made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          ewitab;
78     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
79     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
80     real             *ewtab;
81     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
82     real             rswitch_scalar,d_scalar;
83     __m256d          dummy_mask,cutoff_mask;
84     __m128           tmpmask0,tmpmask1;
85     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
86     __m256d          one     = _mm256_set1_pd(1.0);
87     __m256d          two     = _mm256_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101
102     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
103     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
104     beta2            = _mm256_mul_pd(beta,beta);
105     beta3            = _mm256_mul_pd(beta,beta2);
106
107     ewtab            = fr->ic->tabq_coul_FDV0;
108     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
109     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
110
111     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
112     rcutoff_scalar   = fr->rcoulomb;
113     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
114     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
115
116     rswitch_scalar   = fr->rcoulomb_switch;
117     rswitch          = _mm256_set1_pd(rswitch_scalar);
118     /* Setup switch parameters */
119     d_scalar         = rcutoff_scalar-rswitch_scalar;
120     d                = _mm256_set1_pd(d_scalar);
121     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
122     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
123     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
124     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
125     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
126     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
127
128     /* Avoid stupid compiler warnings */
129     jnrA = jnrB = jnrC = jnrD = 0;
130     j_coord_offsetA = 0;
131     j_coord_offsetB = 0;
132     j_coord_offsetC = 0;
133     j_coord_offsetD = 0;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     for(iidx=0;iidx<4*DIM;iidx++)
139     {
140         scratch[iidx] = 0.0;
141     }
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
159
160         fix0             = _mm256_setzero_pd();
161         fiy0             = _mm256_setzero_pd();
162         fiz0             = _mm256_setzero_pd();
163
164         /* Load parameters for i particles */
165         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
166
167         /* Reset potential sums */
168         velecsum         = _mm256_setzero_pd();
169
170         /* Start inner kernel loop */
171         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
172         {
173
174             /* Get j neighbor index, and coordinate index */
175             jnrA             = jjnr[jidx];
176             jnrB             = jjnr[jidx+1];
177             jnrC             = jjnr[jidx+2];
178             jnrD             = jjnr[jidx+3];
179             j_coord_offsetA  = DIM*jnrA;
180             j_coord_offsetB  = DIM*jnrB;
181             j_coord_offsetC  = DIM*jnrC;
182             j_coord_offsetD  = DIM*jnrD;
183
184             /* load j atom coordinates */
185             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
186                                                  x+j_coord_offsetC,x+j_coord_offsetD,
187                                                  &jx0,&jy0,&jz0);
188
189             /* Calculate displacement vector */
190             dx00             = _mm256_sub_pd(ix0,jx0);
191             dy00             = _mm256_sub_pd(iy0,jy0);
192             dz00             = _mm256_sub_pd(iz0,jz0);
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
196
197             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
198
199             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
200
201             /* Load parameters for j particles */
202             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
203                                                                  charge+jnrC+0,charge+jnrD+0);
204
205             /**************************
206              * CALCULATE INTERACTIONS *
207              **************************/
208
209             if (gmx_mm256_any_lt(rsq00,rcutoff2))
210             {
211
212             r00              = _mm256_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm256_mul_pd(iq0,jq0);
216
217             /* EWALD ELECTROSTATICS */
218
219             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
220             ewrt             = _mm256_mul_pd(r00,ewtabscale);
221             ewitab           = _mm256_cvttpd_epi32(ewrt);
222             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
223             ewitab           = _mm_slli_epi32(ewitab,2);
224             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
225             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
226             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
227             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
228             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
229             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
230             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
231             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
232             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
233
234             d                = _mm256_sub_pd(r00,rswitch);
235             d                = _mm256_max_pd(d,_mm256_setzero_pd());
236             d2               = _mm256_mul_pd(d,d);
237             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
238
239             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
240
241             /* Evaluate switch function */
242             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
243             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
244             velec            = _mm256_mul_pd(velec,sw);
245             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
246
247             /* Update potential sum for this i atom from the interaction with this j atom. */
248             velec            = _mm256_and_pd(velec,cutoff_mask);
249             velecsum         = _mm256_add_pd(velecsum,velec);
250
251             fscal            = felec;
252
253             fscal            = _mm256_and_pd(fscal,cutoff_mask);
254
255             /* Calculate temporary vectorial force */
256             tx               = _mm256_mul_pd(fscal,dx00);
257             ty               = _mm256_mul_pd(fscal,dy00);
258             tz               = _mm256_mul_pd(fscal,dz00);
259
260             /* Update vectorial force */
261             fix0             = _mm256_add_pd(fix0,tx);
262             fiy0             = _mm256_add_pd(fiy0,ty);
263             fiz0             = _mm256_add_pd(fiz0,tz);
264
265             fjptrA             = f+j_coord_offsetA;
266             fjptrB             = f+j_coord_offsetB;
267             fjptrC             = f+j_coord_offsetC;
268             fjptrD             = f+j_coord_offsetD;
269             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
270
271             }
272
273             /* Inner loop uses 65 flops */
274         }
275
276         if(jidx<j_index_end)
277         {
278
279             /* Get j neighbor index, and coordinate index */
280             jnrlistA         = jjnr[jidx];
281             jnrlistB         = jjnr[jidx+1];
282             jnrlistC         = jjnr[jidx+2];
283             jnrlistD         = jjnr[jidx+3];
284             /* Sign of each element will be negative for non-real atoms.
285              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
286              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
287              */
288             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
289
290             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
291             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
292             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
293
294             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
295             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
296             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
297             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
298             j_coord_offsetA  = DIM*jnrA;
299             j_coord_offsetB  = DIM*jnrB;
300             j_coord_offsetC  = DIM*jnrC;
301             j_coord_offsetD  = DIM*jnrD;
302
303             /* load j atom coordinates */
304             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
305                                                  x+j_coord_offsetC,x+j_coord_offsetD,
306                                                  &jx0,&jy0,&jz0);
307
308             /* Calculate displacement vector */
309             dx00             = _mm256_sub_pd(ix0,jx0);
310             dy00             = _mm256_sub_pd(iy0,jy0);
311             dz00             = _mm256_sub_pd(iz0,jz0);
312
313             /* Calculate squared distance and things based on it */
314             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
315
316             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
317
318             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
319
320             /* Load parameters for j particles */
321             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
322                                                                  charge+jnrC+0,charge+jnrD+0);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm256_any_lt(rsq00,rcutoff2))
329             {
330
331             r00              = _mm256_mul_pd(rsq00,rinv00);
332             r00              = _mm256_andnot_pd(dummy_mask,r00);
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq00             = _mm256_mul_pd(iq0,jq0);
336
337             /* EWALD ELECTROSTATICS */
338
339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
340             ewrt             = _mm256_mul_pd(r00,ewtabscale);
341             ewitab           = _mm256_cvttpd_epi32(ewrt);
342             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
343             ewitab           = _mm_slli_epi32(ewitab,2);
344             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
345             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
346             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
347             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
348             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
349             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
350             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
351             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
352             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
353
354             d                = _mm256_sub_pd(r00,rswitch);
355             d                = _mm256_max_pd(d,_mm256_setzero_pd());
356             d2               = _mm256_mul_pd(d,d);
357             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
358
359             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
360
361             /* Evaluate switch function */
362             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
363             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
364             velec            = _mm256_mul_pd(velec,sw);
365             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
366
367             /* Update potential sum for this i atom from the interaction with this j atom. */
368             velec            = _mm256_and_pd(velec,cutoff_mask);
369             velec            = _mm256_andnot_pd(dummy_mask,velec);
370             velecsum         = _mm256_add_pd(velecsum,velec);
371
372             fscal            = felec;
373
374             fscal            = _mm256_and_pd(fscal,cutoff_mask);
375
376             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
377
378             /* Calculate temporary vectorial force */
379             tx               = _mm256_mul_pd(fscal,dx00);
380             ty               = _mm256_mul_pd(fscal,dy00);
381             tz               = _mm256_mul_pd(fscal,dz00);
382
383             /* Update vectorial force */
384             fix0             = _mm256_add_pd(fix0,tx);
385             fiy0             = _mm256_add_pd(fiy0,ty);
386             fiz0             = _mm256_add_pd(fiz0,tz);
387
388             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
389             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
390             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
391             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
392             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
393
394             }
395
396             /* Inner loop uses 66 flops */
397         }
398
399         /* End of innermost loop */
400
401         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
402                                                  f+i_coord_offset,fshift+i_shift_offset);
403
404         ggid                        = gid[iidx];
405         /* Update potential energies */
406         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
407
408         /* Increment number of inner iterations */
409         inneriter                  += j_index_end - j_index_start;
410
411         /* Outer loop uses 8 flops */
412     }
413
414     /* Increment number of outer iterations */
415     outeriter        += nri;
416
417     /* Update outer/inner flops */
418
419     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*66);
420 }
421 /*
422  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_double
423  * Electrostatics interaction: Ewald
424  * VdW interaction:            None
425  * Geometry:                   Particle-Particle
426  * Calculate force/pot:        Force
427  */
428 void
429 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_avx_256_double
430                     (t_nblist * gmx_restrict                nlist,
431                      rvec * gmx_restrict                    xx,
432                      rvec * gmx_restrict                    ff,
433                      t_forcerec * gmx_restrict              fr,
434                      t_mdatoms * gmx_restrict               mdatoms,
435                      nb_kernel_data_t * gmx_restrict        kernel_data,
436                      t_nrnb * gmx_restrict                  nrnb)
437 {
438     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
439      * just 0 for non-waters.
440      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
441      * jnr indices corresponding to data put in the four positions in the SIMD register.
442      */
443     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
444     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
445     int              jnrA,jnrB,jnrC,jnrD;
446     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
447     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
448     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
449     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
450     real             rcutoff_scalar;
451     real             *shiftvec,*fshift,*x,*f;
452     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
453     real             scratch[4*DIM];
454     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
455     real *           vdwioffsetptr0;
456     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
458     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
459     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
460     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     __m128i          ewitab;
463     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
464     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
465     real             *ewtab;
466     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
467     real             rswitch_scalar,d_scalar;
468     __m256d          dummy_mask,cutoff_mask;
469     __m128           tmpmask0,tmpmask1;
470     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
471     __m256d          one     = _mm256_set1_pd(1.0);
472     __m256d          two     = _mm256_set1_pd(2.0);
473     x                = xx[0];
474     f                = ff[0];
475
476     nri              = nlist->nri;
477     iinr             = nlist->iinr;
478     jindex           = nlist->jindex;
479     jjnr             = nlist->jjnr;
480     shiftidx         = nlist->shift;
481     gid              = nlist->gid;
482     shiftvec         = fr->shift_vec[0];
483     fshift           = fr->fshift[0];
484     facel            = _mm256_set1_pd(fr->epsfac);
485     charge           = mdatoms->chargeA;
486
487     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
488     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
489     beta2            = _mm256_mul_pd(beta,beta);
490     beta3            = _mm256_mul_pd(beta,beta2);
491
492     ewtab            = fr->ic->tabq_coul_FDV0;
493     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
494     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
495
496     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
497     rcutoff_scalar   = fr->rcoulomb;
498     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
499     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
500
501     rswitch_scalar   = fr->rcoulomb_switch;
502     rswitch          = _mm256_set1_pd(rswitch_scalar);
503     /* Setup switch parameters */
504     d_scalar         = rcutoff_scalar-rswitch_scalar;
505     d                = _mm256_set1_pd(d_scalar);
506     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
507     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
508     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
509     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
510     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
511     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
512
513     /* Avoid stupid compiler warnings */
514     jnrA = jnrB = jnrC = jnrD = 0;
515     j_coord_offsetA = 0;
516     j_coord_offsetB = 0;
517     j_coord_offsetC = 0;
518     j_coord_offsetD = 0;
519
520     outeriter        = 0;
521     inneriter        = 0;
522
523     for(iidx=0;iidx<4*DIM;iidx++)
524     {
525         scratch[iidx] = 0.0;
526     }
527
528     /* Start outer loop over neighborlists */
529     for(iidx=0; iidx<nri; iidx++)
530     {
531         /* Load shift vector for this list */
532         i_shift_offset   = DIM*shiftidx[iidx];
533
534         /* Load limits for loop over neighbors */
535         j_index_start    = jindex[iidx];
536         j_index_end      = jindex[iidx+1];
537
538         /* Get outer coordinate index */
539         inr              = iinr[iidx];
540         i_coord_offset   = DIM*inr;
541
542         /* Load i particle coords and add shift vector */
543         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
544
545         fix0             = _mm256_setzero_pd();
546         fiy0             = _mm256_setzero_pd();
547         fiz0             = _mm256_setzero_pd();
548
549         /* Load parameters for i particles */
550         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
551
552         /* Start inner kernel loop */
553         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
554         {
555
556             /* Get j neighbor index, and coordinate index */
557             jnrA             = jjnr[jidx];
558             jnrB             = jjnr[jidx+1];
559             jnrC             = jjnr[jidx+2];
560             jnrD             = jjnr[jidx+3];
561             j_coord_offsetA  = DIM*jnrA;
562             j_coord_offsetB  = DIM*jnrB;
563             j_coord_offsetC  = DIM*jnrC;
564             j_coord_offsetD  = DIM*jnrD;
565
566             /* load j atom coordinates */
567             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
568                                                  x+j_coord_offsetC,x+j_coord_offsetD,
569                                                  &jx0,&jy0,&jz0);
570
571             /* Calculate displacement vector */
572             dx00             = _mm256_sub_pd(ix0,jx0);
573             dy00             = _mm256_sub_pd(iy0,jy0);
574             dz00             = _mm256_sub_pd(iz0,jz0);
575
576             /* Calculate squared distance and things based on it */
577             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
578
579             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
580
581             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
582
583             /* Load parameters for j particles */
584             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
585                                                                  charge+jnrC+0,charge+jnrD+0);
586
587             /**************************
588              * CALCULATE INTERACTIONS *
589              **************************/
590
591             if (gmx_mm256_any_lt(rsq00,rcutoff2))
592             {
593
594             r00              = _mm256_mul_pd(rsq00,rinv00);
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq00             = _mm256_mul_pd(iq0,jq0);
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602             ewrt             = _mm256_mul_pd(r00,ewtabscale);
603             ewitab           = _mm256_cvttpd_epi32(ewrt);
604             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
605             ewitab           = _mm_slli_epi32(ewitab,2);
606             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
607             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
608             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
609             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
610             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
611             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
612             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
613             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
614             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
615
616             d                = _mm256_sub_pd(r00,rswitch);
617             d                = _mm256_max_pd(d,_mm256_setzero_pd());
618             d2               = _mm256_mul_pd(d,d);
619             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
620
621             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
622
623             /* Evaluate switch function */
624             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
625             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
626             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
627
628             fscal            = felec;
629
630             fscal            = _mm256_and_pd(fscal,cutoff_mask);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm256_mul_pd(fscal,dx00);
634             ty               = _mm256_mul_pd(fscal,dy00);
635             tz               = _mm256_mul_pd(fscal,dz00);
636
637             /* Update vectorial force */
638             fix0             = _mm256_add_pd(fix0,tx);
639             fiy0             = _mm256_add_pd(fiy0,ty);
640             fiz0             = _mm256_add_pd(fiz0,tz);
641
642             fjptrA             = f+j_coord_offsetA;
643             fjptrB             = f+j_coord_offsetB;
644             fjptrC             = f+j_coord_offsetC;
645             fjptrD             = f+j_coord_offsetD;
646             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
647
648             }
649
650             /* Inner loop uses 62 flops */
651         }
652
653         if(jidx<j_index_end)
654         {
655
656             /* Get j neighbor index, and coordinate index */
657             jnrlistA         = jjnr[jidx];
658             jnrlistB         = jjnr[jidx+1];
659             jnrlistC         = jjnr[jidx+2];
660             jnrlistD         = jjnr[jidx+3];
661             /* Sign of each element will be negative for non-real atoms.
662              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
663              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
664              */
665             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
666
667             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
668             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
669             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
670
671             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
672             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
673             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
674             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
675             j_coord_offsetA  = DIM*jnrA;
676             j_coord_offsetB  = DIM*jnrB;
677             j_coord_offsetC  = DIM*jnrC;
678             j_coord_offsetD  = DIM*jnrD;
679
680             /* load j atom coordinates */
681             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
682                                                  x+j_coord_offsetC,x+j_coord_offsetD,
683                                                  &jx0,&jy0,&jz0);
684
685             /* Calculate displacement vector */
686             dx00             = _mm256_sub_pd(ix0,jx0);
687             dy00             = _mm256_sub_pd(iy0,jy0);
688             dz00             = _mm256_sub_pd(iz0,jz0);
689
690             /* Calculate squared distance and things based on it */
691             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
692
693             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
694
695             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
696
697             /* Load parameters for j particles */
698             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
699                                                                  charge+jnrC+0,charge+jnrD+0);
700
701             /**************************
702              * CALCULATE INTERACTIONS *
703              **************************/
704
705             if (gmx_mm256_any_lt(rsq00,rcutoff2))
706             {
707
708             r00              = _mm256_mul_pd(rsq00,rinv00);
709             r00              = _mm256_andnot_pd(dummy_mask,r00);
710
711             /* Compute parameters for interactions between i and j atoms */
712             qq00             = _mm256_mul_pd(iq0,jq0);
713
714             /* EWALD ELECTROSTATICS */
715
716             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
717             ewrt             = _mm256_mul_pd(r00,ewtabscale);
718             ewitab           = _mm256_cvttpd_epi32(ewrt);
719             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
720             ewitab           = _mm_slli_epi32(ewitab,2);
721             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
722             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
723             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
724             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
725             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
726             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
727             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
728             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
729             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
730
731             d                = _mm256_sub_pd(r00,rswitch);
732             d                = _mm256_max_pd(d,_mm256_setzero_pd());
733             d2               = _mm256_mul_pd(d,d);
734             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
735
736             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
737
738             /* Evaluate switch function */
739             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
740             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
741             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
742
743             fscal            = felec;
744
745             fscal            = _mm256_and_pd(fscal,cutoff_mask);
746
747             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
748
749             /* Calculate temporary vectorial force */
750             tx               = _mm256_mul_pd(fscal,dx00);
751             ty               = _mm256_mul_pd(fscal,dy00);
752             tz               = _mm256_mul_pd(fscal,dz00);
753
754             /* Update vectorial force */
755             fix0             = _mm256_add_pd(fix0,tx);
756             fiy0             = _mm256_add_pd(fiy0,ty);
757             fiz0             = _mm256_add_pd(fiz0,tz);
758
759             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
760             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
761             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
762             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
763             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
764
765             }
766
767             /* Inner loop uses 63 flops */
768         }
769
770         /* End of innermost loop */
771
772         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
773                                                  f+i_coord_offset,fshift+i_shift_offset);
774
775         /* Increment number of inner iterations */
776         inneriter                  += j_index_end - j_index_start;
777
778         /* Outer loop uses 7 flops */
779     }
780
781     /* Increment number of outer iterations */
782     outeriter        += nri;
783
784     /* Update outer/inner flops */
785
786     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*63);
787 }