265055c7d3518d121da2b9c0c3269e0fb5e14166
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          ewitab;
78     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
79     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
80     real             *ewtab;
81     __m256d          dummy_mask,cutoff_mask;
82     __m128           tmpmask0,tmpmask1;
83     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
84     __m256d          one     = _mm256_set1_pd(1.0);
85     __m256d          two     = _mm256_set1_pd(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm256_set1_pd(fr->epsfac);
98     charge           = mdatoms->chargeA;
99
100     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
101     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
102     beta2            = _mm256_mul_pd(beta,beta);
103     beta3            = _mm256_mul_pd(beta,beta2);
104
105     ewtab            = fr->ic->tabq_coul_FDV0;
106     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
107     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
108
109     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
110     rcutoff_scalar   = fr->rcoulomb;
111     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
112     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
113
114     /* Avoid stupid compiler warnings */
115     jnrA = jnrB = jnrC = jnrD = 0;
116     j_coord_offsetA = 0;
117     j_coord_offsetB = 0;
118     j_coord_offsetC = 0;
119     j_coord_offsetD = 0;
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     for(iidx=0;iidx<4*DIM;iidx++)
125     {
126         scratch[iidx] = 0.0;
127     }
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
145
146         fix0             = _mm256_setzero_pd();
147         fiy0             = _mm256_setzero_pd();
148         fiz0             = _mm256_setzero_pd();
149
150         /* Load parameters for i particles */
151         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
152
153         /* Reset potential sums */
154         velecsum         = _mm256_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             jnrC             = jjnr[jidx+2];
164             jnrD             = jjnr[jidx+3];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167             j_coord_offsetC  = DIM*jnrC;
168             j_coord_offsetD  = DIM*jnrD;
169
170             /* load j atom coordinates */
171             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                                  x+j_coord_offsetC,x+j_coord_offsetD,
173                                                  &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm256_sub_pd(ix0,jx0);
177             dy00             = _mm256_sub_pd(iy0,jy0);
178             dz00             = _mm256_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
184
185             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
186
187             /* Load parameters for j particles */
188             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
189                                                                  charge+jnrC+0,charge+jnrD+0);
190
191             /**************************
192              * CALCULATE INTERACTIONS *
193              **************************/
194
195             if (gmx_mm256_any_lt(rsq00,rcutoff2))
196             {
197
198             r00              = _mm256_mul_pd(rsq00,rinv00);
199
200             /* Compute parameters for interactions between i and j atoms */
201             qq00             = _mm256_mul_pd(iq0,jq0);
202
203             /* EWALD ELECTROSTATICS */
204
205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
206             ewrt             = _mm256_mul_pd(r00,ewtabscale);
207             ewitab           = _mm256_cvttpd_epi32(ewrt);
208             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
209             ewitab           = _mm_slli_epi32(ewitab,2);
210             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
211             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
212             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
213             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
214             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
215             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
216             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
217             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
218             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
219
220             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
221
222             /* Update potential sum for this i atom from the interaction with this j atom. */
223             velec            = _mm256_and_pd(velec,cutoff_mask);
224             velecsum         = _mm256_add_pd(velecsum,velec);
225
226             fscal            = felec;
227
228             fscal            = _mm256_and_pd(fscal,cutoff_mask);
229
230             /* Calculate temporary vectorial force */
231             tx               = _mm256_mul_pd(fscal,dx00);
232             ty               = _mm256_mul_pd(fscal,dy00);
233             tz               = _mm256_mul_pd(fscal,dz00);
234
235             /* Update vectorial force */
236             fix0             = _mm256_add_pd(fix0,tx);
237             fiy0             = _mm256_add_pd(fiy0,ty);
238             fiz0             = _mm256_add_pd(fiz0,tz);
239
240             fjptrA             = f+j_coord_offsetA;
241             fjptrB             = f+j_coord_offsetB;
242             fjptrC             = f+j_coord_offsetC;
243             fjptrD             = f+j_coord_offsetD;
244             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
245
246             }
247
248             /* Inner loop uses 46 flops */
249         }
250
251         if(jidx<j_index_end)
252         {
253
254             /* Get j neighbor index, and coordinate index */
255             jnrlistA         = jjnr[jidx];
256             jnrlistB         = jjnr[jidx+1];
257             jnrlistC         = jjnr[jidx+2];
258             jnrlistD         = jjnr[jidx+3];
259             /* Sign of each element will be negative for non-real atoms.
260              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
261              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
262              */
263             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
264
265             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
266             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
267             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
268
269             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
270             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
271             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
272             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
273             j_coord_offsetA  = DIM*jnrA;
274             j_coord_offsetB  = DIM*jnrB;
275             j_coord_offsetC  = DIM*jnrC;
276             j_coord_offsetD  = DIM*jnrD;
277
278             /* load j atom coordinates */
279             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
280                                                  x+j_coord_offsetC,x+j_coord_offsetD,
281                                                  &jx0,&jy0,&jz0);
282
283             /* Calculate displacement vector */
284             dx00             = _mm256_sub_pd(ix0,jx0);
285             dy00             = _mm256_sub_pd(iy0,jy0);
286             dz00             = _mm256_sub_pd(iz0,jz0);
287
288             /* Calculate squared distance and things based on it */
289             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
290
291             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
292
293             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
294
295             /* Load parameters for j particles */
296             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
297                                                                  charge+jnrC+0,charge+jnrD+0);
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             if (gmx_mm256_any_lt(rsq00,rcutoff2))
304             {
305
306             r00              = _mm256_mul_pd(rsq00,rinv00);
307             r00              = _mm256_andnot_pd(dummy_mask,r00);
308
309             /* Compute parameters for interactions between i and j atoms */
310             qq00             = _mm256_mul_pd(iq0,jq0);
311
312             /* EWALD ELECTROSTATICS */
313
314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315             ewrt             = _mm256_mul_pd(r00,ewtabscale);
316             ewitab           = _mm256_cvttpd_epi32(ewrt);
317             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
318             ewitab           = _mm_slli_epi32(ewitab,2);
319             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
320             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
321             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
322             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
323             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
324             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
325             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
326             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
327             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
328
329             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
330
331             /* Update potential sum for this i atom from the interaction with this j atom. */
332             velec            = _mm256_and_pd(velec,cutoff_mask);
333             velec            = _mm256_andnot_pd(dummy_mask,velec);
334             velecsum         = _mm256_add_pd(velecsum,velec);
335
336             fscal            = felec;
337
338             fscal            = _mm256_and_pd(fscal,cutoff_mask);
339
340             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
341
342             /* Calculate temporary vectorial force */
343             tx               = _mm256_mul_pd(fscal,dx00);
344             ty               = _mm256_mul_pd(fscal,dy00);
345             tz               = _mm256_mul_pd(fscal,dz00);
346
347             /* Update vectorial force */
348             fix0             = _mm256_add_pd(fix0,tx);
349             fiy0             = _mm256_add_pd(fiy0,ty);
350             fiz0             = _mm256_add_pd(fiz0,tz);
351
352             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
353             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
354             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
355             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
356             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
357
358             }
359
360             /* Inner loop uses 47 flops */
361         }
362
363         /* End of innermost loop */
364
365         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
366                                                  f+i_coord_offset,fshift+i_shift_offset);
367
368         ggid                        = gid[iidx];
369         /* Update potential energies */
370         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
371
372         /* Increment number of inner iterations */
373         inneriter                  += j_index_end - j_index_start;
374
375         /* Outer loop uses 8 flops */
376     }
377
378     /* Increment number of outer iterations */
379     outeriter        += nri;
380
381     /* Update outer/inner flops */
382
383     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*47);
384 }
385 /*
386  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_double
387  * Electrostatics interaction: Ewald
388  * VdW interaction:            None
389  * Geometry:                   Particle-Particle
390  * Calculate force/pot:        Force
391  */
392 void
393 nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_avx_256_double
394                     (t_nblist * gmx_restrict                nlist,
395                      rvec * gmx_restrict                    xx,
396                      rvec * gmx_restrict                    ff,
397                      t_forcerec * gmx_restrict              fr,
398                      t_mdatoms * gmx_restrict               mdatoms,
399                      nb_kernel_data_t * gmx_restrict        kernel_data,
400                      t_nrnb * gmx_restrict                  nrnb)
401 {
402     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
403      * just 0 for non-waters.
404      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
405      * jnr indices corresponding to data put in the four positions in the SIMD register.
406      */
407     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
408     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
409     int              jnrA,jnrB,jnrC,jnrD;
410     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
411     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
412     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
413     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
414     real             rcutoff_scalar;
415     real             *shiftvec,*fshift,*x,*f;
416     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
417     real             scratch[4*DIM];
418     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419     real *           vdwioffsetptr0;
420     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
422     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
425     real             *charge;
426     __m128i          ewitab;
427     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
428     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
429     real             *ewtab;
430     __m256d          dummy_mask,cutoff_mask;
431     __m128           tmpmask0,tmpmask1;
432     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
433     __m256d          one     = _mm256_set1_pd(1.0);
434     __m256d          two     = _mm256_set1_pd(2.0);
435     x                = xx[0];
436     f                = ff[0];
437
438     nri              = nlist->nri;
439     iinr             = nlist->iinr;
440     jindex           = nlist->jindex;
441     jjnr             = nlist->jjnr;
442     shiftidx         = nlist->shift;
443     gid              = nlist->gid;
444     shiftvec         = fr->shift_vec[0];
445     fshift           = fr->fshift[0];
446     facel            = _mm256_set1_pd(fr->epsfac);
447     charge           = mdatoms->chargeA;
448
449     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
450     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
451     beta2            = _mm256_mul_pd(beta,beta);
452     beta3            = _mm256_mul_pd(beta,beta2);
453
454     ewtab            = fr->ic->tabq_coul_F;
455     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
456     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
457
458     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
459     rcutoff_scalar   = fr->rcoulomb;
460     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
461     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
462
463     /* Avoid stupid compiler warnings */
464     jnrA = jnrB = jnrC = jnrD = 0;
465     j_coord_offsetA = 0;
466     j_coord_offsetB = 0;
467     j_coord_offsetC = 0;
468     j_coord_offsetD = 0;
469
470     outeriter        = 0;
471     inneriter        = 0;
472
473     for(iidx=0;iidx<4*DIM;iidx++)
474     {
475         scratch[iidx] = 0.0;
476     }
477
478     /* Start outer loop over neighborlists */
479     for(iidx=0; iidx<nri; iidx++)
480     {
481         /* Load shift vector for this list */
482         i_shift_offset   = DIM*shiftidx[iidx];
483
484         /* Load limits for loop over neighbors */
485         j_index_start    = jindex[iidx];
486         j_index_end      = jindex[iidx+1];
487
488         /* Get outer coordinate index */
489         inr              = iinr[iidx];
490         i_coord_offset   = DIM*inr;
491
492         /* Load i particle coords and add shift vector */
493         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
494
495         fix0             = _mm256_setzero_pd();
496         fiy0             = _mm256_setzero_pd();
497         fiz0             = _mm256_setzero_pd();
498
499         /* Load parameters for i particles */
500         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
501
502         /* Start inner kernel loop */
503         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
504         {
505
506             /* Get j neighbor index, and coordinate index */
507             jnrA             = jjnr[jidx];
508             jnrB             = jjnr[jidx+1];
509             jnrC             = jjnr[jidx+2];
510             jnrD             = jjnr[jidx+3];
511             j_coord_offsetA  = DIM*jnrA;
512             j_coord_offsetB  = DIM*jnrB;
513             j_coord_offsetC  = DIM*jnrC;
514             j_coord_offsetD  = DIM*jnrD;
515
516             /* load j atom coordinates */
517             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
518                                                  x+j_coord_offsetC,x+j_coord_offsetD,
519                                                  &jx0,&jy0,&jz0);
520
521             /* Calculate displacement vector */
522             dx00             = _mm256_sub_pd(ix0,jx0);
523             dy00             = _mm256_sub_pd(iy0,jy0);
524             dz00             = _mm256_sub_pd(iz0,jz0);
525
526             /* Calculate squared distance and things based on it */
527             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
528
529             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
530
531             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
532
533             /* Load parameters for j particles */
534             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
535                                                                  charge+jnrC+0,charge+jnrD+0);
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             if (gmx_mm256_any_lt(rsq00,rcutoff2))
542             {
543
544             r00              = _mm256_mul_pd(rsq00,rinv00);
545
546             /* Compute parameters for interactions between i and j atoms */
547             qq00             = _mm256_mul_pd(iq0,jq0);
548
549             /* EWALD ELECTROSTATICS */
550
551             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
552             ewrt             = _mm256_mul_pd(r00,ewtabscale);
553             ewitab           = _mm256_cvttpd_epi32(ewrt);
554             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
555             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
556                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
557                                             &ewtabF,&ewtabFn);
558             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
559             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
560
561             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
562
563             fscal            = felec;
564
565             fscal            = _mm256_and_pd(fscal,cutoff_mask);
566
567             /* Calculate temporary vectorial force */
568             tx               = _mm256_mul_pd(fscal,dx00);
569             ty               = _mm256_mul_pd(fscal,dy00);
570             tz               = _mm256_mul_pd(fscal,dz00);
571
572             /* Update vectorial force */
573             fix0             = _mm256_add_pd(fix0,tx);
574             fiy0             = _mm256_add_pd(fiy0,ty);
575             fiz0             = _mm256_add_pd(fiz0,tz);
576
577             fjptrA             = f+j_coord_offsetA;
578             fjptrB             = f+j_coord_offsetB;
579             fjptrC             = f+j_coord_offsetC;
580             fjptrD             = f+j_coord_offsetD;
581             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
582
583             }
584
585             /* Inner loop uses 39 flops */
586         }
587
588         if(jidx<j_index_end)
589         {
590
591             /* Get j neighbor index, and coordinate index */
592             jnrlistA         = jjnr[jidx];
593             jnrlistB         = jjnr[jidx+1];
594             jnrlistC         = jjnr[jidx+2];
595             jnrlistD         = jjnr[jidx+3];
596             /* Sign of each element will be negative for non-real atoms.
597              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
598              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
599              */
600             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
601
602             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
603             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
604             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
605
606             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
607             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
608             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
609             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
610             j_coord_offsetA  = DIM*jnrA;
611             j_coord_offsetB  = DIM*jnrB;
612             j_coord_offsetC  = DIM*jnrC;
613             j_coord_offsetD  = DIM*jnrD;
614
615             /* load j atom coordinates */
616             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
617                                                  x+j_coord_offsetC,x+j_coord_offsetD,
618                                                  &jx0,&jy0,&jz0);
619
620             /* Calculate displacement vector */
621             dx00             = _mm256_sub_pd(ix0,jx0);
622             dy00             = _mm256_sub_pd(iy0,jy0);
623             dz00             = _mm256_sub_pd(iz0,jz0);
624
625             /* Calculate squared distance and things based on it */
626             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
627
628             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
629
630             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
631
632             /* Load parameters for j particles */
633             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
634                                                                  charge+jnrC+0,charge+jnrD+0);
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             if (gmx_mm256_any_lt(rsq00,rcutoff2))
641             {
642
643             r00              = _mm256_mul_pd(rsq00,rinv00);
644             r00              = _mm256_andnot_pd(dummy_mask,r00);
645
646             /* Compute parameters for interactions between i and j atoms */
647             qq00             = _mm256_mul_pd(iq0,jq0);
648
649             /* EWALD ELECTROSTATICS */
650
651             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
652             ewrt             = _mm256_mul_pd(r00,ewtabscale);
653             ewitab           = _mm256_cvttpd_epi32(ewrt);
654             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
655             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
656                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
657                                             &ewtabF,&ewtabFn);
658             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
659             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
660
661             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
662
663             fscal            = felec;
664
665             fscal            = _mm256_and_pd(fscal,cutoff_mask);
666
667             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
668
669             /* Calculate temporary vectorial force */
670             tx               = _mm256_mul_pd(fscal,dx00);
671             ty               = _mm256_mul_pd(fscal,dy00);
672             tz               = _mm256_mul_pd(fscal,dz00);
673
674             /* Update vectorial force */
675             fix0             = _mm256_add_pd(fix0,tx);
676             fiy0             = _mm256_add_pd(fiy0,ty);
677             fiz0             = _mm256_add_pd(fiz0,tz);
678
679             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
680             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
681             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
682             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
683             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
684
685             }
686
687             /* Inner loop uses 40 flops */
688         }
689
690         /* End of innermost loop */
691
692         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
693                                                  f+i_coord_offset,fshift+i_shift_offset);
694
695         /* Increment number of inner iterations */
696         inneriter                  += j_index_end - j_index_start;
697
698         /* Outer loop uses 7 flops */
699     }
700
701     /* Increment number of outer iterations */
702     outeriter        += nri;
703
704     /* Update outer/inner flops */
705
706     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40);
707 }