13c115c3560230139846795ecb7d4ae3e0b1d159
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          ewitab;
90     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
92     real             *ewtab;
93     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
94     real             rswitch_scalar,d_scalar;
95     __m256d          dummy_mask,cutoff_mask;
96     __m128           tmpmask0,tmpmask1;
97     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
98     __m256d          one     = _mm256_set1_pd(1.0);
99     __m256d          two     = _mm256_set1_pd(2.0);
100     x                = xx[0];
101     f                = ff[0];
102
103     nri              = nlist->nri;
104     iinr             = nlist->iinr;
105     jindex           = nlist->jindex;
106     jjnr             = nlist->jjnr;
107     shiftidx         = nlist->shift;
108     gid              = nlist->gid;
109     shiftvec         = fr->shift_vec[0];
110     fshift           = fr->fshift[0];
111     facel            = _mm256_set1_pd(fr->epsfac);
112     charge           = mdatoms->chargeA;
113     nvdwtype         = fr->ntype;
114     vdwparam         = fr->nbfp;
115     vdwtype          = mdatoms->typeA;
116
117     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
118     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
119     beta2            = _mm256_mul_pd(beta,beta);
120     beta3            = _mm256_mul_pd(beta,beta2);
121
122     ewtab            = fr->ic->tabq_coul_FDV0;
123     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
124     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
129     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
130     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
131     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff_scalar   = fr->rcoulomb;
135     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
136     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
137
138     rswitch_scalar   = fr->rcoulomb_switch;
139     rswitch          = _mm256_set1_pd(rswitch_scalar);
140     /* Setup switch parameters */
141     d_scalar         = rcutoff_scalar-rswitch_scalar;
142     d                = _mm256_set1_pd(d_scalar);
143     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
144     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
145     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
146     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
147     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
148     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
149
150     /* Avoid stupid compiler warnings */
151     jnrA = jnrB = jnrC = jnrD = 0;
152     j_coord_offsetA = 0;
153     j_coord_offsetB = 0;
154     j_coord_offsetC = 0;
155     j_coord_offsetD = 0;
156
157     outeriter        = 0;
158     inneriter        = 0;
159
160     for(iidx=0;iidx<4*DIM;iidx++)
161     {
162         scratch[iidx] = 0.0;
163     }
164
165     /* Start outer loop over neighborlists */
166     for(iidx=0; iidx<nri; iidx++)
167     {
168         /* Load shift vector for this list */
169         i_shift_offset   = DIM*shiftidx[iidx];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
181                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
182
183         fix0             = _mm256_setzero_pd();
184         fiy0             = _mm256_setzero_pd();
185         fiz0             = _mm256_setzero_pd();
186         fix1             = _mm256_setzero_pd();
187         fiy1             = _mm256_setzero_pd();
188         fiz1             = _mm256_setzero_pd();
189         fix2             = _mm256_setzero_pd();
190         fiy2             = _mm256_setzero_pd();
191         fiz2             = _mm256_setzero_pd();
192
193         /* Reset potential sums */
194         velecsum         = _mm256_setzero_pd();
195         vvdwsum          = _mm256_setzero_pd();
196
197         /* Start inner kernel loop */
198         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
199         {
200
201             /* Get j neighbor index, and coordinate index */
202             jnrA             = jjnr[jidx];
203             jnrB             = jjnr[jidx+1];
204             jnrC             = jjnr[jidx+2];
205             jnrD             = jjnr[jidx+3];
206             j_coord_offsetA  = DIM*jnrA;
207             j_coord_offsetB  = DIM*jnrB;
208             j_coord_offsetC  = DIM*jnrC;
209             j_coord_offsetD  = DIM*jnrD;
210
211             /* load j atom coordinates */
212             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
213                                                  x+j_coord_offsetC,x+j_coord_offsetD,
214                                                  &jx0,&jy0,&jz0);
215
216             /* Calculate displacement vector */
217             dx00             = _mm256_sub_pd(ix0,jx0);
218             dy00             = _mm256_sub_pd(iy0,jy0);
219             dz00             = _mm256_sub_pd(iz0,jz0);
220             dx10             = _mm256_sub_pd(ix1,jx0);
221             dy10             = _mm256_sub_pd(iy1,jy0);
222             dz10             = _mm256_sub_pd(iz1,jz0);
223             dx20             = _mm256_sub_pd(ix2,jx0);
224             dy20             = _mm256_sub_pd(iy2,jy0);
225             dz20             = _mm256_sub_pd(iz2,jz0);
226
227             /* Calculate squared distance and things based on it */
228             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
229             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
230             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
231
232             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
233             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
234             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
235
236             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
237             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
238             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
242                                                                  charge+jnrC+0,charge+jnrD+0);
243             vdwjidx0A        = 2*vdwtype[jnrA+0];
244             vdwjidx0B        = 2*vdwtype[jnrB+0];
245             vdwjidx0C        = 2*vdwtype[jnrC+0];
246             vdwjidx0D        = 2*vdwtype[jnrD+0];
247
248             fjx0             = _mm256_setzero_pd();
249             fjy0             = _mm256_setzero_pd();
250             fjz0             = _mm256_setzero_pd();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             if (gmx_mm256_any_lt(rsq00,rcutoff2))
257             {
258
259             r00              = _mm256_mul_pd(rsq00,rinv00);
260
261             /* Compute parameters for interactions between i and j atoms */
262             qq00             = _mm256_mul_pd(iq0,jq0);
263             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
264                                             vdwioffsetptr0+vdwjidx0B,
265                                             vdwioffsetptr0+vdwjidx0C,
266                                             vdwioffsetptr0+vdwjidx0D,
267                                             &c6_00,&c12_00);
268
269             /* EWALD ELECTROSTATICS */
270
271             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
272             ewrt             = _mm256_mul_pd(r00,ewtabscale);
273             ewitab           = _mm256_cvttpd_epi32(ewrt);
274             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
275             ewitab           = _mm_slli_epi32(ewitab,2);
276             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
277             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
278             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
279             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
280             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
281             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
282             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
283             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
284             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
285
286             /* LENNARD-JONES DISPERSION/REPULSION */
287
288             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
289             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
290             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
291             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
292             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
293
294             d                = _mm256_sub_pd(r00,rswitch);
295             d                = _mm256_max_pd(d,_mm256_setzero_pd());
296             d2               = _mm256_mul_pd(d,d);
297             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
298
299             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
300
301             /* Evaluate switch function */
302             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
303             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
304             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
305             velec            = _mm256_mul_pd(velec,sw);
306             vvdw             = _mm256_mul_pd(vvdw,sw);
307             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
308
309             /* Update potential sum for this i atom from the interaction with this j atom. */
310             velec            = _mm256_and_pd(velec,cutoff_mask);
311             velecsum         = _mm256_add_pd(velecsum,velec);
312             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
313             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
314
315             fscal            = _mm256_add_pd(felec,fvdw);
316
317             fscal            = _mm256_and_pd(fscal,cutoff_mask);
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm256_mul_pd(fscal,dx00);
321             ty               = _mm256_mul_pd(fscal,dy00);
322             tz               = _mm256_mul_pd(fscal,dz00);
323
324             /* Update vectorial force */
325             fix0             = _mm256_add_pd(fix0,tx);
326             fiy0             = _mm256_add_pd(fiy0,ty);
327             fiz0             = _mm256_add_pd(fiz0,tz);
328
329             fjx0             = _mm256_add_pd(fjx0,tx);
330             fjy0             = _mm256_add_pd(fjy0,ty);
331             fjz0             = _mm256_add_pd(fjz0,tz);
332
333             }
334
335             /**************************
336              * CALCULATE INTERACTIONS *
337              **************************/
338
339             if (gmx_mm256_any_lt(rsq10,rcutoff2))
340             {
341
342             r10              = _mm256_mul_pd(rsq10,rinv10);
343
344             /* Compute parameters for interactions between i and j atoms */
345             qq10             = _mm256_mul_pd(iq1,jq0);
346
347             /* EWALD ELECTROSTATICS */
348
349             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
350             ewrt             = _mm256_mul_pd(r10,ewtabscale);
351             ewitab           = _mm256_cvttpd_epi32(ewrt);
352             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
353             ewitab           = _mm_slli_epi32(ewitab,2);
354             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
355             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
356             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
357             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
358             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
359             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
360             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
361             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
362             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
363
364             d                = _mm256_sub_pd(r10,rswitch);
365             d                = _mm256_max_pd(d,_mm256_setzero_pd());
366             d2               = _mm256_mul_pd(d,d);
367             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
368
369             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
370
371             /* Evaluate switch function */
372             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
373             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
374             velec            = _mm256_mul_pd(velec,sw);
375             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
376
377             /* Update potential sum for this i atom from the interaction with this j atom. */
378             velec            = _mm256_and_pd(velec,cutoff_mask);
379             velecsum         = _mm256_add_pd(velecsum,velec);
380
381             fscal            = felec;
382
383             fscal            = _mm256_and_pd(fscal,cutoff_mask);
384
385             /* Calculate temporary vectorial force */
386             tx               = _mm256_mul_pd(fscal,dx10);
387             ty               = _mm256_mul_pd(fscal,dy10);
388             tz               = _mm256_mul_pd(fscal,dz10);
389
390             /* Update vectorial force */
391             fix1             = _mm256_add_pd(fix1,tx);
392             fiy1             = _mm256_add_pd(fiy1,ty);
393             fiz1             = _mm256_add_pd(fiz1,tz);
394
395             fjx0             = _mm256_add_pd(fjx0,tx);
396             fjy0             = _mm256_add_pd(fjy0,ty);
397             fjz0             = _mm256_add_pd(fjz0,tz);
398
399             }
400
401             /**************************
402              * CALCULATE INTERACTIONS *
403              **************************/
404
405             if (gmx_mm256_any_lt(rsq20,rcutoff2))
406             {
407
408             r20              = _mm256_mul_pd(rsq20,rinv20);
409
410             /* Compute parameters for interactions between i and j atoms */
411             qq20             = _mm256_mul_pd(iq2,jq0);
412
413             /* EWALD ELECTROSTATICS */
414
415             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
416             ewrt             = _mm256_mul_pd(r20,ewtabscale);
417             ewitab           = _mm256_cvttpd_epi32(ewrt);
418             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
419             ewitab           = _mm_slli_epi32(ewitab,2);
420             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
421             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
422             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
423             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
424             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
425             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
426             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
427             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
428             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
429
430             d                = _mm256_sub_pd(r20,rswitch);
431             d                = _mm256_max_pd(d,_mm256_setzero_pd());
432             d2               = _mm256_mul_pd(d,d);
433             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
434
435             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
436
437             /* Evaluate switch function */
438             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
439             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
440             velec            = _mm256_mul_pd(velec,sw);
441             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
442
443             /* Update potential sum for this i atom from the interaction with this j atom. */
444             velec            = _mm256_and_pd(velec,cutoff_mask);
445             velecsum         = _mm256_add_pd(velecsum,velec);
446
447             fscal            = felec;
448
449             fscal            = _mm256_and_pd(fscal,cutoff_mask);
450
451             /* Calculate temporary vectorial force */
452             tx               = _mm256_mul_pd(fscal,dx20);
453             ty               = _mm256_mul_pd(fscal,dy20);
454             tz               = _mm256_mul_pd(fscal,dz20);
455
456             /* Update vectorial force */
457             fix2             = _mm256_add_pd(fix2,tx);
458             fiy2             = _mm256_add_pd(fiy2,ty);
459             fiz2             = _mm256_add_pd(fiz2,tz);
460
461             fjx0             = _mm256_add_pd(fjx0,tx);
462             fjy0             = _mm256_add_pd(fjy0,ty);
463             fjz0             = _mm256_add_pd(fjz0,tz);
464
465             }
466
467             fjptrA             = f+j_coord_offsetA;
468             fjptrB             = f+j_coord_offsetB;
469             fjptrC             = f+j_coord_offsetC;
470             fjptrD             = f+j_coord_offsetD;
471
472             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
473
474             /* Inner loop uses 216 flops */
475         }
476
477         if(jidx<j_index_end)
478         {
479
480             /* Get j neighbor index, and coordinate index */
481             jnrlistA         = jjnr[jidx];
482             jnrlistB         = jjnr[jidx+1];
483             jnrlistC         = jjnr[jidx+2];
484             jnrlistD         = jjnr[jidx+3];
485             /* Sign of each element will be negative for non-real atoms.
486              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
487              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
488              */
489             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
490
491             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
492             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
493             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
494
495             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
496             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
497             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
498             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
499             j_coord_offsetA  = DIM*jnrA;
500             j_coord_offsetB  = DIM*jnrB;
501             j_coord_offsetC  = DIM*jnrC;
502             j_coord_offsetD  = DIM*jnrD;
503
504             /* load j atom coordinates */
505             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
506                                                  x+j_coord_offsetC,x+j_coord_offsetD,
507                                                  &jx0,&jy0,&jz0);
508
509             /* Calculate displacement vector */
510             dx00             = _mm256_sub_pd(ix0,jx0);
511             dy00             = _mm256_sub_pd(iy0,jy0);
512             dz00             = _mm256_sub_pd(iz0,jz0);
513             dx10             = _mm256_sub_pd(ix1,jx0);
514             dy10             = _mm256_sub_pd(iy1,jy0);
515             dz10             = _mm256_sub_pd(iz1,jz0);
516             dx20             = _mm256_sub_pd(ix2,jx0);
517             dy20             = _mm256_sub_pd(iy2,jy0);
518             dz20             = _mm256_sub_pd(iz2,jz0);
519
520             /* Calculate squared distance and things based on it */
521             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
522             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
523             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
524
525             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
526             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
527             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
528
529             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
530             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
531             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
535                                                                  charge+jnrC+0,charge+jnrD+0);
536             vdwjidx0A        = 2*vdwtype[jnrA+0];
537             vdwjidx0B        = 2*vdwtype[jnrB+0];
538             vdwjidx0C        = 2*vdwtype[jnrC+0];
539             vdwjidx0D        = 2*vdwtype[jnrD+0];
540
541             fjx0             = _mm256_setzero_pd();
542             fjy0             = _mm256_setzero_pd();
543             fjz0             = _mm256_setzero_pd();
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             if (gmx_mm256_any_lt(rsq00,rcutoff2))
550             {
551
552             r00              = _mm256_mul_pd(rsq00,rinv00);
553             r00              = _mm256_andnot_pd(dummy_mask,r00);
554
555             /* Compute parameters for interactions between i and j atoms */
556             qq00             = _mm256_mul_pd(iq0,jq0);
557             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
558                                             vdwioffsetptr0+vdwjidx0B,
559                                             vdwioffsetptr0+vdwjidx0C,
560                                             vdwioffsetptr0+vdwjidx0D,
561                                             &c6_00,&c12_00);
562
563             /* EWALD ELECTROSTATICS */
564
565             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
566             ewrt             = _mm256_mul_pd(r00,ewtabscale);
567             ewitab           = _mm256_cvttpd_epi32(ewrt);
568             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
569             ewitab           = _mm_slli_epi32(ewitab,2);
570             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
571             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
572             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
573             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
574             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
575             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
576             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
577             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
578             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
579
580             /* LENNARD-JONES DISPERSION/REPULSION */
581
582             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
583             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
584             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
585             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
586             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
587
588             d                = _mm256_sub_pd(r00,rswitch);
589             d                = _mm256_max_pd(d,_mm256_setzero_pd());
590             d2               = _mm256_mul_pd(d,d);
591             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
592
593             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
594
595             /* Evaluate switch function */
596             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
597             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
598             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
599             velec            = _mm256_mul_pd(velec,sw);
600             vvdw             = _mm256_mul_pd(vvdw,sw);
601             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
602
603             /* Update potential sum for this i atom from the interaction with this j atom. */
604             velec            = _mm256_and_pd(velec,cutoff_mask);
605             velec            = _mm256_andnot_pd(dummy_mask,velec);
606             velecsum         = _mm256_add_pd(velecsum,velec);
607             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
608             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
609             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
610
611             fscal            = _mm256_add_pd(felec,fvdw);
612
613             fscal            = _mm256_and_pd(fscal,cutoff_mask);
614
615             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
616
617             /* Calculate temporary vectorial force */
618             tx               = _mm256_mul_pd(fscal,dx00);
619             ty               = _mm256_mul_pd(fscal,dy00);
620             tz               = _mm256_mul_pd(fscal,dz00);
621
622             /* Update vectorial force */
623             fix0             = _mm256_add_pd(fix0,tx);
624             fiy0             = _mm256_add_pd(fiy0,ty);
625             fiz0             = _mm256_add_pd(fiz0,tz);
626
627             fjx0             = _mm256_add_pd(fjx0,tx);
628             fjy0             = _mm256_add_pd(fjy0,ty);
629             fjz0             = _mm256_add_pd(fjz0,tz);
630
631             }
632
633             /**************************
634              * CALCULATE INTERACTIONS *
635              **************************/
636
637             if (gmx_mm256_any_lt(rsq10,rcutoff2))
638             {
639
640             r10              = _mm256_mul_pd(rsq10,rinv10);
641             r10              = _mm256_andnot_pd(dummy_mask,r10);
642
643             /* Compute parameters for interactions between i and j atoms */
644             qq10             = _mm256_mul_pd(iq1,jq0);
645
646             /* EWALD ELECTROSTATICS */
647
648             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
649             ewrt             = _mm256_mul_pd(r10,ewtabscale);
650             ewitab           = _mm256_cvttpd_epi32(ewrt);
651             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
652             ewitab           = _mm_slli_epi32(ewitab,2);
653             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
654             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
655             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
656             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
657             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
658             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
659             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
660             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
661             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
662
663             d                = _mm256_sub_pd(r10,rswitch);
664             d                = _mm256_max_pd(d,_mm256_setzero_pd());
665             d2               = _mm256_mul_pd(d,d);
666             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
667
668             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
669
670             /* Evaluate switch function */
671             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
672             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
673             velec            = _mm256_mul_pd(velec,sw);
674             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
675
676             /* Update potential sum for this i atom from the interaction with this j atom. */
677             velec            = _mm256_and_pd(velec,cutoff_mask);
678             velec            = _mm256_andnot_pd(dummy_mask,velec);
679             velecsum         = _mm256_add_pd(velecsum,velec);
680
681             fscal            = felec;
682
683             fscal            = _mm256_and_pd(fscal,cutoff_mask);
684
685             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
686
687             /* Calculate temporary vectorial force */
688             tx               = _mm256_mul_pd(fscal,dx10);
689             ty               = _mm256_mul_pd(fscal,dy10);
690             tz               = _mm256_mul_pd(fscal,dz10);
691
692             /* Update vectorial force */
693             fix1             = _mm256_add_pd(fix1,tx);
694             fiy1             = _mm256_add_pd(fiy1,ty);
695             fiz1             = _mm256_add_pd(fiz1,tz);
696
697             fjx0             = _mm256_add_pd(fjx0,tx);
698             fjy0             = _mm256_add_pd(fjy0,ty);
699             fjz0             = _mm256_add_pd(fjz0,tz);
700
701             }
702
703             /**************************
704              * CALCULATE INTERACTIONS *
705              **************************/
706
707             if (gmx_mm256_any_lt(rsq20,rcutoff2))
708             {
709
710             r20              = _mm256_mul_pd(rsq20,rinv20);
711             r20              = _mm256_andnot_pd(dummy_mask,r20);
712
713             /* Compute parameters for interactions between i and j atoms */
714             qq20             = _mm256_mul_pd(iq2,jq0);
715
716             /* EWALD ELECTROSTATICS */
717
718             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
719             ewrt             = _mm256_mul_pd(r20,ewtabscale);
720             ewitab           = _mm256_cvttpd_epi32(ewrt);
721             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
722             ewitab           = _mm_slli_epi32(ewitab,2);
723             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
724             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
725             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
726             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
727             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
728             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
729             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
730             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
731             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
732
733             d                = _mm256_sub_pd(r20,rswitch);
734             d                = _mm256_max_pd(d,_mm256_setzero_pd());
735             d2               = _mm256_mul_pd(d,d);
736             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
737
738             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
739
740             /* Evaluate switch function */
741             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
742             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
743             velec            = _mm256_mul_pd(velec,sw);
744             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
745
746             /* Update potential sum for this i atom from the interaction with this j atom. */
747             velec            = _mm256_and_pd(velec,cutoff_mask);
748             velec            = _mm256_andnot_pd(dummy_mask,velec);
749             velecsum         = _mm256_add_pd(velecsum,velec);
750
751             fscal            = felec;
752
753             fscal            = _mm256_and_pd(fscal,cutoff_mask);
754
755             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
756
757             /* Calculate temporary vectorial force */
758             tx               = _mm256_mul_pd(fscal,dx20);
759             ty               = _mm256_mul_pd(fscal,dy20);
760             tz               = _mm256_mul_pd(fscal,dz20);
761
762             /* Update vectorial force */
763             fix2             = _mm256_add_pd(fix2,tx);
764             fiy2             = _mm256_add_pd(fiy2,ty);
765             fiz2             = _mm256_add_pd(fiz2,tz);
766
767             fjx0             = _mm256_add_pd(fjx0,tx);
768             fjy0             = _mm256_add_pd(fjy0,ty);
769             fjz0             = _mm256_add_pd(fjz0,tz);
770
771             }
772
773             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
774             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
775             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
776             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
777
778             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
779
780             /* Inner loop uses 219 flops */
781         }
782
783         /* End of innermost loop */
784
785         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
786                                                  f+i_coord_offset,fshift+i_shift_offset);
787
788         ggid                        = gid[iidx];
789         /* Update potential energies */
790         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
791         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
792
793         /* Increment number of inner iterations */
794         inneriter                  += j_index_end - j_index_start;
795
796         /* Outer loop uses 20 flops */
797     }
798
799     /* Increment number of outer iterations */
800     outeriter        += nri;
801
802     /* Update outer/inner flops */
803
804     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*219);
805 }
806 /*
807  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_256_double
808  * Electrostatics interaction: Ewald
809  * VdW interaction:            LennardJones
810  * Geometry:                   Water3-Particle
811  * Calculate force/pot:        Force
812  */
813 void
814 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_avx_256_double
815                     (t_nblist * gmx_restrict                nlist,
816                      rvec * gmx_restrict                    xx,
817                      rvec * gmx_restrict                    ff,
818                      t_forcerec * gmx_restrict              fr,
819                      t_mdatoms * gmx_restrict               mdatoms,
820                      nb_kernel_data_t * gmx_restrict        kernel_data,
821                      t_nrnb * gmx_restrict                  nrnb)
822 {
823     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
824      * just 0 for non-waters.
825      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
826      * jnr indices corresponding to data put in the four positions in the SIMD register.
827      */
828     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
829     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
830     int              jnrA,jnrB,jnrC,jnrD;
831     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
832     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
833     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
834     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
835     real             rcutoff_scalar;
836     real             *shiftvec,*fshift,*x,*f;
837     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
838     real             scratch[4*DIM];
839     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
840     real *           vdwioffsetptr0;
841     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
842     real *           vdwioffsetptr1;
843     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
844     real *           vdwioffsetptr2;
845     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
846     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
847     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
848     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
849     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
850     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
851     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
852     real             *charge;
853     int              nvdwtype;
854     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
855     int              *vdwtype;
856     real             *vdwparam;
857     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
858     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
859     __m128i          ewitab;
860     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
861     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
862     real             *ewtab;
863     __m256d          rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
864     real             rswitch_scalar,d_scalar;
865     __m256d          dummy_mask,cutoff_mask;
866     __m128           tmpmask0,tmpmask1;
867     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
868     __m256d          one     = _mm256_set1_pd(1.0);
869     __m256d          two     = _mm256_set1_pd(2.0);
870     x                = xx[0];
871     f                = ff[0];
872
873     nri              = nlist->nri;
874     iinr             = nlist->iinr;
875     jindex           = nlist->jindex;
876     jjnr             = nlist->jjnr;
877     shiftidx         = nlist->shift;
878     gid              = nlist->gid;
879     shiftvec         = fr->shift_vec[0];
880     fshift           = fr->fshift[0];
881     facel            = _mm256_set1_pd(fr->epsfac);
882     charge           = mdatoms->chargeA;
883     nvdwtype         = fr->ntype;
884     vdwparam         = fr->nbfp;
885     vdwtype          = mdatoms->typeA;
886
887     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
888     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
889     beta2            = _mm256_mul_pd(beta,beta);
890     beta3            = _mm256_mul_pd(beta,beta2);
891
892     ewtab            = fr->ic->tabq_coul_FDV0;
893     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
894     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
895
896     /* Setup water-specific parameters */
897     inr              = nlist->iinr[0];
898     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
899     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
900     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
901     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
902
903     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
904     rcutoff_scalar   = fr->rcoulomb;
905     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
906     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
907
908     rswitch_scalar   = fr->rcoulomb_switch;
909     rswitch          = _mm256_set1_pd(rswitch_scalar);
910     /* Setup switch parameters */
911     d_scalar         = rcutoff_scalar-rswitch_scalar;
912     d                = _mm256_set1_pd(d_scalar);
913     swV3             = _mm256_set1_pd(-10.0/(d_scalar*d_scalar*d_scalar));
914     swV4             = _mm256_set1_pd( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
915     swV5             = _mm256_set1_pd( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
916     swF2             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar));
917     swF3             = _mm256_set1_pd( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
918     swF4             = _mm256_set1_pd(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
919
920     /* Avoid stupid compiler warnings */
921     jnrA = jnrB = jnrC = jnrD = 0;
922     j_coord_offsetA = 0;
923     j_coord_offsetB = 0;
924     j_coord_offsetC = 0;
925     j_coord_offsetD = 0;
926
927     outeriter        = 0;
928     inneriter        = 0;
929
930     for(iidx=0;iidx<4*DIM;iidx++)
931     {
932         scratch[iidx] = 0.0;
933     }
934
935     /* Start outer loop over neighborlists */
936     for(iidx=0; iidx<nri; iidx++)
937     {
938         /* Load shift vector for this list */
939         i_shift_offset   = DIM*shiftidx[iidx];
940
941         /* Load limits for loop over neighbors */
942         j_index_start    = jindex[iidx];
943         j_index_end      = jindex[iidx+1];
944
945         /* Get outer coordinate index */
946         inr              = iinr[iidx];
947         i_coord_offset   = DIM*inr;
948
949         /* Load i particle coords and add shift vector */
950         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
951                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
952
953         fix0             = _mm256_setzero_pd();
954         fiy0             = _mm256_setzero_pd();
955         fiz0             = _mm256_setzero_pd();
956         fix1             = _mm256_setzero_pd();
957         fiy1             = _mm256_setzero_pd();
958         fiz1             = _mm256_setzero_pd();
959         fix2             = _mm256_setzero_pd();
960         fiy2             = _mm256_setzero_pd();
961         fiz2             = _mm256_setzero_pd();
962
963         /* Start inner kernel loop */
964         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
965         {
966
967             /* Get j neighbor index, and coordinate index */
968             jnrA             = jjnr[jidx];
969             jnrB             = jjnr[jidx+1];
970             jnrC             = jjnr[jidx+2];
971             jnrD             = jjnr[jidx+3];
972             j_coord_offsetA  = DIM*jnrA;
973             j_coord_offsetB  = DIM*jnrB;
974             j_coord_offsetC  = DIM*jnrC;
975             j_coord_offsetD  = DIM*jnrD;
976
977             /* load j atom coordinates */
978             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
979                                                  x+j_coord_offsetC,x+j_coord_offsetD,
980                                                  &jx0,&jy0,&jz0);
981
982             /* Calculate displacement vector */
983             dx00             = _mm256_sub_pd(ix0,jx0);
984             dy00             = _mm256_sub_pd(iy0,jy0);
985             dz00             = _mm256_sub_pd(iz0,jz0);
986             dx10             = _mm256_sub_pd(ix1,jx0);
987             dy10             = _mm256_sub_pd(iy1,jy0);
988             dz10             = _mm256_sub_pd(iz1,jz0);
989             dx20             = _mm256_sub_pd(ix2,jx0);
990             dy20             = _mm256_sub_pd(iy2,jy0);
991             dz20             = _mm256_sub_pd(iz2,jz0);
992
993             /* Calculate squared distance and things based on it */
994             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
995             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
996             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
997
998             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
999             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1000             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1001
1002             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1003             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1004             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1005
1006             /* Load parameters for j particles */
1007             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1008                                                                  charge+jnrC+0,charge+jnrD+0);
1009             vdwjidx0A        = 2*vdwtype[jnrA+0];
1010             vdwjidx0B        = 2*vdwtype[jnrB+0];
1011             vdwjidx0C        = 2*vdwtype[jnrC+0];
1012             vdwjidx0D        = 2*vdwtype[jnrD+0];
1013
1014             fjx0             = _mm256_setzero_pd();
1015             fjy0             = _mm256_setzero_pd();
1016             fjz0             = _mm256_setzero_pd();
1017
1018             /**************************
1019              * CALCULATE INTERACTIONS *
1020              **************************/
1021
1022             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1023             {
1024
1025             r00              = _mm256_mul_pd(rsq00,rinv00);
1026
1027             /* Compute parameters for interactions between i and j atoms */
1028             qq00             = _mm256_mul_pd(iq0,jq0);
1029             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1030                                             vdwioffsetptr0+vdwjidx0B,
1031                                             vdwioffsetptr0+vdwjidx0C,
1032                                             vdwioffsetptr0+vdwjidx0D,
1033                                             &c6_00,&c12_00);
1034
1035             /* EWALD ELECTROSTATICS */
1036
1037             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1038             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1039             ewitab           = _mm256_cvttpd_epi32(ewrt);
1040             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1041             ewitab           = _mm_slli_epi32(ewitab,2);
1042             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1043             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1044             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1045             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1046             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1047             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1048             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1049             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
1050             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1051
1052             /* LENNARD-JONES DISPERSION/REPULSION */
1053
1054             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1055             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1056             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1057             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1058             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1059
1060             d                = _mm256_sub_pd(r00,rswitch);
1061             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1062             d2               = _mm256_mul_pd(d,d);
1063             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1064
1065             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1066
1067             /* Evaluate switch function */
1068             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1069             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
1070             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1071             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1072
1073             fscal            = _mm256_add_pd(felec,fvdw);
1074
1075             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1076
1077             /* Calculate temporary vectorial force */
1078             tx               = _mm256_mul_pd(fscal,dx00);
1079             ty               = _mm256_mul_pd(fscal,dy00);
1080             tz               = _mm256_mul_pd(fscal,dz00);
1081
1082             /* Update vectorial force */
1083             fix0             = _mm256_add_pd(fix0,tx);
1084             fiy0             = _mm256_add_pd(fiy0,ty);
1085             fiz0             = _mm256_add_pd(fiz0,tz);
1086
1087             fjx0             = _mm256_add_pd(fjx0,tx);
1088             fjy0             = _mm256_add_pd(fjy0,ty);
1089             fjz0             = _mm256_add_pd(fjz0,tz);
1090
1091             }
1092
1093             /**************************
1094              * CALCULATE INTERACTIONS *
1095              **************************/
1096
1097             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1098             {
1099
1100             r10              = _mm256_mul_pd(rsq10,rinv10);
1101
1102             /* Compute parameters for interactions between i and j atoms */
1103             qq10             = _mm256_mul_pd(iq1,jq0);
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1109             ewitab           = _mm256_cvttpd_epi32(ewrt);
1110             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1111             ewitab           = _mm_slli_epi32(ewitab,2);
1112             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1113             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1114             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1115             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1116             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1117             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1118             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1119             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1120             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1121
1122             d                = _mm256_sub_pd(r10,rswitch);
1123             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1124             d2               = _mm256_mul_pd(d,d);
1125             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1126
1127             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1128
1129             /* Evaluate switch function */
1130             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1131             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
1132             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1133
1134             fscal            = felec;
1135
1136             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1137
1138             /* Calculate temporary vectorial force */
1139             tx               = _mm256_mul_pd(fscal,dx10);
1140             ty               = _mm256_mul_pd(fscal,dy10);
1141             tz               = _mm256_mul_pd(fscal,dz10);
1142
1143             /* Update vectorial force */
1144             fix1             = _mm256_add_pd(fix1,tx);
1145             fiy1             = _mm256_add_pd(fiy1,ty);
1146             fiz1             = _mm256_add_pd(fiz1,tz);
1147
1148             fjx0             = _mm256_add_pd(fjx0,tx);
1149             fjy0             = _mm256_add_pd(fjy0,ty);
1150             fjz0             = _mm256_add_pd(fjz0,tz);
1151
1152             }
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1159             {
1160
1161             r20              = _mm256_mul_pd(rsq20,rinv20);
1162
1163             /* Compute parameters for interactions between i and j atoms */
1164             qq20             = _mm256_mul_pd(iq2,jq0);
1165
1166             /* EWALD ELECTROSTATICS */
1167
1168             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1169             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1170             ewitab           = _mm256_cvttpd_epi32(ewrt);
1171             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1172             ewitab           = _mm_slli_epi32(ewitab,2);
1173             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1174             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1175             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1176             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1177             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1178             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1179             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1180             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1181             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1182
1183             d                = _mm256_sub_pd(r20,rswitch);
1184             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1185             d2               = _mm256_mul_pd(d,d);
1186             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1187
1188             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1189
1190             /* Evaluate switch function */
1191             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1192             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1193             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1194
1195             fscal            = felec;
1196
1197             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1198
1199             /* Calculate temporary vectorial force */
1200             tx               = _mm256_mul_pd(fscal,dx20);
1201             ty               = _mm256_mul_pd(fscal,dy20);
1202             tz               = _mm256_mul_pd(fscal,dz20);
1203
1204             /* Update vectorial force */
1205             fix2             = _mm256_add_pd(fix2,tx);
1206             fiy2             = _mm256_add_pd(fiy2,ty);
1207             fiz2             = _mm256_add_pd(fiz2,tz);
1208
1209             fjx0             = _mm256_add_pd(fjx0,tx);
1210             fjy0             = _mm256_add_pd(fjy0,ty);
1211             fjz0             = _mm256_add_pd(fjz0,tz);
1212
1213             }
1214
1215             fjptrA             = f+j_coord_offsetA;
1216             fjptrB             = f+j_coord_offsetB;
1217             fjptrC             = f+j_coord_offsetC;
1218             fjptrD             = f+j_coord_offsetD;
1219
1220             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1221
1222             /* Inner loop uses 204 flops */
1223         }
1224
1225         if(jidx<j_index_end)
1226         {
1227
1228             /* Get j neighbor index, and coordinate index */
1229             jnrlistA         = jjnr[jidx];
1230             jnrlistB         = jjnr[jidx+1];
1231             jnrlistC         = jjnr[jidx+2];
1232             jnrlistD         = jjnr[jidx+3];
1233             /* Sign of each element will be negative for non-real atoms.
1234              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1235              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1236              */
1237             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1238
1239             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1240             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1241             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1242
1243             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1244             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1245             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1246             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1247             j_coord_offsetA  = DIM*jnrA;
1248             j_coord_offsetB  = DIM*jnrB;
1249             j_coord_offsetC  = DIM*jnrC;
1250             j_coord_offsetD  = DIM*jnrD;
1251
1252             /* load j atom coordinates */
1253             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1254                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1255                                                  &jx0,&jy0,&jz0);
1256
1257             /* Calculate displacement vector */
1258             dx00             = _mm256_sub_pd(ix0,jx0);
1259             dy00             = _mm256_sub_pd(iy0,jy0);
1260             dz00             = _mm256_sub_pd(iz0,jz0);
1261             dx10             = _mm256_sub_pd(ix1,jx0);
1262             dy10             = _mm256_sub_pd(iy1,jy0);
1263             dz10             = _mm256_sub_pd(iz1,jz0);
1264             dx20             = _mm256_sub_pd(ix2,jx0);
1265             dy20             = _mm256_sub_pd(iy2,jy0);
1266             dz20             = _mm256_sub_pd(iz2,jz0);
1267
1268             /* Calculate squared distance and things based on it */
1269             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1270             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1271             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1272
1273             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1274             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1275             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1276
1277             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1278             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1279             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1280
1281             /* Load parameters for j particles */
1282             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1283                                                                  charge+jnrC+0,charge+jnrD+0);
1284             vdwjidx0A        = 2*vdwtype[jnrA+0];
1285             vdwjidx0B        = 2*vdwtype[jnrB+0];
1286             vdwjidx0C        = 2*vdwtype[jnrC+0];
1287             vdwjidx0D        = 2*vdwtype[jnrD+0];
1288
1289             fjx0             = _mm256_setzero_pd();
1290             fjy0             = _mm256_setzero_pd();
1291             fjz0             = _mm256_setzero_pd();
1292
1293             /**************************
1294              * CALCULATE INTERACTIONS *
1295              **************************/
1296
1297             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1298             {
1299
1300             r00              = _mm256_mul_pd(rsq00,rinv00);
1301             r00              = _mm256_andnot_pd(dummy_mask,r00);
1302
1303             /* Compute parameters for interactions between i and j atoms */
1304             qq00             = _mm256_mul_pd(iq0,jq0);
1305             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1306                                             vdwioffsetptr0+vdwjidx0B,
1307                                             vdwioffsetptr0+vdwjidx0C,
1308                                             vdwioffsetptr0+vdwjidx0D,
1309                                             &c6_00,&c12_00);
1310
1311             /* EWALD ELECTROSTATICS */
1312
1313             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1314             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1315             ewitab           = _mm256_cvttpd_epi32(ewrt);
1316             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1317             ewitab           = _mm_slli_epi32(ewitab,2);
1318             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1319             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1320             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1321             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1322             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1323             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1324             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1325             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(rinv00,velec));
1326             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1327
1328             /* LENNARD-JONES DISPERSION/REPULSION */
1329
1330             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1331             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
1332             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
1333             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
1334             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
1335
1336             d                = _mm256_sub_pd(r00,rswitch);
1337             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1338             d2               = _mm256_mul_pd(d,d);
1339             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1340
1341             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1342
1343             /* Evaluate switch function */
1344             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1345             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(velec,dsw)) );
1346             fvdw             = _mm256_sub_pd( _mm256_mul_pd(fvdw,sw) , _mm256_mul_pd(rinv00,_mm256_mul_pd(vvdw,dsw)) );
1347             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1348
1349             fscal            = _mm256_add_pd(felec,fvdw);
1350
1351             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1352
1353             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1354
1355             /* Calculate temporary vectorial force */
1356             tx               = _mm256_mul_pd(fscal,dx00);
1357             ty               = _mm256_mul_pd(fscal,dy00);
1358             tz               = _mm256_mul_pd(fscal,dz00);
1359
1360             /* Update vectorial force */
1361             fix0             = _mm256_add_pd(fix0,tx);
1362             fiy0             = _mm256_add_pd(fiy0,ty);
1363             fiz0             = _mm256_add_pd(fiz0,tz);
1364
1365             fjx0             = _mm256_add_pd(fjx0,tx);
1366             fjy0             = _mm256_add_pd(fjy0,ty);
1367             fjz0             = _mm256_add_pd(fjz0,tz);
1368
1369             }
1370
1371             /**************************
1372              * CALCULATE INTERACTIONS *
1373              **************************/
1374
1375             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1376             {
1377
1378             r10              = _mm256_mul_pd(rsq10,rinv10);
1379             r10              = _mm256_andnot_pd(dummy_mask,r10);
1380
1381             /* Compute parameters for interactions between i and j atoms */
1382             qq10             = _mm256_mul_pd(iq1,jq0);
1383
1384             /* EWALD ELECTROSTATICS */
1385
1386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1387             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1388             ewitab           = _mm256_cvttpd_epi32(ewrt);
1389             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1390             ewitab           = _mm_slli_epi32(ewitab,2);
1391             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1392             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1393             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1394             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1395             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1396             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1397             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1398             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(rinv10,velec));
1399             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1400
1401             d                = _mm256_sub_pd(r10,rswitch);
1402             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1403             d2               = _mm256_mul_pd(d,d);
1404             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1405
1406             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1407
1408             /* Evaluate switch function */
1409             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1410             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv10,_mm256_mul_pd(velec,dsw)) );
1411             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1412
1413             fscal            = felec;
1414
1415             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1416
1417             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1418
1419             /* Calculate temporary vectorial force */
1420             tx               = _mm256_mul_pd(fscal,dx10);
1421             ty               = _mm256_mul_pd(fscal,dy10);
1422             tz               = _mm256_mul_pd(fscal,dz10);
1423
1424             /* Update vectorial force */
1425             fix1             = _mm256_add_pd(fix1,tx);
1426             fiy1             = _mm256_add_pd(fiy1,ty);
1427             fiz1             = _mm256_add_pd(fiz1,tz);
1428
1429             fjx0             = _mm256_add_pd(fjx0,tx);
1430             fjy0             = _mm256_add_pd(fjy0,ty);
1431             fjz0             = _mm256_add_pd(fjz0,tz);
1432
1433             }
1434
1435             /**************************
1436              * CALCULATE INTERACTIONS *
1437              **************************/
1438
1439             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1440             {
1441
1442             r20              = _mm256_mul_pd(rsq20,rinv20);
1443             r20              = _mm256_andnot_pd(dummy_mask,r20);
1444
1445             /* Compute parameters for interactions between i and j atoms */
1446             qq20             = _mm256_mul_pd(iq2,jq0);
1447
1448             /* EWALD ELECTROSTATICS */
1449
1450             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1451             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1452             ewitab           = _mm256_cvttpd_epi32(ewrt);
1453             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1454             ewitab           = _mm_slli_epi32(ewitab,2);
1455             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
1456             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
1457             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
1458             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
1459             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
1460             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
1461             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
1462             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(rinv20,velec));
1463             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1464
1465             d                = _mm256_sub_pd(r20,rswitch);
1466             d                = _mm256_max_pd(d,_mm256_setzero_pd());
1467             d2               = _mm256_mul_pd(d,d);
1468             sw               = _mm256_add_pd(one,_mm256_mul_pd(d2,_mm256_mul_pd(d,_mm256_add_pd(swV3,_mm256_mul_pd(d,_mm256_add_pd(swV4,_mm256_mul_pd(d,swV5)))))));
1469
1470             dsw              = _mm256_mul_pd(d2,_mm256_add_pd(swF2,_mm256_mul_pd(d,_mm256_add_pd(swF3,_mm256_mul_pd(d,swF4)))));
1471
1472             /* Evaluate switch function */
1473             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1474             felec            = _mm256_sub_pd( _mm256_mul_pd(felec,sw) , _mm256_mul_pd(rinv20,_mm256_mul_pd(velec,dsw)) );
1475             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1476
1477             fscal            = felec;
1478
1479             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1480
1481             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1482
1483             /* Calculate temporary vectorial force */
1484             tx               = _mm256_mul_pd(fscal,dx20);
1485             ty               = _mm256_mul_pd(fscal,dy20);
1486             tz               = _mm256_mul_pd(fscal,dz20);
1487
1488             /* Update vectorial force */
1489             fix2             = _mm256_add_pd(fix2,tx);
1490             fiy2             = _mm256_add_pd(fiy2,ty);
1491             fiz2             = _mm256_add_pd(fiz2,tz);
1492
1493             fjx0             = _mm256_add_pd(fjx0,tx);
1494             fjy0             = _mm256_add_pd(fjy0,ty);
1495             fjz0             = _mm256_add_pd(fjz0,tz);
1496
1497             }
1498
1499             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1500             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1501             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1502             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1503
1504             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1505
1506             /* Inner loop uses 207 flops */
1507         }
1508
1509         /* End of innermost loop */
1510
1511         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1512                                                  f+i_coord_offset,fshift+i_shift_offset);
1513
1514         /* Increment number of inner iterations */
1515         inneriter                  += j_index_end - j_index_start;
1516
1517         /* Outer loop uses 18 flops */
1518     }
1519
1520     /* Increment number of outer iterations */
1521     outeriter        += nri;
1522
1523     /* Update outer/inner flops */
1524
1525     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*207);
1526 }