz0             = _mm256_setzero_pd();
177         fix1             = _mm256_setzero_pd();
178         fiy1             = _mm256_setzero_pd();
179         fiz1             = _mm256_setzero_pd();
180         fix2             = _mm256_setzero_pd();
181         fiy2             = _mm256_setzero_pd();
182         fiz2             = _mm256_setzero_pd();
183         fix3             = _mm256_setzero_pd();
184         fiy3             = _mm256_setzero_pd();
185         fiz3             = _mm256_setzero_pd();
186
187         /* Reset potential sums */
188         velecsum         = _mm256_setzero_pd();
189         vvdwsum          = _mm256_setzero_pd();
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
193         {
194
195             /* Get j neighbor index, and coordinate index */
196             jnrA             = jjnr[jidx];
197             jnrB             = jjnr[jidx+1];
198             jnrC             = jjnr[jidx+2];
199             jnrD             = jjnr[jidx+3];
200             j_coord_offsetA  = DIM*jnrA;
201             j_coord_offsetB  = DIM*jnrB;
202             j_coord_offsetC  = DIM*jnrC;
203             j_coord_offsetD  = DIM*jnrD;
204
205             /* load j atom coordinates */
206             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
208                                                  &jx0,&jy0,&jz0);
209
210             /* Calculate displacement vector */
211             dx00             = _mm256_sub_pd(ix0,jx0);
212             dy00             = _mm256_sub_pd(iy0,jy0);
213             dz00             = _mm256_sub_pd(iz0,jz0);
214             dx10             = _mm256_sub_pd(ix1,jx0);
215             dy10             = _mm256_sub_pd(iy1,jy0);
216             dz10             = _mm256_sub_pd(iz1,jz0);
217             dx20             = _mm256_sub_pd(ix2,jx0);
218             dy20             = _mm256_sub_pd(iy2,jy0);
219             dz20             = _mm256_sub_pd(iz2,jz0);
220             dx30             = _mm256_sub_pd(ix3,jx0);
221             dy30             = _mm256_sub_pd(iy3,jy0);
222             dz30             = _mm256_sub_pd(iz3,jz0);
223
224             /* Calculate squared distance and things based on it */
225             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
226             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
227             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
228             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
229
230             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
231             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
232             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
233             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
234
235             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
236             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
237             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
238
239             /* Load parameters for j particles */
240             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
241                                                                  charge+jnrC+0,charge+jnrD+0);
242             vdwjidx0A        = 2*vdwtype[jnrA+0];
243             vdwjidx0B        = 2*vdwtype[jnrB+0];
244             vdwjidx0C        = 2*vdwtype[jnrC+0];
245             vdwjidx0D        = 2*vdwtype[jnrD+0];
246
247             fjx0             = _mm256_setzero_pd();
248             fjy0             = _mm256_setzero_pd();
249             fjz0             = _mm256_setzero_pd();
250
251             /**************************
252              * CALCULATE INTERACTIONS *
253              **************************/
254
255             r00              = _mm256_mul_pd(rsq00,rinv00);
256
257             /* Compute parameters for interactions between i and j atoms */
258             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
259                                             vdwioffsetptr0+vdwjidx0B,
260                                             vdwioffsetptr0+vdwjidx0C,
261                                             vdwioffsetptr0+vdwjidx0D,
262                                             &c6_00,&c12_00);
263
264             /* Calculate table index by multiplying r with table scale and truncate to integer */
265             rt               = _mm256_mul_pd(r00,vftabscale);
266             vfitab           = _mm256_cvttpd_epi32(rt);
267             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
268             vfitab           = _mm_slli_epi32(vfitab,3);
269
270             /* CUBIC SPLINE TABLE DISPERSION */
271             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
272             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
273             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
274             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
275             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
276             Heps             = _mm256_mul_pd(vfeps,H);
277             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
278             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
279             vvdw6            = _mm256_mul_pd(c6_00,VV);
280             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
281             fvdw6            = _mm256_mul_pd(c6_00,FF);
282
283             /* CUBIC SPLINE TABLE REPULSION */
284             vfitab           = _mm_add_epi32(vfitab,ifour);
285             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
286             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
287             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
288             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
289             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
290             Heps             = _mm256_mul_pd(vfeps,H);
291             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
292             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
293             vvdw12           = _mm256_mul_pd(c12_00,VV);
294             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
295             fvdw12           = _mm256_mul_pd(c12_00,FF);
296             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
297             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
298
299             /* Update potential sum for this i atom from the interaction with this j atom. */
300             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
301
302             fscal            = fvdw;
303
304             /* Calculate temporary vectorial force */
305             tx               = _mm256_mul_pd(fscal,dx00);
306             ty               = _mm256_mul_pd(fscal,dy00);
307             tz               = _mm256_mul_pd(fscal,dz00);
308
309             /* Update vectorial force */
310             fix0             = _mm256_add_pd(fix0,tx);
311             fiy0             = _mm256_add_pd(fiy0,ty);
312             fiz0             = _mm256_add_pd(fiz0,tz);
313
314             fjx0             = _mm256_add_pd(fjx0,tx);
315             fjy0             = _mm256_add_pd(fjy0,ty);
316             fjz0             = _mm256_add_pd(fjz0,tz);
317
318             /**************************
319              * CALCULATE INTERACTIONS *
320              **************************/
321
322             r10              = _mm256_mul_pd(rsq10,rinv10);
323
324             /* Compute parameters for interactions between i and j atoms */
325             qq10             = _mm256_mul_pd(iq1,jq0);
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = _mm256_mul_pd(r10,ewtabscale);
331             ewitab           = _mm256_cvttpd_epi32(ewrt);
332             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
333             ewitab           = _mm_slli_epi32(ewitab,2);
334             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
335             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
336             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
337             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
338             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
339             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
340             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
341             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
342             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
343
344             /* Update potential sum for this i atom from the interaction with this j atom. */
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = _mm256_mul_pd(fscal,dx10);
351             ty               = _mm256_mul_pd(fscal,dy10);
352             tz               = _mm256_mul_pd(fscal,dz10);
353
354             /* Update vectorial force */
355             fix1             = _mm256_add_pd(fix1,tx);
356             fiy1             = _mm256_add_pd(fiy1,ty);
357             fiz1             = _mm256_add_pd(fiz1,tz);
358
359             fjx0             = _mm256_add_pd(fjx0,tx);
360             fjy0             = _mm256_add_pd(fjy0,ty);
361             fjz0             = _mm256_add_pd(fjz0,tz);
362
363             /**************************
364              * CALCULATE INTERACTIONS *
365              **************************/
366
367             r20              = _mm256_mul_pd(rsq20,rinv20);
368
369             /* Compute parameters for interactions between i and j atoms */
370             qq20             = _mm256_mul_pd(iq2,jq0);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm256_mul_pd(r20,ewtabscale);
376             ewitab           = _mm256_cvttpd_epi32(ewrt);
377             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
381             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
382             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
383             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
384             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
385             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
386             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
387             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
388
389             /* Update potential sum for this i atom from the interaction with this j atom. */
390             velecsum         = _mm256_add_pd(velecsum,velec);
391
392             fscal            = felec;
393
394             /* Calculate temporary vectorial force */
395             tx               = _mm256_mul_pd(fscal,dx20);
396             ty               = _mm256_mul_pd(fscal,dy20);
397             tz               = _mm256_mul_pd(fscal,dz20);
398
399             /* Update vectorial force */
400             fix2             = _mm256_add_pd(fix2,tx);
401             fiy2             = _mm256_add_pd(fiy2,ty);
402             fiz2             = _mm256_add_pd(fiz2,tz);
403
404             fjx0             = _mm256_add_pd(fjx0,tx);
405             fjy0             = _mm256_add_pd(fjy0,ty);
406             fjz0             = _mm256_add_pd(fjz0,tz);
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             r30              = _mm256_mul_pd(rsq30,rinv30);
413
414             /* Compute parameters for interactions between i and j atoms */
415             qq30             = _mm256_mul_pd(iq3,jq0);
416
417             /* EWALD ELECTROSTATICS */
418
419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
420             ewrt             = _mm256_mul_pd(r30,ewtabscale);
421             ewitab           = _mm256_cvttpd_epi32(ewrt);
422             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
423             ewitab           = _mm_slli_epi32(ewitab,2);
424             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
425             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
426             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
427             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
428             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
429             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
430             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
431             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
432             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
433
434             /* Update potential sum for this i atom from the interaction with this j atom. */
435             velecsum         = _mm256_add_pd(velecsum,velec);
436
437             fscal            = felec;
438
439             /* Calculate temporary vectorial force */
440             tx               = _mm256_mul_pd(fscal,dx30);
441             ty               = _mm256_mul_pd(fscal,dy30);
442             tz               = _mm256_mul_pd(fscal,dz30);
443
444             /* Update vectorial force */
445             fix3             = _mm256_add_pd(fix3,tx);
446             fiy3             = _mm256_add_pd(fiy3,ty);
447             fiz3             = _mm256_add_pd(fiz3,tz);
448
449             fjx0             = _mm256_add_pd(fjx0,tx);
450             fjy0             = _mm256_add_pd(fjy0,ty);
451             fjz0             = _mm256_add_pd(fjz0,tz);
452
453             fjptrA             = f+j_coord_offsetA;
454             fjptrB             = f+j_coord_offsetB;
455             fjptrC             = f+j_coord_offsetC;
456             fjptrD             = f+j_coord_offsetD;
457
458             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
459
460             /* Inner loop uses 182 flops */
461         }
462
463         if(jidx<j_index_end)
464         {
465
466             /* Get j neighbor index, and coordinate index */
467             jnrlistA         = jjnr[jidx];
468             jnrlistB         = jjnr[jidx+1];
469             jnrlistC         = jjnr[jidx+2];
470             jnrlistD         = jjnr[jidx+3];
471             /* Sign of each element will be negative for non-real atoms.
472              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
473              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
474              */
475             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
476
477             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
478             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
479             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
480
481             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
482             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
483             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
484             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
485             j_coord_offsetA  = DIM*jnrA;
486             j_coord_offsetB  = DIM*jnrB;
487             j_coord_offsetC  = DIM*jnrC;
488             j_coord_offsetD  = DIM*jnrD;
489
490             /* load j atom coordinates */
491             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
492                                                  x+j_coord_offsetC,x+j_coord_offsetD,
493                                                  &jx0,&jy0,&jz0);
494
495             /* Calculate displacement vector */
496             dx00             = _mm256_sub_pd(ix0,jx0);
497             dy00             = _mm256_sub_pd(iy0,jy0);
498             dz00             = _mm256_sub_pd(iz0,jz0);
499             dx10             = _mm256_sub_pd(ix1,jx0);
500             dy10             = _mm256_sub_pd(iy1,jy0);
501             dz10             = _mm256_sub_pd(iz1,jz0);
502             dx20             = _mm256_sub_pd(ix2,jx0);
503             dy20             = _mm256_sub_pd(iy2,jy0);
504             dz20             = _mm256_sub_pd(iz2,jz0);
505             dx30             = _mm256_sub_pd(ix3,jx0);
506             dy30             = _mm256_sub_pd(iy3,jy0);
507             dz30             = _mm256_sub_pd(iz3,jz0);
508
509             /* Calculate squared distance and things based on it */
510             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
511             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
512             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
513             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
514
515             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
516             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
517             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
518             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
519
520             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
521             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
522             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
523
524             /* Load parameters for j particles */
525             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
526                                                                  charge+jnrC+0,charge+jnrD+0);
527             vdwjidx0A        = 2*vdwtype[jnrA+0];
528             vdwjidx0B        = 2*vdwtype[jnrB+0];
529             vdwjidx0C        = 2*vdwtype[jnrC+0];
530             vdwjidx0D        = 2*vdwtype[jnrD+0];
531
532             fjx0             = _mm256_setzero_pd();
533             fjy0             = _mm256_setzero_pd();
534             fjz0             = _mm256_setzero_pd();
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             r00              = _mm256_mul_pd(rsq00,rinv00);
541             r00              = _mm256_andnot_pd(dummy_mask,r00);
542
543             /* Compute parameters for interactions between i and j atoms */
544             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
545                                             vdwioffsetptr0+vdwjidx0B,
546                                             vdwioffsetptr0+vdwjidx0C,
547                                             vdwioffsetptr0+vdwjidx0D,
548                                             &c6_00,&c12_00);
549
550             /* Calculate table index by multiplying r with table scale and truncate to integer */
551             rt               = _mm256_mul_pd(r00,vftabscale);
552             vfitab           = _mm256_cvttpd_epi32(rt);
553             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
554             vfitab           = _mm_slli_epi32(vfitab,3);
555
556             /* CUBIC SPLINE TABLE DISPERSION */
557             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
558             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
559             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
560             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
561             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
562             Heps             = _mm256_mul_pd(vfeps,H);
563             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
564             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
565             vvdw6            = _mm256_mul_pd(c6_00,VV);
566             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
567             fvdw6            = _mm256_mul_pd(c6_00,FF);
568
569             /* CUBIC SPLINE TABLE REPULSION */
570             vfitab           = _mm_add_epi32(vfitab,ifour);
571             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
572             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
573             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
574             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
575             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
576             Heps             = _mm256_mul_pd(vfeps,H);
577             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
578             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
579             vvdw12           = _mm256_mul_pd(c12_00,VV);
580             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
581             fvdw12           = _mm256_mul_pd(c12_00,FF);
582             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
583             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
584
585             /* Update potential sum for this i atom from the interaction with this j atom. */
586             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
587             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
588
589             fscal            = fvdw;
590
591             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
592
593             /* Calculate temporary vectorial force */
594             tx               = _mm256_mul_pd(fscal,dx00);
595             ty               = _mm256_mul_pd(fscal,dy00);
596             tz               = _mm256_mul_pd(fscal,dz00);
597
598             /* Update vectorial force */
599             fix0             = _mm256_add_pd(fix0,tx);
600             fiy0             = _mm256_add_pd(fiy0,ty);
601             fiz0             = _mm256_add_pd(fiz0,tz);
602
603             fjx0             = _mm256_add_pd(fjx0,tx);
604             fjy0             = _mm256_add_pd(fjy0,ty);
605             fjz0             = _mm256_add_pd(fjz0,tz);
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             r10              = _mm256_mul_pd(rsq10,rinv10);
612             r10              = _mm256_andnot_pd(dummy_mask,r10);
613
614             /* Compute parameters for interactions between i and j atoms */
615             qq10             = _mm256_mul_pd(iq1,jq0);
616
617             /* EWALD ELECTROSTATICS */
618
619             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
620             ewrt             = _mm256_mul_pd(r10,ewtabscale);
621             ewitab           = _mm256_cvttpd_epi32(ewrt);
622             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
623             ewitab           = _mm_slli_epi32(ewitab,2);
624             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
625             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
626             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
627             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
628             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
629             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
630             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
631             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
632             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
633
634             /* Update potential sum for this i atom from the interaction with this j atom. */
635             velec            = _mm256_andnot_pd(dummy_mask,velec);
636             velecsum         = _mm256_add_pd(velecsum,velec);
637
638             fscal            = felec;
639
640             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
641
642             /* Calculate temporary vectorial force */
643             tx               = _mm256_mul_pd(fscal,dx10);
644             ty               = _mm256_mul_pd(fscal,dy10);
645             tz               = _mm256_mul_pd(fscal,dz10);
646
647             /* Update vectorial force */
648             fix1             = _mm256_add_pd(fix1,tx);
649             fiy1             = _mm256_add_pd(fiy1,ty);
650             fiz1             = _mm256_add_pd(fiz1,tz);
651
652             fjx0             = _mm256_add_pd(fjx0,tx);
653             fjy0             = _mm256_add_pd(fjy0,ty);
654             fjz0             = _mm256_add_pd(fjz0,tz);
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             r20              = _mm256_mul_pd(rsq20,rinv20);
661             r20              = _mm256_andnot_pd(dummy_mask,r20);
662
663             /* Compute parameters for interactions between i and j atoms */
664             qq20             = _mm256_mul_pd(iq2,jq0);
665
666             /* EWALD ELECTROSTATICS */
667
668             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
669             ewrt             = _mm256_mul_pd(r20,ewtabscale);
670             ewitab           = _mm256_cvttpd_epi32(ewrt);
671             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
672             ewitab           = _mm_slli_epi32(ewitab,2);
673             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
674             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
675             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
676             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
677             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
678             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
679             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
680             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
681             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
682
683             /* Update potential sum for this i atom from the interaction with this j atom. */
684             velec            = _mm256_andnot_pd(dummy_mask,velec);
685             velecsum         = _mm256_add_pd(velecsum,velec);
686
687             fscal            = felec;
688
689             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
690
691             /* Calculate temporary vectorial force */
692             tx               = _mm256_mul_pd(fscal,dx20);
693             ty               = _mm256_mul_pd(fscal,dy20);
694             tz               = _mm256_mul_pd(fscal,dz20);
695
696             /* Update vectorial force */
697             fix2             = _mm256_add_pd(fix2,tx);
698             fiy2             = _mm256_add_pd(fiy2,ty);
699             fiz2             = _mm256_add_pd(fiz2,tz);
700
701             fjx0             = _mm256_add_pd(fjx0,tx);
702             fjy0             = _mm256_add_pd(fjy0,ty);
703             fjz0             = _mm256_add_pd(fjz0,tz);
704
705             /**************************
706              * CALCULATE INTERACTIONS *
707              **************************/
708
709             r30              = _mm256_mul_pd(rsq30,rinv30);
710             r30              = _mm256_andnot_pd(dummy_mask,r30);
711
712             /* Compute parameters for interactions between i and j atoms */
713             qq30             = _mm256_mul_pd(iq3,jq0);
714
715             /* EWALD ELECTROSTATICS */
716
717             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
718             ewrt             = _mm256_mul_pd(r30,ewtabscale);
719             ewitab           = _mm256_cvttpd_epi32(ewrt);
720             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
721             ewitab           = _mm_slli_epi32(ewitab,2);
722             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
723             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
724             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
725             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
726             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
727             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
728             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
729             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(rinv30,velec));
730             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
731
732             /* Update potential sum for this i atom from the interaction with this j atom. */
733             velec            = _mm256_andnot_pd(dummy_mask,velec);
734             velecsum         = _mm256_add_pd(velecsum,velec);
735
736             fscal            = felec;
737
738             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
739
740             /* Calculate temporary vectorial force */
741             tx               = _mm256_mul_pd(fscal,dx30);
742             ty               = _mm256_mul_pd(fscal,dy30);
743             tz               = _mm256_mul_pd(fscal,dz30);
744
745             /* Update vectorial force */
746             fix3             = _mm256_add_pd(fix3,tx);
747             fiy3             = _mm256_add_pd(fiy3,ty);
748             fiz3             = _mm256_add_pd(fiz3,tz);
749
750             fjx0             = _mm256_add_pd(fjx0,tx);
751             fjy0             = _mm256_add_pd(fjy0,ty);
752             fjz0             = _mm256_add_pd(fjz0,tz);
753
754             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
755             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
756             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
757             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
758
759             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
760
761             /* Inner loop uses 186 flops */
762         }
763
764         /* End of innermost loop */
765
766         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
767                                                  f+i_coord_offset,fshift+i_shift_offset);
768
769         ggid                        = gid[iidx];
770         /* Update potential energies */
771         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
772         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
773
774         /* Increment number of inner iterations */
775         inneriter                  += j_index_end - j_index_start;
776
777         /* Outer loop uses 26 flops */
778     }
779
780     /* Increment number of outer iterations */
781     outeriter        += nri;
782
783     /* Update outer/inner flops */
784
785     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*186);
786 }
787 /*
788  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_double
789  * Electrostatics interaction: Ewald
790  * VdW interaction:            CubicSplineTable
791  * Geometry:                   Water4-Particle
792  * Calculate force/pot:        Force
793  */
794 void
795 nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_avx_256_double
796                     (t_nblist * gmx_restrict                nlist,
797                      rvec * gmx_restrict                    xx,
798                      rvec * gmx_restrict                    ff,
799                      t_forcerec * gmx_restrict              fr,
800                      t_mdatoms * gmx_restrict               mdatoms,
801                      nb_kernel_data_t * gmx_restrict        kernel_data,
802                      t_nrnb * gmx_restrict                  nrnb)
803 {
804     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
805      * just 0 for non-waters.
806      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
807      * jnr indices corresponding to data put in the four positions in the SIMD register.
808      */
809     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
810     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
811     int              jnrA,jnrB,jnrC,jnrD;
812     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
813     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
814     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
815     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
816     real             rcutoff_scalar;
817     real             *shiftvec,*fshift,*x,*f;
818     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
819     real             scratch[4*DIM];
820     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
821     real *           vdwioffsetptr0;
822     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
823     real *           vdwioffsetptr1;
824     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
825     real *           vdwioffsetptr2;
826     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
827     real *           vdwioffsetptr3;
828     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
829     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
830     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
831     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
832     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
833     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
834     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
835     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
836     real             *charge;
837     int              nvdwtype;
838     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
839     int              *vdwtype;
840     real             *vdwparam;
841     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
842     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
843     __m128i          vfitab;
844     __m128i          ifour       = _mm_set1_epi32(4);
845     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
846     real             *vftab;
847     __m128i          ewitab;
848     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
849     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
850     real             *ewtab;
851     __m256d          dummy_mask,cutoff_mask;
852     __m128           tmpmask0,tmpmask1;
853     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
854     __m256d          one     = _mm256_set1_pd(1.0);
855     __m256d          two     = _mm256_set1_pd(2.0);
856     x                = xx[0];
857     f                = ff[0];
858
859     nri              = nlist->nri;
860     iinr             = nlist->iinr;
861     jindex           = nlist->jindex;
862     jjnr             = nlist->jjnr;
863     shiftidx         = nlist->shift;
864     gid              = nlist->gid;
865     shiftvec         = fr->shift_vec[0];
866     fshift           = fr->fshift[0];
867     facel            = _mm256_set1_pd(fr->epsfac);
868     charge           = mdatoms->chargeA;
869     nvdwtype         = fr->ntype;
870     vdwparam         = fr->nbfp;
871     vdwtype          = mdatoms->typeA;
872
873     vftab            = kernel_data->table_vdw->data;
874     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
875
876     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
877     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
878     beta2            = _mm256_mul_pd(beta,beta);
879     beta3            = _mm256_mul_pd(beta,beta2);
880
881     ewtab            = fr->ic->tabq_coul_F;
882     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
883     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
884
885     /* Setup water-specific parameters */
886     inr              = nlist->iinr[0];
887     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
888     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
889     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
890     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
891
892     /* Avoid stupid compiler warnings */
893     jnrA = jnrB = jnrC = jnrD = 0;
894     j_coord_offsetA = 0;
895     j_coord_offsetB = 0;
896     j_coord_offsetC = 0;
897     j_coord_offsetD = 0;
898
899     outeriter        = 0;
900     inneriter        = 0;
901
902     for(iidx=0;iidx<4*DIM;iidx++)
903     {
904         scratch[iidx] = 0.0;
905     }
906
907     /* Start outer loop over neighborlists */
908     for(iidx=0; iidx<nri; iidx++)
909     {
910         /* Load shift vector for this list */
911         i_shift_offset   = DIM*shiftidx[iidx];
912
913         /* Load limits for loop over neighbors */
914         j_index_start    = jindex[iidx];
915         j_index_end      = jindex[iidx+1];
916
917         /* Get outer coordinate index */
918         inr              = iinr[iidx];
919         i_coord_offset   = DIM*inr;
920
921         /* Load i particle coords and add shift vector */
922         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
923                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
924
925         fix0             = _mm256_setzero_pd();
926         fiy0             = _mm256_setzero_pd();
927         fiz0             = _mm256_setzero_pd();
928         fix1             = _mm256_setzero_pd();
929         fiy1             = _mm256_setzero_pd();
930         fiz1             = _mm256_setzero_pd();
931         fix2             = _mm256_setzero_pd();
932         fiy2             = _mm256_setzero_pd();
933         fiz2             = _mm256_setzero_pd();
934         fix3             = _mm256_setzero_pd();
935         fiy3             = _mm256_setzero_pd();
936         fiz3             = _mm256_setzero_pd();
937
938         /* Start inner kernel loop */
939         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
940         {
941
942             /* Get j neighbor index, and coordinate index */
943             jnrA             = jjnr[jidx];
944             jnrB             = jjnr[jidx+1];
945             jnrC             = jjnr[jidx+2];
946             jnrD             = jjnr[jidx+3];
947             j_coord_offsetA  = DIM*jnrA;
948             j_coord_offsetB  = DIM*jnrB;
949             j_coord_offsetC  = DIM*jnrC;
950             j_coord_offsetD  = DIM*jnrD;
951
952             /* load j atom coordinates */
953             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
954                                                  x+j_coord_offsetC,x+j_coord_offsetD,
955                                                  &jx0,&jy0,&jz0);
956
957             /* Calculate displacement vector */
958             dx00             = _mm256_sub_pd(ix0,jx0);
959             dy00             = _mm256_sub_pd(iy0,jy0);
960             dz00             = _mm256_sub_pd(iz0,jz0);
961             dx10             = _mm256_sub_pd(ix1,jx0);
962             dy10             = _mm256_sub_pd(iy1,jy0);
963             dz10             = _mm256_sub_pd(iz1,jz0);
964             dx20             = _mm256_sub_pd(ix2,jx0);
965             dy20             = _mm256_sub_pd(iy2,jy0);
966             dz20             = _mm256_sub_pd(iz2,jz0);
967             dx30             = _mm256_sub_pd(ix3,jx0);
968             dy30             = _mm256_sub_pd(iy3,jy0);
969             dz30             = _mm256_sub_pd(iz3,jz0);
970
971             /* Calculate squared distance and things based on it */
972             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
973             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
974             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
975             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
976
977             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
978             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
979             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
980             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
981
982             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
983             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
984             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
985
986             /* Load parameters for j particles */
987             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
988                                                                  charge+jnrC+0,charge+jnrD+0);
989             vdwjidx0A        = 2*vdwtype[jnrA+0];
990             vdwjidx0B        = 2*vdwtype[jnrB+0];
991             vdwjidx0C        = 2*vdwtype[jnrC+0];
992             vdwjidx0D        = 2*vdwtype[jnrD+0];
993
994             fjx0             = _mm256_setzero_pd();
995             fjy0             = _mm256_setzero_pd();
996             fjz0             = _mm256_setzero_pd();
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             r00              = _mm256_mul_pd(rsq00,rinv00);
1003
1004             /* Compute parameters for interactions between i and j atoms */
1005             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1006                                             vdwioffsetptr0+vdwjidx0B,
1007                                             vdwioffsetptr0+vdwjidx0C,
1008                                             vdwioffsetptr0+vdwjidx0D,
1009                                             &c6_00,&c12_00);
1010
1011             /* Calculate table index by multiplying r with table scale and truncate to integer */
1012             rt               = _mm256_mul_pd(r00,vftabscale);
1013             vfitab           = _mm256_cvttpd_epi32(rt);
1014             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1015             vfitab           = _mm_slli_epi32(vfitab,3);
1016
1017             /* CUBIC SPLINE TABLE DISPERSION */
1018             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1019             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1020             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1021             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1022             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1023             Heps             = _mm256_mul_pd(vfeps,H);
1024             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1025             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1026             fvdw6            = _mm256_mul_pd(c6_00,FF);
1027
1028             /* CUBIC SPLINE TABLE REPULSION */
1029             vfitab           = _mm_add_epi32(vfitab,ifour);
1030             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1031             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1032             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1033             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1034             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1035             Heps             = _mm256_mul_pd(vfeps,H);
1036             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1037             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1038             fvdw12           = _mm256_mul_pd(c12_00,FF);
1039             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1040
1041             fscal            = fvdw;
1042
1043             /* Calculate temporary vectorial force */
1044             tx               = _mm256_mul_pd(fscal,dx00);
1045             ty               = _mm256_mul_pd(fscal,dy00);
1046             tz               = _mm256_mul_pd(fscal,dz00);
1047
1048             /* Update vectorial force */
1049             fix0             = _mm256_add_pd(fix0,tx);
1050             fiy0             = _mm256_add_pd(fiy0,ty);
1051             fiz0             = _mm256_add_pd(fiz0,tz);
1052
1053             fjx0             = _mm256_add_pd(fjx0,tx);
1054             fjy0             = _mm256_add_pd(fjy0,ty);
1055             fjz0             = _mm256_add_pd(fjz0,tz);
1056
1057             /**************************
1058              * CALCULATE INTERACTIONS *
1059              **************************/
1060
1061             r10              = _mm256_mul_pd(rsq10,rinv10);
1062
1063             /* Compute parameters for interactions between i and j atoms */
1064             qq10             = _mm256_mul_pd(iq1,jq0);
1065
1066             /* EWALD ELECTROSTATICS */
1067
1068             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1069             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1070             ewitab           = _mm256_cvttpd_epi32(ewrt);
1071             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1072             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1073                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1074                                             &ewtabF,&ewtabFn);
1075             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1076             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1077
1078             fscal            = felec;
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm256_mul_pd(fscal,dx10);
1082             ty               = _mm256_mul_pd(fscal,dy10);
1083             tz               = _mm256_mul_pd(fscal,dz10);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm256_add_pd(fix1,tx);
1087             fiy1             = _mm256_add_pd(fiy1,ty);
1088             fiz1             = _mm256_add_pd(fiz1,tz);
1089
1090             fjx0             = _mm256_add_pd(fjx0,tx);
1091             fjy0             = _mm256_add_pd(fjy0,ty);
1092             fjz0             = _mm256_add_pd(fjz0,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             r20              = _mm256_mul_pd(rsq20,rinv20);
1099
1100             /* Compute parameters for interactions between i and j atoms */
1101             qq20             = _mm256_mul_pd(iq2,jq0);
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1107             ewitab           = _mm256_cvttpd_epi32(ewrt);
1108             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1109             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1110                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1111                                             &ewtabF,&ewtabFn);
1112             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1113             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1114
1115             fscal            = felec;
1116
1117             /* Calculate temporary vectorial force */
1118             tx               = _mm256_mul_pd(fscal,dx20);
1119             ty               = _mm256_mul_pd(fscal,dy20);
1120             tz               = _mm256_mul_pd(fscal,dz20);
1121
1122             /* Update vectorial force */
1123             fix2             = _mm256_add_pd(fix2,tx);
1124             fiy2             = _mm256_add_pd(fiy2,ty);
1125             fiz2             = _mm256_add_pd(fiz2,tz);
1126
1127             fjx0             = _mm256_add_pd(fjx0,tx);
1128             fjy0             = _mm256_add_pd(fjy0,ty);
1129             fjz0             = _mm256_add_pd(fjz0,tz);
1130
1131             /**************************
1132              * CALCULATE INTERACTIONS *
1133              **************************/
1134
1135             r30              = _mm256_mul_pd(rsq30,rinv30);
1136
1137             /* Compute parameters for interactions between i and j atoms */
1138             qq30             = _mm256_mul_pd(iq3,jq0);
1139
1140             /* EWALD ELECTROSTATICS */
1141
1142             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1143             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1144             ewitab           = _mm256_cvttpd_epi32(ewrt);
1145             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1146             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1147                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1148                                             &ewtabF,&ewtabFn);
1149             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1150             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1151
1152             fscal            = felec;
1153
1154             /* Calculate temporary vectorial force */
1155             tx               = _mm256_mul_pd(fscal,dx30);
1156             ty               = _mm256_mul_pd(fscal,dy30);
1157             tz               = _mm256_mul_pd(fscal,dz30);
1158
1159             /* Update vectorial force */
1160             fix3             = _mm256_add_pd(fix3,tx);
1161             fiy3             = _mm256_add_pd(fiy3,ty);
1162             fiz3             = _mm256_add_pd(fiz3,tz);
1163
1164             fjx0             = _mm256_add_pd(fjx0,tx);
1165             fjy0             = _mm256_add_pd(fjy0,ty);
1166             fjz0             = _mm256_add_pd(fjz0,tz);
1167
1168             fjptrA             = f+j_coord_offsetA;
1169             fjptrB             = f+j_coord_offsetB;
1170             fjptrC             = f+j_coord_offsetC;
1171             fjptrD             = f+j_coord_offsetD;
1172
1173             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1174
1175             /* Inner loop uses 159 flops */
1176         }
1177
1178         if(jidx<j_index_end)
1179         {
1180
1181             /* Get j neighbor index, and coordinate index */
1182             jnrlistA         = jjnr[jidx];
1183             jnrlistB         = jjnr[jidx+1];
1184             jnrlistC         = jjnr[jidx+2];
1185             jnrlistD         = jjnr[jidx+3];
1186             /* Sign of each element will be negative for non-real atoms.
1187              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1188              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1189              */
1190             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1191
1192             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1193             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1194             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1195
1196             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1197             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1198             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1199             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1200             j_coord_offsetA  = DIM*jnrA;
1201             j_coord_offsetB  = DIM*jnrB;
1202             j_coord_offsetC  = DIM*jnrC;
1203             j_coord_offsetD  = DIM*jnrD;
1204
1205             /* load j atom coordinates */
1206             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1207                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1208                                                  &jx0,&jy0,&jz0);
1209
1210             /* Calculate displacement vector */
1211             dx00             = _mm256_sub_pd(ix0,jx0);
1212             dy00             = _mm256_sub_pd(iy0,jy0);
1213             dz00             = _mm256_sub_pd(iz0,jz0);
1214             dx10             = _mm256_sub_pd(ix1,jx0);
1215             dy10             = _mm256_sub_pd(iy1,jy0);
1216             dz10             = _mm256_sub_pd(iz1,jz0);
1217             dx20             = _mm256_sub_pd(ix2,jx0);
1218             dy20             = _mm256_sub_pd(iy2,jy0);
1219             dz20             = _mm256_sub_pd(iz2,jz0);
1220             dx30             = _mm256_sub_pd(ix3,jx0);
1221             dy30             = _mm256_sub_pd(iy3,jy0);
1222             dz30             = _mm256_sub_pd(iz3,jz0);
1223
1224             /* Calculate squared distance and things based on it */
1225             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1226             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1227             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1228             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1229
1230             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1231             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1232             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1233             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1234
1235             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1236             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1237             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1238
1239             /* Load parameters for j particles */
1240             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1241                                                                  charge+jnrC+0,charge+jnrD+0);
1242             vdwjidx0A        = 2*vdwtype[jnrA+0];
1243             vdwjidx0B        = 2*vdwtype[jnrB+0];
1244             vdwjidx0C        = 2*vdwtype[jnrC+0];
1245             vdwjidx0D        = 2*vdwtype[jnrD+0];
1246
1247             fjx0             = _mm256_setzero_pd();
1248             fjy0             = _mm256_setzero_pd();
1249             fjz0             = _mm256_setzero_pd();
1250
1251             /**************************
1252              * CALCULATE INTERACTIONS *
1253              **************************/
1254
1255             r00              = _mm256_mul_pd(rsq00,rinv00);
1256             r00              = _mm256_andnot_pd(dummy_mask,r00);
1257
1258             /* Compute parameters for interactions between i and j atoms */
1259             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1260                                             vdwioffsetptr0+vdwjidx0B,
1261                                             vdwioffsetptr0+vdwjidx0C,
1262                                             vdwioffsetptr0+vdwjidx0D,
1263                                             &c6_00,&c12_00);
1264
1265             /* Calculate table index by multiplying r with table scale and truncate to integer */
1266             rt               = _mm256_mul_pd(r00,vftabscale);
1267             vfitab           = _mm256_cvttpd_epi32(rt);
1268             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1269             vfitab           = _mm_slli_epi32(vfitab,3);
1270
1271             /* CUBIC SPLINE TABLE DISPERSION */
1272             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1273             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1274             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1275             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1276             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1277             Heps             = _mm256_mul_pd(vfeps,H);
1278             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1279             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1280             fvdw6            = _mm256_mul_pd(c6_00,FF);
1281
1282             /* CUBIC SPLINE TABLE REPULSION */
1283             vfitab           = _mm_add_epi32(vfitab,ifour);
1284             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1285             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1286             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1287             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1288             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1289             Heps             = _mm256_mul_pd(vfeps,H);
1290             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1291             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1292             fvdw12           = _mm256_mul_pd(c12_00,FF);
1293             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1294
1295             fscal            = fvdw;
1296
1297             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1298
1299             /* Calculate temporary vectorial force */
1300             tx               = _mm256_mul_pd(fscal,dx00);
1301             ty               = _mm256_mul_pd(fscal,dy00);
1302             tz               = _mm256_mul_pd(fscal,dz00);
1303
1304             /* Update vectorial force */
1305             fix0             = _mm256_add_pd(fix0,tx);
1306             fiy0             = _mm256_add_pd(fiy0,ty);
1307             fiz0             = _mm256_add_pd(fiz0,tz);
1308
1309             fjx0             = _mm256_add_pd(fjx0,tx);
1310             fjy0             = _mm256_add_pd(fjy0,ty);
1311             fjz0             = _mm256_add_pd(fjz0,tz);
1312
1313             /**************************
1314              * CALCULATE INTERACTIONS *
1315              **************************/
1316
1317             r10              = _mm256_mul_pd(rsq10,rinv10);
1318             r10              = _mm256_andnot_pd(dummy_mask,r10);
1319
1320             /* Compute parameters for interactions between i and j atoms */
1321             qq10             = _mm256_mul_pd(iq1,jq0);
1322
1323             /* EWALD ELECTROSTATICS */
1324
1325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1326             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1327             ewitab           = _mm256_cvttpd_epi32(ewrt);
1328             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1329             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1330                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1331                                             &ewtabF,&ewtabFn);
1332             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1333             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1334
1335             fscal            = felec;
1336
1337             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1338
1339             /* Calculate temporary vectorial force */
1340             tx               = _mm256_mul_pd(fscal,dx10);
1341             ty               = _mm256_mul_pd(fscal,dy10);
1342             tz               = _mm256_mul_pd(fscal,dz10);
1343
1344             /* Update vectorial force */
1345             fix1             = _mm256_add_pd(fix1,tx);
1346             fiy1             = _mm256_add_pd(fiy1,ty);
1347             fiz1             = _mm256_add_pd(fiz1,tz);
1348
1349             fjx0             = _mm256_add_pd(fjx0,tx);
1350             fjy0             = _mm256_add_pd(fjy0,ty);
1351             fjz0             = _mm256_add_pd(fjz0,tz);
1352
1353             /**************************
1354              * CALCULATE INTERACTIONS *
1355              **************************/
1356
1357             r20              = _mm256_mul_pd(rsq20,rinv20);
1358             r20              = _mm256_andnot_pd(dummy_mask,r20);
1359
1360             /* Compute parameters for interactions between i and j atoms */
1361             qq20             = _mm256_mul_pd(iq2,jq0);
1362
1363             /* EWALD ELECTROSTATICS */
1364
1365             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1366             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1367             ewitab           = _mm256_cvttpd_epi32(ewrt);
1368             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1369             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1370                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1371                                             &ewtabF,&ewtabFn);
1372             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1373             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1374
1375             fscal            = felec;
1376
1377             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1378
1379             /* Calculate temporary vectorial force */
1380             tx               = _mm256_mul_pd(fscal,dx20);
1381             ty               = _mm256_mul_pd(fscal,dy20);
1382             tz               = _mm256_mul_pd(fscal,dz20);
1383
1384             /* Update vectorial force */
1385             fix2             = _mm256_add_pd(fix2,tx);
1386             fiy2             = _mm256_add_pd(fiy2,ty);
1387             fiz2             = _mm256_add_pd(fiz2,tz);
1388
1389             fjx0             = _mm256_add_pd(fjx0,tx);
1390             fjy0             = _mm256_add_pd(fjy0,ty);
1391             fjz0             = _mm256_add_pd(fjz0,tz);
1392
1393             /**************************
1394              * CALCULATE INTERACTIONS *
1395              **************************/
1396
1397             r30              = _mm256_mul_pd(rsq30,rinv30);
1398             r30              = _mm256_andnot_pd(dummy_mask,r30);
1399
1400             /* Compute parameters for interactions between i and j atoms */
1401             qq30             = _mm256_mul_pd(iq3,jq0);
1402
1403             /* EWALD ELECTROSTATICS */
1404
1405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1406             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1407             ewitab           = _mm256_cvttpd_epi32(ewrt);
1408             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1409             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1410                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1411                                             &ewtabF,&ewtabFn);
1412             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1413             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1414
1415             fscal            = felec;
1416
1417             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1418
1419             /* Calculate temporary vectorial force */
1420             tx               = _mm256_mul_pd(fscal,dx30);
1421             ty               = _mm256_mul_pd(fscal,dy30);
1422             tz               = _mm256_mul_pd(fscal,dz30);
1423
1424             /* Update vectorial force */
1425             fix3             = _mm256_add_pd(fix3,tx);
1426             fiy3             = _mm256_add_pd(fiy3,ty);
1427             fiz3             = _mm256_add_pd(fiz3,tz);
1428
1429             fjx0             = _mm256_add_pd(fjx0,tx);
1430             fjy0             = _mm256_add_pd(fjy0,ty);
1431             fjz0             = _mm256_add_pd(fjz0,tz);
1432
1433             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1434             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1435             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1436             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1437
1438             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1439
1440             /* Inner loop uses 163 flops */
1441         }
1442
1443         /* End of innermost loop */
1444
1445         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1446                                                  f+i_coord_offset,fshift+i_shift_offset);
1447
1448         /* Increment number of inner iterations */
1449         inneriter                  += j_index_end - j_index_start;
1450
1451         /* Outer loop uses 24 flops */
1452     }
1453
1454     /* Increment number of outer iterations */
1455     outeriter        += nri;
1456
1457     /* Update outer/inner flops */
1458
1459     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*163);
1460 }