107d6ee8df5e697403cf34fdbf947eaf13a82703
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEw_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m128i          ewitab;
88     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
89     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
90     real             *ewtab;
91     __m256d          dummy_mask,cutoff_mask;
92     __m128           tmpmask0,tmpmask1;
93     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
94     __m256d          one     = _mm256_set1_pd(1.0);
95     __m256d          two     = _mm256_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
115
116     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
117     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
118     beta2            = _mm256_mul_pd(beta,beta);
119     beta3            = _mm256_mul_pd(beta,beta2);
120
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
123     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm256_setzero_pd();
158         fiy0             = _mm256_setzero_pd();
159         fiz0             = _mm256_setzero_pd();
160
161         /* Load parameters for i particles */
162         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
163         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
164
165         /* Reset potential sums */
166         velecsum         = _mm256_setzero_pd();
167         vvdwsum          = _mm256_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                                  x+j_coord_offsetC,x+j_coord_offsetD,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_pd(ix0,jx0);
190             dy00             = _mm256_sub_pd(iy0,jy0);
191             dz00             = _mm256_sub_pd(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
195
196             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
197
198             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
199
200             /* Load parameters for j particles */
201             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
202                                                                  charge+jnrC+0,charge+jnrD+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = _mm256_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm256_mul_pd(iq0,jq0);
216             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
217                                             vdwioffsetptr0+vdwjidx0B,
218                                             vdwioffsetptr0+vdwjidx0C,
219                                             vdwioffsetptr0+vdwjidx0D,
220                                             &c6_00,&c12_00);
221
222             /* Calculate table index by multiplying r with table scale and truncate to integer */
223             rt               = _mm256_mul_pd(r00,vftabscale);
224             vfitab           = _mm256_cvttpd_epi32(rt);
225             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
226             vfitab           = _mm_slli_epi32(vfitab,3);
227
228             /* EWALD ELECTROSTATICS */
229
230             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
231             ewrt             = _mm256_mul_pd(r00,ewtabscale);
232             ewitab           = _mm256_cvttpd_epi32(ewrt);
233             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
234             ewitab           = _mm_slli_epi32(ewitab,2);
235             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
236             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
237             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
238             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
239             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
240             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
241             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
242             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
243             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
244
245             /* CUBIC SPLINE TABLE DISPERSION */
246             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
247             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
248             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
249             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
250             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
251             Heps             = _mm256_mul_pd(vfeps,H);
252             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
253             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
254             vvdw6            = _mm256_mul_pd(c6_00,VV);
255             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
256             fvdw6            = _mm256_mul_pd(c6_00,FF);
257
258             /* CUBIC SPLINE TABLE REPULSION */
259             vfitab           = _mm_add_epi32(vfitab,ifour);
260             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
261             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
262             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
263             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
264             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
265             Heps             = _mm256_mul_pd(vfeps,H);
266             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
267             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
268             vvdw12           = _mm256_mul_pd(c12_00,VV);
269             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
270             fvdw12           = _mm256_mul_pd(c12_00,FF);
271             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
272             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
273
274             /* Update potential sum for this i atom from the interaction with this j atom. */
275             velecsum         = _mm256_add_pd(velecsum,velec);
276             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
277
278             fscal            = _mm256_add_pd(felec,fvdw);
279
280             /* Calculate temporary vectorial force */
281             tx               = _mm256_mul_pd(fscal,dx00);
282             ty               = _mm256_mul_pd(fscal,dy00);
283             tz               = _mm256_mul_pd(fscal,dz00);
284
285             /* Update vectorial force */
286             fix0             = _mm256_add_pd(fix0,tx);
287             fiy0             = _mm256_add_pd(fiy0,ty);
288             fiz0             = _mm256_add_pd(fiz0,tz);
289
290             fjptrA             = f+j_coord_offsetA;
291             fjptrB             = f+j_coord_offsetB;
292             fjptrC             = f+j_coord_offsetC;
293             fjptrD             = f+j_coord_offsetD;
294             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
295
296             /* Inner loop uses 75 flops */
297         }
298
299         if(jidx<j_index_end)
300         {
301
302             /* Get j neighbor index, and coordinate index */
303             jnrlistA         = jjnr[jidx];
304             jnrlistB         = jjnr[jidx+1];
305             jnrlistC         = jjnr[jidx+2];
306             jnrlistD         = jjnr[jidx+3];
307             /* Sign of each element will be negative for non-real atoms.
308              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
309              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
310              */
311             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
312
313             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
314             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
315             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
316
317             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
318             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
319             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
320             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
321             j_coord_offsetA  = DIM*jnrA;
322             j_coord_offsetB  = DIM*jnrB;
323             j_coord_offsetC  = DIM*jnrC;
324             j_coord_offsetD  = DIM*jnrD;
325
326             /* load j atom coordinates */
327             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
328                                                  x+j_coord_offsetC,x+j_coord_offsetD,
329                                                  &jx0,&jy0,&jz0);
330
331             /* Calculate displacement vector */
332             dx00             = _mm256_sub_pd(ix0,jx0);
333             dy00             = _mm256_sub_pd(iy0,jy0);
334             dz00             = _mm256_sub_pd(iz0,jz0);
335
336             /* Calculate squared distance and things based on it */
337             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
338
339             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
340
341             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
342
343             /* Load parameters for j particles */
344             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
345                                                                  charge+jnrC+0,charge+jnrD+0);
346             vdwjidx0A        = 2*vdwtype[jnrA+0];
347             vdwjidx0B        = 2*vdwtype[jnrB+0];
348             vdwjidx0C        = 2*vdwtype[jnrC+0];
349             vdwjidx0D        = 2*vdwtype[jnrD+0];
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             r00              = _mm256_mul_pd(rsq00,rinv00);
356             r00              = _mm256_andnot_pd(dummy_mask,r00);
357
358             /* Compute parameters for interactions between i and j atoms */
359             qq00             = _mm256_mul_pd(iq0,jq0);
360             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
361                                             vdwioffsetptr0+vdwjidx0B,
362                                             vdwioffsetptr0+vdwjidx0C,
363                                             vdwioffsetptr0+vdwjidx0D,
364                                             &c6_00,&c12_00);
365
366             /* Calculate table index by multiplying r with table scale and truncate to integer */
367             rt               = _mm256_mul_pd(r00,vftabscale);
368             vfitab           = _mm256_cvttpd_epi32(rt);
369             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
370             vfitab           = _mm_slli_epi32(vfitab,3);
371
372             /* EWALD ELECTROSTATICS */
373
374             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
375             ewrt             = _mm256_mul_pd(r00,ewtabscale);
376             ewitab           = _mm256_cvttpd_epi32(ewrt);
377             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
378             ewitab           = _mm_slli_epi32(ewitab,2);
379             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
380             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
381             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
382             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
383             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
384             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
385             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
386             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
387             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
388
389             /* CUBIC SPLINE TABLE DISPERSION */
390             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
391             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
392             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
393             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
394             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
395             Heps             = _mm256_mul_pd(vfeps,H);
396             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
397             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
398             vvdw6            = _mm256_mul_pd(c6_00,VV);
399             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
400             fvdw6            = _mm256_mul_pd(c6_00,FF);
401
402             /* CUBIC SPLINE TABLE REPULSION */
403             vfitab           = _mm_add_epi32(vfitab,ifour);
404             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
405             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
406             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
407             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
408             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
409             Heps             = _mm256_mul_pd(vfeps,H);
410             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
411             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
412             vvdw12           = _mm256_mul_pd(c12_00,VV);
413             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
414             fvdw12           = _mm256_mul_pd(c12_00,FF);
415             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
416             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
417
418             /* Update potential sum for this i atom from the interaction with this j atom. */
419             velec            = _mm256_andnot_pd(dummy_mask,velec);
420             velecsum         = _mm256_add_pd(velecsum,velec);
421             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
422             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
423
424             fscal            = _mm256_add_pd(felec,fvdw);
425
426             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
427
428             /* Calculate temporary vectorial force */
429             tx               = _mm256_mul_pd(fscal,dx00);
430             ty               = _mm256_mul_pd(fscal,dy00);
431             tz               = _mm256_mul_pd(fscal,dz00);
432
433             /* Update vectorial force */
434             fix0             = _mm256_add_pd(fix0,tx);
435             fiy0             = _mm256_add_pd(fiy0,ty);
436             fiz0             = _mm256_add_pd(fiz0,tz);
437
438             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
439             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
440             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
441             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
442             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
443
444             /* Inner loop uses 76 flops */
445         }
446
447         /* End of innermost loop */
448
449         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
450                                                  f+i_coord_offset,fshift+i_shift_offset);
451
452         ggid                        = gid[iidx];
453         /* Update potential energies */
454         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
455         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 9 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*76);
469 }
470 /*
471  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
472  * Electrostatics interaction: Ewald
473  * VdW interaction:            CubicSplineTable
474  * Geometry:                   Particle-Particle
475  * Calculate force/pot:        Force
476  */
477 void
478 nb_kernel_ElecEw_VdwCSTab_GeomP1P1_F_avx_256_double
479                     (t_nblist * gmx_restrict                nlist,
480                      rvec * gmx_restrict                    xx,
481                      rvec * gmx_restrict                    ff,
482                      t_forcerec * gmx_restrict              fr,
483                      t_mdatoms * gmx_restrict               mdatoms,
484                      nb_kernel_data_t * gmx_restrict        kernel_data,
485                      t_nrnb * gmx_restrict                  nrnb)
486 {
487     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
488      * just 0 for non-waters.
489      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
490      * jnr indices corresponding to data put in the four positions in the SIMD register.
491      */
492     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
493     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494     int              jnrA,jnrB,jnrC,jnrD;
495     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
496     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
497     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
498     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
499     real             rcutoff_scalar;
500     real             *shiftvec,*fshift,*x,*f;
501     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
502     real             scratch[4*DIM];
503     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
504     real *           vdwioffsetptr0;
505     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
506     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
507     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
508     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
509     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
510     real             *charge;
511     int              nvdwtype;
512     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
513     int              *vdwtype;
514     real             *vdwparam;
515     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
516     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
517     __m128i          vfitab;
518     __m128i          ifour       = _mm_set1_epi32(4);
519     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
520     real             *vftab;
521     __m128i          ewitab;
522     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
523     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
524     real             *ewtab;
525     __m256d          dummy_mask,cutoff_mask;
526     __m128           tmpmask0,tmpmask1;
527     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
528     __m256d          one     = _mm256_set1_pd(1.0);
529     __m256d          two     = _mm256_set1_pd(2.0);
530     x                = xx[0];
531     f                = ff[0];
532
533     nri              = nlist->nri;
534     iinr             = nlist->iinr;
535     jindex           = nlist->jindex;
536     jjnr             = nlist->jjnr;
537     shiftidx         = nlist->shift;
538     gid              = nlist->gid;
539     shiftvec         = fr->shift_vec[0];
540     fshift           = fr->fshift[0];
541     facel            = _mm256_set1_pd(fr->epsfac);
542     charge           = mdatoms->chargeA;
543     nvdwtype         = fr->ntype;
544     vdwparam         = fr->nbfp;
545     vdwtype          = mdatoms->typeA;
546
547     vftab            = kernel_data->table_vdw->data;
548     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
549
550     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
551     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
552     beta2            = _mm256_mul_pd(beta,beta);
553     beta3            = _mm256_mul_pd(beta,beta2);
554
555     ewtab            = fr->ic->tabq_coul_F;
556     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
557     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
558
559     /* Avoid stupid compiler warnings */
560     jnrA = jnrB = jnrC = jnrD = 0;
561     j_coord_offsetA = 0;
562     j_coord_offsetB = 0;
563     j_coord_offsetC = 0;
564     j_coord_offsetD = 0;
565
566     outeriter        = 0;
567     inneriter        = 0;
568
569     for(iidx=0;iidx<4*DIM;iidx++)
570     {
571         scratch[iidx] = 0.0;
572     }
573
574     /* Start outer loop over neighborlists */
575     for(iidx=0; iidx<nri; iidx++)
576     {
577         /* Load shift vector for this list */
578         i_shift_offset   = DIM*shiftidx[iidx];
579
580         /* Load limits for loop over neighbors */
581         j_index_start    = jindex[iidx];
582         j_index_end      = jindex[iidx+1];
583
584         /* Get outer coordinate index */
585         inr              = iinr[iidx];
586         i_coord_offset   = DIM*inr;
587
588         /* Load i particle coords and add shift vector */
589         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
590
591         fix0             = _mm256_setzero_pd();
592         fiy0             = _mm256_setzero_pd();
593         fiz0             = _mm256_setzero_pd();
594
595         /* Load parameters for i particles */
596         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
597         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
598
599         /* Start inner kernel loop */
600         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
601         {
602
603             /* Get j neighbor index, and coordinate index */
604             jnrA             = jjnr[jidx];
605             jnrB             = jjnr[jidx+1];
606             jnrC             = jjnr[jidx+2];
607             jnrD             = jjnr[jidx+3];
608             j_coord_offsetA  = DIM*jnrA;
609             j_coord_offsetB  = DIM*jnrB;
610             j_coord_offsetC  = DIM*jnrC;
611             j_coord_offsetD  = DIM*jnrD;
612
613             /* load j atom coordinates */
614             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
615                                                  x+j_coord_offsetC,x+j_coord_offsetD,
616                                                  &jx0,&jy0,&jz0);
617
618             /* Calculate displacement vector */
619             dx00             = _mm256_sub_pd(ix0,jx0);
620             dy00             = _mm256_sub_pd(iy0,jy0);
621             dz00             = _mm256_sub_pd(iz0,jz0);
622
623             /* Calculate squared distance and things based on it */
624             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
625
626             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
627
628             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
629
630             /* Load parameters for j particles */
631             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
632                                                                  charge+jnrC+0,charge+jnrD+0);
633             vdwjidx0A        = 2*vdwtype[jnrA+0];
634             vdwjidx0B        = 2*vdwtype[jnrB+0];
635             vdwjidx0C        = 2*vdwtype[jnrC+0];
636             vdwjidx0D        = 2*vdwtype[jnrD+0];
637
638             /**************************
639              * CALCULATE INTERACTIONS *
640              **************************/
641
642             r00              = _mm256_mul_pd(rsq00,rinv00);
643
644             /* Compute parameters for interactions between i and j atoms */
645             qq00             = _mm256_mul_pd(iq0,jq0);
646             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
647                                             vdwioffsetptr0+vdwjidx0B,
648                                             vdwioffsetptr0+vdwjidx0C,
649                                             vdwioffsetptr0+vdwjidx0D,
650                                             &c6_00,&c12_00);
651
652             /* Calculate table index by multiplying r with table scale and truncate to integer */
653             rt               = _mm256_mul_pd(r00,vftabscale);
654             vfitab           = _mm256_cvttpd_epi32(rt);
655             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
656             vfitab           = _mm_slli_epi32(vfitab,3);
657
658             /* EWALD ELECTROSTATICS */
659
660             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
661             ewrt             = _mm256_mul_pd(r00,ewtabscale);
662             ewitab           = _mm256_cvttpd_epi32(ewrt);
663             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
664             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
665                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
666                                             &ewtabF,&ewtabFn);
667             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
668             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
669
670             /* CUBIC SPLINE TABLE DISPERSION */
671             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
672             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
673             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
674             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
675             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
676             Heps             = _mm256_mul_pd(vfeps,H);
677             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
678             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
679             fvdw6            = _mm256_mul_pd(c6_00,FF);
680
681             /* CUBIC SPLINE TABLE REPULSION */
682             vfitab           = _mm_add_epi32(vfitab,ifour);
683             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
684             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
685             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
686             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
687             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
688             Heps             = _mm256_mul_pd(vfeps,H);
689             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
690             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
691             fvdw12           = _mm256_mul_pd(c12_00,FF);
692             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
693
694             fscal            = _mm256_add_pd(felec,fvdw);
695
696             /* Calculate temporary vectorial force */
697             tx               = _mm256_mul_pd(fscal,dx00);
698             ty               = _mm256_mul_pd(fscal,dy00);
699             tz               = _mm256_mul_pd(fscal,dz00);
700
701             /* Update vectorial force */
702             fix0             = _mm256_add_pd(fix0,tx);
703             fiy0             = _mm256_add_pd(fiy0,ty);
704             fiz0             = _mm256_add_pd(fiz0,tz);
705
706             fjptrA             = f+j_coord_offsetA;
707             fjptrB             = f+j_coord_offsetB;
708             fjptrC             = f+j_coord_offsetC;
709             fjptrD             = f+j_coord_offsetD;
710             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
711
712             /* Inner loop uses 62 flops */
713         }
714
715         if(jidx<j_index_end)
716         {
717
718             /* Get j neighbor index, and coordinate index */
719             jnrlistA         = jjnr[jidx];
720             jnrlistB         = jjnr[jidx+1];
721             jnrlistC         = jjnr[jidx+2];
722             jnrlistD         = jjnr[jidx+3];
723             /* Sign of each element will be negative for non-real atoms.
724              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
725              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
726              */
727             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
728
729             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
730             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
731             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
732
733             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
734             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
735             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
736             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
737             j_coord_offsetA  = DIM*jnrA;
738             j_coord_offsetB  = DIM*jnrB;
739             j_coord_offsetC  = DIM*jnrC;
740             j_coord_offsetD  = DIM*jnrD;
741
742             /* load j atom coordinates */
743             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
744                                                  x+j_coord_offsetC,x+j_coord_offsetD,
745                                                  &jx0,&jy0,&jz0);
746
747             /* Calculate displacement vector */
748             dx00             = _mm256_sub_pd(ix0,jx0);
749             dy00             = _mm256_sub_pd(iy0,jy0);
750             dz00             = _mm256_sub_pd(iz0,jz0);
751
752             /* Calculate squared distance and things based on it */
753             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
754
755             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
756
757             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
758
759             /* Load parameters for j particles */
760             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
761                                                                  charge+jnrC+0,charge+jnrD+0);
762             vdwjidx0A        = 2*vdwtype[jnrA+0];
763             vdwjidx0B        = 2*vdwtype[jnrB+0];
764             vdwjidx0C        = 2*vdwtype[jnrC+0];
765             vdwjidx0D        = 2*vdwtype[jnrD+0];
766
767             /**************************
768              * CALCULATE INTERACTIONS *
769              **************************/
770
771             r00              = _mm256_mul_pd(rsq00,rinv00);
772             r00              = _mm256_andnot_pd(dummy_mask,r00);
773
774             /* Compute parameters for interactions between i and j atoms */
775             qq00             = _mm256_mul_pd(iq0,jq0);
776             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
777                                             vdwioffsetptr0+vdwjidx0B,
778                                             vdwioffsetptr0+vdwjidx0C,
779                                             vdwioffsetptr0+vdwjidx0D,
780                                             &c6_00,&c12_00);
781
782             /* Calculate table index by multiplying r with table scale and truncate to integer */
783             rt               = _mm256_mul_pd(r00,vftabscale);
784             vfitab           = _mm256_cvttpd_epi32(rt);
785             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
786             vfitab           = _mm_slli_epi32(vfitab,3);
787
788             /* EWALD ELECTROSTATICS */
789
790             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
791             ewrt             = _mm256_mul_pd(r00,ewtabscale);
792             ewitab           = _mm256_cvttpd_epi32(ewrt);
793             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
794             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
795                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
796                                             &ewtabF,&ewtabFn);
797             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
798             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
799
800             /* CUBIC SPLINE TABLE DISPERSION */
801             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
802             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
803             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
804             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
805             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
806             Heps             = _mm256_mul_pd(vfeps,H);
807             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
808             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
809             fvdw6            = _mm256_mul_pd(c6_00,FF);
810
811             /* CUBIC SPLINE TABLE REPULSION */
812             vfitab           = _mm_add_epi32(vfitab,ifour);
813             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
814             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
815             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
816             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
817             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
818             Heps             = _mm256_mul_pd(vfeps,H);
819             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
820             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
821             fvdw12           = _mm256_mul_pd(c12_00,FF);
822             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
823
824             fscal            = _mm256_add_pd(felec,fvdw);
825
826             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
827
828             /* Calculate temporary vectorial force */
829             tx               = _mm256_mul_pd(fscal,dx00);
830             ty               = _mm256_mul_pd(fscal,dy00);
831             tz               = _mm256_mul_pd(fscal,dz00);
832
833             /* Update vectorial force */
834             fix0             = _mm256_add_pd(fix0,tx);
835             fiy0             = _mm256_add_pd(fiy0,ty);
836             fiz0             = _mm256_add_pd(fiz0,tz);
837
838             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
839             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
840             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
841             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
842             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
843
844             /* Inner loop uses 63 flops */
845         }
846
847         /* End of innermost loop */
848
849         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
850                                                  f+i_coord_offset,fshift+i_shift_offset);
851
852         /* Increment number of inner iterations */
853         inneriter                  += j_index_end - j_index_start;
854
855         /* Outer loop uses 7 flops */
856     }
857
858     /* Increment number of outer iterations */
859     outeriter        += nri;
860
861     /* Update outer/inner flops */
862
863     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*63);
864 }