made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water4-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     real *           vdwioffsetptr3;
77     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
79     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
81     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
82     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
83     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
84     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
91     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
92     __m128i          ewitab;
93     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
95     real             *ewtab;
96     __m256d          dummy_mask,cutoff_mask;
97     __m128           tmpmask0,tmpmask1;
98     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
99     __m256d          one     = _mm256_set1_pd(1.0);
100     __m256d          two     = _mm256_set1_pd(2.0);
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = _mm256_set1_pd(fr->epsfac);
113     charge           = mdatoms->chargeA;
114     nvdwtype         = fr->ntype;
115     vdwparam         = fr->nbfp;
116     vdwtype          = mdatoms->typeA;
117
118     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
119     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
120     beta2            = _mm256_mul_pd(beta,beta);
121     beta3            = _mm256_mul_pd(beta,beta2);
122
123     ewtab            = fr->ic->tabq_coul_FDV0;
124     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
125     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
126
127     /* Setup water-specific parameters */
128     inr              = nlist->iinr[0];
129     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
130     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
131     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
132     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
133
134     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
135     rcutoff_scalar   = fr->rcoulomb;
136     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
137     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
138
139     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
140     rvdw             = _mm256_set1_pd(fr->rvdw);
141
142     /* Avoid stupid compiler warnings */
143     jnrA = jnrB = jnrC = jnrD = 0;
144     j_coord_offsetA = 0;
145     j_coord_offsetB = 0;
146     j_coord_offsetC = 0;
147     j_coord_offsetD = 0;
148
149     outeriter        = 0;
150     inneriter        = 0;
151
152     for(iidx=0;iidx<4*DIM;iidx++)
153     {
154         scratch[iidx] = 0.0;
155     }
156
157     /* Start outer loop over neighborlists */
158     for(iidx=0; iidx<nri; iidx++)
159     {
160         /* Load shift vector for this list */
161         i_shift_offset   = DIM*shiftidx[iidx];
162
163         /* Load limits for loop over neighbors */
164         j_index_start    = jindex[iidx];
165         j_index_end      = jindex[iidx+1];
166
167         /* Get outer coordinate index */
168         inr              = iinr[iidx];
169         i_coord_offset   = DIM*inr;
170
171         /* Load i particle coords and add shift vector */
172         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
173                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175         fix0             = _mm256_setzero_pd();
176         fiy0             = _mm256_setzero_pd();
177         fiz0             = _mm256_setzero_pd();
178         fix1             = _mm256_setzero_pd();
179         fiy1             = _mm256_setzero_pd();
180         fiz1             = _mm256_setzero_pd();
181         fix2             = _mm256_setzero_pd();
182         fiy2             = _mm256_setzero_pd();
183         fiz2             = _mm256_setzero_pd();
184         fix3             = _mm256_setzero_pd();
185         fiy3             = _mm256_setzero_pd();
186         fiz3             = _mm256_setzero_pd();
187
188         /* Reset potential sums */
189         velecsum         = _mm256_setzero_pd();
190         vvdwsum          = _mm256_setzero_pd();
191
192         /* Start inner kernel loop */
193         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194         {
195
196             /* Get j neighbor index, and coordinate index */
197             jnrA             = jjnr[jidx];
198             jnrB             = jjnr[jidx+1];
199             jnrC             = jjnr[jidx+2];
200             jnrD             = jjnr[jidx+3];
201             j_coord_offsetA  = DIM*jnrA;
202             j_coord_offsetB  = DIM*jnrB;
203             j_coord_offsetC  = DIM*jnrC;
204             j_coord_offsetD  = DIM*jnrD;
205
206             /* load j atom coordinates */
207             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
208                                                  x+j_coord_offsetC,x+j_coord_offsetD,
209                                                  &jx0,&jy0,&jz0);
210
211             /* Calculate displacement vector */
212             dx00             = _mm256_sub_pd(ix0,jx0);
213             dy00             = _mm256_sub_pd(iy0,jy0);
214             dz00             = _mm256_sub_pd(iz0,jz0);
215             dx10             = _mm256_sub_pd(ix1,jx0);
216             dy10             = _mm256_sub_pd(iy1,jy0);
217             dz10             = _mm256_sub_pd(iz1,jz0);
218             dx20             = _mm256_sub_pd(ix2,jx0);
219             dy20             = _mm256_sub_pd(iy2,jy0);
220             dz20             = _mm256_sub_pd(iz2,jz0);
221             dx30             = _mm256_sub_pd(ix3,jx0);
222             dy30             = _mm256_sub_pd(iy3,jy0);
223             dz30             = _mm256_sub_pd(iz3,jz0);
224
225             /* Calculate squared distance and things based on it */
226             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
227             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
228             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
229             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
230
231             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
232             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
233             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
234
235             rinvsq00         = gmx_mm256_inv_pd(rsq00);
236             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
237             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
238             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
239
240             /* Load parameters for j particles */
241             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
242                                                                  charge+jnrC+0,charge+jnrD+0);
243             vdwjidx0A        = 2*vdwtype[jnrA+0];
244             vdwjidx0B        = 2*vdwtype[jnrB+0];
245             vdwjidx0C        = 2*vdwtype[jnrC+0];
246             vdwjidx0D        = 2*vdwtype[jnrD+0];
247
248             fjx0             = _mm256_setzero_pd();
249             fjy0             = _mm256_setzero_pd();
250             fjz0             = _mm256_setzero_pd();
251
252             /**************************
253              * CALCULATE INTERACTIONS *
254              **************************/
255
256             if (gmx_mm256_any_lt(rsq00,rcutoff2))
257             {
258
259             /* Compute parameters for interactions between i and j atoms */
260             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
261                                             vdwioffsetptr0+vdwjidx0B,
262                                             vdwioffsetptr0+vdwjidx0C,
263                                             vdwioffsetptr0+vdwjidx0D,
264                                             &c6_00,&c12_00);
265
266             /* LENNARD-JONES DISPERSION/REPULSION */
267
268             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
269             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
270             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
271             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
272                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
273             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
274
275             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
276
277             /* Update potential sum for this i atom from the interaction with this j atom. */
278             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
279             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
280
281             fscal            = fvdw;
282
283             fscal            = _mm256_and_pd(fscal,cutoff_mask);
284
285             /* Calculate temporary vectorial force */
286             tx               = _mm256_mul_pd(fscal,dx00);
287             ty               = _mm256_mul_pd(fscal,dy00);
288             tz               = _mm256_mul_pd(fscal,dz00);
289
290             /* Update vectorial force */
291             fix0             = _mm256_add_pd(fix0,tx);
292             fiy0             = _mm256_add_pd(fiy0,ty);
293             fiz0             = _mm256_add_pd(fiz0,tz);
294
295             fjx0             = _mm256_add_pd(fjx0,tx);
296             fjy0             = _mm256_add_pd(fjy0,ty);
297             fjz0             = _mm256_add_pd(fjz0,tz);
298
299             }
300
301             /**************************
302              * CALCULATE INTERACTIONS *
303              **************************/
304
305             if (gmx_mm256_any_lt(rsq10,rcutoff2))
306             {
307
308             r10              = _mm256_mul_pd(rsq10,rinv10);
309
310             /* Compute parameters for interactions between i and j atoms */
311             qq10             = _mm256_mul_pd(iq1,jq0);
312
313             /* EWALD ELECTROSTATICS */
314
315             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
316             ewrt             = _mm256_mul_pd(r10,ewtabscale);
317             ewitab           = _mm256_cvttpd_epi32(ewrt);
318             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
319             ewitab           = _mm_slli_epi32(ewitab,2);
320             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
321             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
322             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
323             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
324             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
325             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
326             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
327             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
328             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
329
330             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
331
332             /* Update potential sum for this i atom from the interaction with this j atom. */
333             velec            = _mm256_and_pd(velec,cutoff_mask);
334             velecsum         = _mm256_add_pd(velecsum,velec);
335
336             fscal            = felec;
337
338             fscal            = _mm256_and_pd(fscal,cutoff_mask);
339
340             /* Calculate temporary vectorial force */
341             tx               = _mm256_mul_pd(fscal,dx10);
342             ty               = _mm256_mul_pd(fscal,dy10);
343             tz               = _mm256_mul_pd(fscal,dz10);
344
345             /* Update vectorial force */
346             fix1             = _mm256_add_pd(fix1,tx);
347             fiy1             = _mm256_add_pd(fiy1,ty);
348             fiz1             = _mm256_add_pd(fiz1,tz);
349
350             fjx0             = _mm256_add_pd(fjx0,tx);
351             fjy0             = _mm256_add_pd(fjy0,ty);
352             fjz0             = _mm256_add_pd(fjz0,tz);
353
354             }
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             if (gmx_mm256_any_lt(rsq20,rcutoff2))
361             {
362
363             r20              = _mm256_mul_pd(rsq20,rinv20);
364
365             /* Compute parameters for interactions between i and j atoms */
366             qq20             = _mm256_mul_pd(iq2,jq0);
367
368             /* EWALD ELECTROSTATICS */
369
370             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
371             ewrt             = _mm256_mul_pd(r20,ewtabscale);
372             ewitab           = _mm256_cvttpd_epi32(ewrt);
373             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
374             ewitab           = _mm_slli_epi32(ewitab,2);
375             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
376             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
377             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
378             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
379             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
380             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
381             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
382             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
383             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
384
385             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
386
387             /* Update potential sum for this i atom from the interaction with this j atom. */
388             velec            = _mm256_and_pd(velec,cutoff_mask);
389             velecsum         = _mm256_add_pd(velecsum,velec);
390
391             fscal            = felec;
392
393             fscal            = _mm256_and_pd(fscal,cutoff_mask);
394
395             /* Calculate temporary vectorial force */
396             tx               = _mm256_mul_pd(fscal,dx20);
397             ty               = _mm256_mul_pd(fscal,dy20);
398             tz               = _mm256_mul_pd(fscal,dz20);
399
400             /* Update vectorial force */
401             fix2             = _mm256_add_pd(fix2,tx);
402             fiy2             = _mm256_add_pd(fiy2,ty);
403             fiz2             = _mm256_add_pd(fiz2,tz);
404
405             fjx0             = _mm256_add_pd(fjx0,tx);
406             fjy0             = _mm256_add_pd(fjy0,ty);
407             fjz0             = _mm256_add_pd(fjz0,tz);
408
409             }
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             if (gmx_mm256_any_lt(rsq30,rcutoff2))
416             {
417
418             r30              = _mm256_mul_pd(rsq30,rinv30);
419
420             /* Compute parameters for interactions between i and j atoms */
421             qq30             = _mm256_mul_pd(iq3,jq0);
422
423             /* EWALD ELECTROSTATICS */
424
425             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
426             ewrt             = _mm256_mul_pd(r30,ewtabscale);
427             ewitab           = _mm256_cvttpd_epi32(ewrt);
428             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
429             ewitab           = _mm_slli_epi32(ewitab,2);
430             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
431             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
432             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
433             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
434             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
435             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
436             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
437             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
438             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
439
440             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
441
442             /* Update potential sum for this i atom from the interaction with this j atom. */
443             velec            = _mm256_and_pd(velec,cutoff_mask);
444             velecsum         = _mm256_add_pd(velecsum,velec);
445
446             fscal            = felec;
447
448             fscal            = _mm256_and_pd(fscal,cutoff_mask);
449
450             /* Calculate temporary vectorial force */
451             tx               = _mm256_mul_pd(fscal,dx30);
452             ty               = _mm256_mul_pd(fscal,dy30);
453             tz               = _mm256_mul_pd(fscal,dz30);
454
455             /* Update vectorial force */
456             fix3             = _mm256_add_pd(fix3,tx);
457             fiy3             = _mm256_add_pd(fiy3,ty);
458             fiz3             = _mm256_add_pd(fiz3,tz);
459
460             fjx0             = _mm256_add_pd(fjx0,tx);
461             fjy0             = _mm256_add_pd(fjy0,ty);
462             fjz0             = _mm256_add_pd(fjz0,tz);
463
464             }
465
466             fjptrA             = f+j_coord_offsetA;
467             fjptrB             = f+j_coord_offsetB;
468             fjptrC             = f+j_coord_offsetC;
469             fjptrD             = f+j_coord_offsetD;
470
471             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
472
473             /* Inner loop uses 182 flops */
474         }
475
476         if(jidx<j_index_end)
477         {
478
479             /* Get j neighbor index, and coordinate index */
480             jnrlistA         = jjnr[jidx];
481             jnrlistB         = jjnr[jidx+1];
482             jnrlistC         = jjnr[jidx+2];
483             jnrlistD         = jjnr[jidx+3];
484             /* Sign of each element will be negative for non-real atoms.
485              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
486              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
487              */
488             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
489
490             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
491             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
492             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
493
494             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
495             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
496             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
497             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
498             j_coord_offsetA  = DIM*jnrA;
499             j_coord_offsetB  = DIM*jnrB;
500             j_coord_offsetC  = DIM*jnrC;
501             j_coord_offsetD  = DIM*jnrD;
502
503             /* load j atom coordinates */
504             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
505                                                  x+j_coord_offsetC,x+j_coord_offsetD,
506                                                  &jx0,&jy0,&jz0);
507
508             /* Calculate displacement vector */
509             dx00             = _mm256_sub_pd(ix0,jx0);
510             dy00             = _mm256_sub_pd(iy0,jy0);
511             dz00             = _mm256_sub_pd(iz0,jz0);
512             dx10             = _mm256_sub_pd(ix1,jx0);
513             dy10             = _mm256_sub_pd(iy1,jy0);
514             dz10             = _mm256_sub_pd(iz1,jz0);
515             dx20             = _mm256_sub_pd(ix2,jx0);
516             dy20             = _mm256_sub_pd(iy2,jy0);
517             dz20             = _mm256_sub_pd(iz2,jz0);
518             dx30             = _mm256_sub_pd(ix3,jx0);
519             dy30             = _mm256_sub_pd(iy3,jy0);
520             dz30             = _mm256_sub_pd(iz3,jz0);
521
522             /* Calculate squared distance and things based on it */
523             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
524             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
525             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
526             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
527
528             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
529             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
530             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
531
532             rinvsq00         = gmx_mm256_inv_pd(rsq00);
533             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
534             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
535             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
536
537             /* Load parameters for j particles */
538             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
539                                                                  charge+jnrC+0,charge+jnrD+0);
540             vdwjidx0A        = 2*vdwtype[jnrA+0];
541             vdwjidx0B        = 2*vdwtype[jnrB+0];
542             vdwjidx0C        = 2*vdwtype[jnrC+0];
543             vdwjidx0D        = 2*vdwtype[jnrD+0];
544
545             fjx0             = _mm256_setzero_pd();
546             fjy0             = _mm256_setzero_pd();
547             fjz0             = _mm256_setzero_pd();
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             if (gmx_mm256_any_lt(rsq00,rcutoff2))
554             {
555
556             /* Compute parameters for interactions between i and j atoms */
557             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
558                                             vdwioffsetptr0+vdwjidx0B,
559                                             vdwioffsetptr0+vdwjidx0C,
560                                             vdwioffsetptr0+vdwjidx0D,
561                                             &c6_00,&c12_00);
562
563             /* LENNARD-JONES DISPERSION/REPULSION */
564
565             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
566             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
567             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
568             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
569                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
570             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
571
572             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
573
574             /* Update potential sum for this i atom from the interaction with this j atom. */
575             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
576             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
577             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
578
579             fscal            = fvdw;
580
581             fscal            = _mm256_and_pd(fscal,cutoff_mask);
582
583             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
584
585             /* Calculate temporary vectorial force */
586             tx               = _mm256_mul_pd(fscal,dx00);
587             ty               = _mm256_mul_pd(fscal,dy00);
588             tz               = _mm256_mul_pd(fscal,dz00);
589
590             /* Update vectorial force */
591             fix0             = _mm256_add_pd(fix0,tx);
592             fiy0             = _mm256_add_pd(fiy0,ty);
593             fiz0             = _mm256_add_pd(fiz0,tz);
594
595             fjx0             = _mm256_add_pd(fjx0,tx);
596             fjy0             = _mm256_add_pd(fjy0,ty);
597             fjz0             = _mm256_add_pd(fjz0,tz);
598
599             }
600
601             /**************************
602              * CALCULATE INTERACTIONS *
603              **************************/
604
605             if (gmx_mm256_any_lt(rsq10,rcutoff2))
606             {
607
608             r10              = _mm256_mul_pd(rsq10,rinv10);
609             r10              = _mm256_andnot_pd(dummy_mask,r10);
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq10             = _mm256_mul_pd(iq1,jq0);
613
614             /* EWALD ELECTROSTATICS */
615
616             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
617             ewrt             = _mm256_mul_pd(r10,ewtabscale);
618             ewitab           = _mm256_cvttpd_epi32(ewrt);
619             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
620             ewitab           = _mm_slli_epi32(ewitab,2);
621             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
622             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
623             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
624             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
625             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
626             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
627             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
628             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
629             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
630
631             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
632
633             /* Update potential sum for this i atom from the interaction with this j atom. */
634             velec            = _mm256_and_pd(velec,cutoff_mask);
635             velec            = _mm256_andnot_pd(dummy_mask,velec);
636             velecsum         = _mm256_add_pd(velecsum,velec);
637
638             fscal            = felec;
639
640             fscal            = _mm256_and_pd(fscal,cutoff_mask);
641
642             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
643
644             /* Calculate temporary vectorial force */
645             tx               = _mm256_mul_pd(fscal,dx10);
646             ty               = _mm256_mul_pd(fscal,dy10);
647             tz               = _mm256_mul_pd(fscal,dz10);
648
649             /* Update vectorial force */
650             fix1             = _mm256_add_pd(fix1,tx);
651             fiy1             = _mm256_add_pd(fiy1,ty);
652             fiz1             = _mm256_add_pd(fiz1,tz);
653
654             fjx0             = _mm256_add_pd(fjx0,tx);
655             fjy0             = _mm256_add_pd(fjy0,ty);
656             fjz0             = _mm256_add_pd(fjz0,tz);
657
658             }
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             if (gmx_mm256_any_lt(rsq20,rcutoff2))
665             {
666
667             r20              = _mm256_mul_pd(rsq20,rinv20);
668             r20              = _mm256_andnot_pd(dummy_mask,r20);
669
670             /* Compute parameters for interactions between i and j atoms */
671             qq20             = _mm256_mul_pd(iq2,jq0);
672
673             /* EWALD ELECTROSTATICS */
674
675             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
676             ewrt             = _mm256_mul_pd(r20,ewtabscale);
677             ewitab           = _mm256_cvttpd_epi32(ewrt);
678             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
679             ewitab           = _mm_slli_epi32(ewitab,2);
680             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
681             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
682             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
683             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
684             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
685             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
686             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
687             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
688             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
689
690             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
691
692             /* Update potential sum for this i atom from the interaction with this j atom. */
693             velec            = _mm256_and_pd(velec,cutoff_mask);
694             velec            = _mm256_andnot_pd(dummy_mask,velec);
695             velecsum         = _mm256_add_pd(velecsum,velec);
696
697             fscal            = felec;
698
699             fscal            = _mm256_and_pd(fscal,cutoff_mask);
700
701             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
702
703             /* Calculate temporary vectorial force */
704             tx               = _mm256_mul_pd(fscal,dx20);
705             ty               = _mm256_mul_pd(fscal,dy20);
706             tz               = _mm256_mul_pd(fscal,dz20);
707
708             /* Update vectorial force */
709             fix2             = _mm256_add_pd(fix2,tx);
710             fiy2             = _mm256_add_pd(fiy2,ty);
711             fiz2             = _mm256_add_pd(fiz2,tz);
712
713             fjx0             = _mm256_add_pd(fjx0,tx);
714             fjy0             = _mm256_add_pd(fjy0,ty);
715             fjz0             = _mm256_add_pd(fjz0,tz);
716
717             }
718
719             /**************************
720              * CALCULATE INTERACTIONS *
721              **************************/
722
723             if (gmx_mm256_any_lt(rsq30,rcutoff2))
724             {
725
726             r30              = _mm256_mul_pd(rsq30,rinv30);
727             r30              = _mm256_andnot_pd(dummy_mask,r30);
728
729             /* Compute parameters for interactions between i and j atoms */
730             qq30             = _mm256_mul_pd(iq3,jq0);
731
732             /* EWALD ELECTROSTATICS */
733
734             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
735             ewrt             = _mm256_mul_pd(r30,ewtabscale);
736             ewitab           = _mm256_cvttpd_epi32(ewrt);
737             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
738             ewitab           = _mm_slli_epi32(ewitab,2);
739             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
740             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
741             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
742             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
743             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
744             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
745             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
746             velec            = _mm256_mul_pd(qq30,_mm256_sub_pd(_mm256_sub_pd(rinv30,sh_ewald),velec));
747             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
748
749             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
750
751             /* Update potential sum for this i atom from the interaction with this j atom. */
752             velec            = _mm256_and_pd(velec,cutoff_mask);
753             velec            = _mm256_andnot_pd(dummy_mask,velec);
754             velecsum         = _mm256_add_pd(velecsum,velec);
755
756             fscal            = felec;
757
758             fscal            = _mm256_and_pd(fscal,cutoff_mask);
759
760             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
761
762             /* Calculate temporary vectorial force */
763             tx               = _mm256_mul_pd(fscal,dx30);
764             ty               = _mm256_mul_pd(fscal,dy30);
765             tz               = _mm256_mul_pd(fscal,dz30);
766
767             /* Update vectorial force */
768             fix3             = _mm256_add_pd(fix3,tx);
769             fiy3             = _mm256_add_pd(fiy3,ty);
770             fiz3             = _mm256_add_pd(fiz3,tz);
771
772             fjx0             = _mm256_add_pd(fjx0,tx);
773             fjy0             = _mm256_add_pd(fjy0,ty);
774             fjz0             = _mm256_add_pd(fjz0,tz);
775
776             }
777
778             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
779             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
780             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
781             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
782
783             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
784
785             /* Inner loop uses 185 flops */
786         }
787
788         /* End of innermost loop */
789
790         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
791                                                  f+i_coord_offset,fshift+i_shift_offset);
792
793         ggid                        = gid[iidx];
794         /* Update potential energies */
795         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
796         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
797
798         /* Increment number of inner iterations */
799         inneriter                  += j_index_end - j_index_start;
800
801         /* Outer loop uses 26 flops */
802     }
803
804     /* Increment number of outer iterations */
805     outeriter        += nri;
806
807     /* Update outer/inner flops */
808
809     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*185);
810 }
811 /*
812  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_double
813  * Electrostatics interaction: Ewald
814  * VdW interaction:            LennardJones
815  * Geometry:                   Water4-Particle
816  * Calculate force/pot:        Force
817  */
818 void
819 nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_avx_256_double
820                     (t_nblist * gmx_restrict                nlist,
821                      rvec * gmx_restrict                    xx,
822                      rvec * gmx_restrict                    ff,
823                      t_forcerec * gmx_restrict              fr,
824                      t_mdatoms * gmx_restrict               mdatoms,
825                      nb_kernel_data_t * gmx_restrict        kernel_data,
826                      t_nrnb * gmx_restrict                  nrnb)
827 {
828     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
829      * just 0 for non-waters.
830      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
831      * jnr indices corresponding to data put in the four positions in the SIMD register.
832      */
833     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
834     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
835     int              jnrA,jnrB,jnrC,jnrD;
836     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
837     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
838     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
839     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
840     real             rcutoff_scalar;
841     real             *shiftvec,*fshift,*x,*f;
842     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
843     real             scratch[4*DIM];
844     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
845     real *           vdwioffsetptr0;
846     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
847     real *           vdwioffsetptr1;
848     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
849     real *           vdwioffsetptr2;
850     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
851     real *           vdwioffsetptr3;
852     __m256d          ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
853     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
854     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
855     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
856     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
857     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
858     __m256d          dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
859     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
860     real             *charge;
861     int              nvdwtype;
862     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
863     int              *vdwtype;
864     real             *vdwparam;
865     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
866     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
867     __m128i          ewitab;
868     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
869     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
870     real             *ewtab;
871     __m256d          dummy_mask,cutoff_mask;
872     __m128           tmpmask0,tmpmask1;
873     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
874     __m256d          one     = _mm256_set1_pd(1.0);
875     __m256d          two     = _mm256_set1_pd(2.0);
876     x                = xx[0];
877     f                = ff[0];
878
879     nri              = nlist->nri;
880     iinr             = nlist->iinr;
881     jindex           = nlist->jindex;
882     jjnr             = nlist->jjnr;
883     shiftidx         = nlist->shift;
884     gid              = nlist->gid;
885     shiftvec         = fr->shift_vec[0];
886     fshift           = fr->fshift[0];
887     facel            = _mm256_set1_pd(fr->epsfac);
888     charge           = mdatoms->chargeA;
889     nvdwtype         = fr->ntype;
890     vdwparam         = fr->nbfp;
891     vdwtype          = mdatoms->typeA;
892
893     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
894     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
895     beta2            = _mm256_mul_pd(beta,beta);
896     beta3            = _mm256_mul_pd(beta,beta2);
897
898     ewtab            = fr->ic->tabq_coul_F;
899     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
900     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
901
902     /* Setup water-specific parameters */
903     inr              = nlist->iinr[0];
904     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
905     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
906     iq3              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+3]));
907     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
908
909     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
910     rcutoff_scalar   = fr->rcoulomb;
911     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
912     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
913
914     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
915     rvdw             = _mm256_set1_pd(fr->rvdw);
916
917     /* Avoid stupid compiler warnings */
918     jnrA = jnrB = jnrC = jnrD = 0;
919     j_coord_offsetA = 0;
920     j_coord_offsetB = 0;
921     j_coord_offsetC = 0;
922     j_coord_offsetD = 0;
923
924     outeriter        = 0;
925     inneriter        = 0;
926
927     for(iidx=0;iidx<4*DIM;iidx++)
928     {
929         scratch[iidx] = 0.0;
930     }
931
932     /* Start outer loop over neighborlists */
933     for(iidx=0; iidx<nri; iidx++)
934     {
935         /* Load shift vector for this list */
936         i_shift_offset   = DIM*shiftidx[iidx];
937
938         /* Load limits for loop over neighbors */
939         j_index_start    = jindex[iidx];
940         j_index_end      = jindex[iidx+1];
941
942         /* Get outer coordinate index */
943         inr              = iinr[iidx];
944         i_coord_offset   = DIM*inr;
945
946         /* Load i particle coords and add shift vector */
947         gmx_mm256_load_shift_and_4rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
948                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
949
950         fix0             = _mm256_setzero_pd();
951         fiy0             = _mm256_setzero_pd();
952         fiz0             = _mm256_setzero_pd();
953         fix1             = _mm256_setzero_pd();
954         fiy1             = _mm256_setzero_pd();
955         fiz1             = _mm256_setzero_pd();
956         fix2             = _mm256_setzero_pd();
957         fiy2             = _mm256_setzero_pd();
958         fiz2             = _mm256_setzero_pd();
959         fix3             = _mm256_setzero_pd();
960         fiy3             = _mm256_setzero_pd();
961         fiz3             = _mm256_setzero_pd();
962
963         /* Start inner kernel loop */
964         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
965         {
966
967             /* Get j neighbor index, and coordinate index */
968             jnrA             = jjnr[jidx];
969             jnrB             = jjnr[jidx+1];
970             jnrC             = jjnr[jidx+2];
971             jnrD             = jjnr[jidx+3];
972             j_coord_offsetA  = DIM*jnrA;
973             j_coord_offsetB  = DIM*jnrB;
974             j_coord_offsetC  = DIM*jnrC;
975             j_coord_offsetD  = DIM*jnrD;
976
977             /* load j atom coordinates */
978             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
979                                                  x+j_coord_offsetC,x+j_coord_offsetD,
980                                                  &jx0,&jy0,&jz0);
981
982             /* Calculate displacement vector */
983             dx00             = _mm256_sub_pd(ix0,jx0);
984             dy00             = _mm256_sub_pd(iy0,jy0);
985             dz00             = _mm256_sub_pd(iz0,jz0);
986             dx10             = _mm256_sub_pd(ix1,jx0);
987             dy10             = _mm256_sub_pd(iy1,jy0);
988             dz10             = _mm256_sub_pd(iz1,jz0);
989             dx20             = _mm256_sub_pd(ix2,jx0);
990             dy20             = _mm256_sub_pd(iy2,jy0);
991             dz20             = _mm256_sub_pd(iz2,jz0);
992             dx30             = _mm256_sub_pd(ix3,jx0);
993             dy30             = _mm256_sub_pd(iy3,jy0);
994             dz30             = _mm256_sub_pd(iz3,jz0);
995
996             /* Calculate squared distance and things based on it */
997             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
998             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
999             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1000             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1001
1002             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1003             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1004             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1005
1006             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1007             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1008             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1009             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1010
1011             /* Load parameters for j particles */
1012             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1013                                                                  charge+jnrC+0,charge+jnrD+0);
1014             vdwjidx0A        = 2*vdwtype[jnrA+0];
1015             vdwjidx0B        = 2*vdwtype[jnrB+0];
1016             vdwjidx0C        = 2*vdwtype[jnrC+0];
1017             vdwjidx0D        = 2*vdwtype[jnrD+0];
1018
1019             fjx0             = _mm256_setzero_pd();
1020             fjy0             = _mm256_setzero_pd();
1021             fjz0             = _mm256_setzero_pd();
1022
1023             /**************************
1024              * CALCULATE INTERACTIONS *
1025              **************************/
1026
1027             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1028             {
1029
1030             /* Compute parameters for interactions between i and j atoms */
1031             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1032                                             vdwioffsetptr0+vdwjidx0B,
1033                                             vdwioffsetptr0+vdwjidx0C,
1034                                             vdwioffsetptr0+vdwjidx0D,
1035                                             &c6_00,&c12_00);
1036
1037             /* LENNARD-JONES DISPERSION/REPULSION */
1038
1039             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1040             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1041
1042             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1043
1044             fscal            = fvdw;
1045
1046             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1047
1048             /* Calculate temporary vectorial force */
1049             tx               = _mm256_mul_pd(fscal,dx00);
1050             ty               = _mm256_mul_pd(fscal,dy00);
1051             tz               = _mm256_mul_pd(fscal,dz00);
1052
1053             /* Update vectorial force */
1054             fix0             = _mm256_add_pd(fix0,tx);
1055             fiy0             = _mm256_add_pd(fiy0,ty);
1056             fiz0             = _mm256_add_pd(fiz0,tz);
1057
1058             fjx0             = _mm256_add_pd(fjx0,tx);
1059             fjy0             = _mm256_add_pd(fjy0,ty);
1060             fjz0             = _mm256_add_pd(fjz0,tz);
1061
1062             }
1063
1064             /**************************
1065              * CALCULATE INTERACTIONS *
1066              **************************/
1067
1068             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1069             {
1070
1071             r10              = _mm256_mul_pd(rsq10,rinv10);
1072
1073             /* Compute parameters for interactions between i and j atoms */
1074             qq10             = _mm256_mul_pd(iq1,jq0);
1075
1076             /* EWALD ELECTROSTATICS */
1077
1078             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1079             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1080             ewitab           = _mm256_cvttpd_epi32(ewrt);
1081             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1082             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1083                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1084                                             &ewtabF,&ewtabFn);
1085             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1086             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1087
1088             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1089
1090             fscal            = felec;
1091
1092             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1093
1094             /* Calculate temporary vectorial force */
1095             tx               = _mm256_mul_pd(fscal,dx10);
1096             ty               = _mm256_mul_pd(fscal,dy10);
1097             tz               = _mm256_mul_pd(fscal,dz10);
1098
1099             /* Update vectorial force */
1100             fix1             = _mm256_add_pd(fix1,tx);
1101             fiy1             = _mm256_add_pd(fiy1,ty);
1102             fiz1             = _mm256_add_pd(fiz1,tz);
1103
1104             fjx0             = _mm256_add_pd(fjx0,tx);
1105             fjy0             = _mm256_add_pd(fjy0,ty);
1106             fjz0             = _mm256_add_pd(fjz0,tz);
1107
1108             }
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1115             {
1116
1117             r20              = _mm256_mul_pd(rsq20,rinv20);
1118
1119             /* Compute parameters for interactions between i and j atoms */
1120             qq20             = _mm256_mul_pd(iq2,jq0);
1121
1122             /* EWALD ELECTROSTATICS */
1123
1124             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1125             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1126             ewitab           = _mm256_cvttpd_epi32(ewrt);
1127             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1128             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1129                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1130                                             &ewtabF,&ewtabFn);
1131             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1132             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1133
1134             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1135
1136             fscal            = felec;
1137
1138             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm256_mul_pd(fscal,dx20);
1142             ty               = _mm256_mul_pd(fscal,dy20);
1143             tz               = _mm256_mul_pd(fscal,dz20);
1144
1145             /* Update vectorial force */
1146             fix2             = _mm256_add_pd(fix2,tx);
1147             fiy2             = _mm256_add_pd(fiy2,ty);
1148             fiz2             = _mm256_add_pd(fiz2,tz);
1149
1150             fjx0             = _mm256_add_pd(fjx0,tx);
1151             fjy0             = _mm256_add_pd(fjy0,ty);
1152             fjz0             = _mm256_add_pd(fjz0,tz);
1153
1154             }
1155
1156             /**************************
1157              * CALCULATE INTERACTIONS *
1158              **************************/
1159
1160             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1161             {
1162
1163             r30              = _mm256_mul_pd(rsq30,rinv30);
1164
1165             /* Compute parameters for interactions between i and j atoms */
1166             qq30             = _mm256_mul_pd(iq3,jq0);
1167
1168             /* EWALD ELECTROSTATICS */
1169
1170             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1171             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1172             ewitab           = _mm256_cvttpd_epi32(ewrt);
1173             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1174             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1175                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1176                                             &ewtabF,&ewtabFn);
1177             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1178             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1179
1180             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1181
1182             fscal            = felec;
1183
1184             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1185
1186             /* Calculate temporary vectorial force */
1187             tx               = _mm256_mul_pd(fscal,dx30);
1188             ty               = _mm256_mul_pd(fscal,dy30);
1189             tz               = _mm256_mul_pd(fscal,dz30);
1190
1191             /* Update vectorial force */
1192             fix3             = _mm256_add_pd(fix3,tx);
1193             fiy3             = _mm256_add_pd(fiy3,ty);
1194             fiz3             = _mm256_add_pd(fiz3,tz);
1195
1196             fjx0             = _mm256_add_pd(fjx0,tx);
1197             fjy0             = _mm256_add_pd(fjy0,ty);
1198             fjz0             = _mm256_add_pd(fjz0,tz);
1199
1200             }
1201
1202             fjptrA             = f+j_coord_offsetA;
1203             fjptrB             = f+j_coord_offsetB;
1204             fjptrC             = f+j_coord_offsetC;
1205             fjptrD             = f+j_coord_offsetD;
1206
1207             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1208
1209             /* Inner loop uses 150 flops */
1210         }
1211
1212         if(jidx<j_index_end)
1213         {
1214
1215             /* Get j neighbor index, and coordinate index */
1216             jnrlistA         = jjnr[jidx];
1217             jnrlistB         = jjnr[jidx+1];
1218             jnrlistC         = jjnr[jidx+2];
1219             jnrlistD         = jjnr[jidx+3];
1220             /* Sign of each element will be negative for non-real atoms.
1221              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1222              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1223              */
1224             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1225
1226             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1227             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1228             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1229
1230             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1231             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1232             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1233             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1234             j_coord_offsetA  = DIM*jnrA;
1235             j_coord_offsetB  = DIM*jnrB;
1236             j_coord_offsetC  = DIM*jnrC;
1237             j_coord_offsetD  = DIM*jnrD;
1238
1239             /* load j atom coordinates */
1240             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1241                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1242                                                  &jx0,&jy0,&jz0);
1243
1244             /* Calculate displacement vector */
1245             dx00             = _mm256_sub_pd(ix0,jx0);
1246             dy00             = _mm256_sub_pd(iy0,jy0);
1247             dz00             = _mm256_sub_pd(iz0,jz0);
1248             dx10             = _mm256_sub_pd(ix1,jx0);
1249             dy10             = _mm256_sub_pd(iy1,jy0);
1250             dz10             = _mm256_sub_pd(iz1,jz0);
1251             dx20             = _mm256_sub_pd(ix2,jx0);
1252             dy20             = _mm256_sub_pd(iy2,jy0);
1253             dz20             = _mm256_sub_pd(iz2,jz0);
1254             dx30             = _mm256_sub_pd(ix3,jx0);
1255             dy30             = _mm256_sub_pd(iy3,jy0);
1256             dz30             = _mm256_sub_pd(iz3,jz0);
1257
1258             /* Calculate squared distance and things based on it */
1259             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1260             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1261             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1262             rsq30            = gmx_mm256_calc_rsq_pd(dx30,dy30,dz30);
1263
1264             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1265             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1266             rinv30           = gmx_mm256_invsqrt_pd(rsq30);
1267
1268             rinvsq00         = gmx_mm256_inv_pd(rsq00);
1269             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1270             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1271             rinvsq30         = _mm256_mul_pd(rinv30,rinv30);
1272
1273             /* Load parameters for j particles */
1274             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1275                                                                  charge+jnrC+0,charge+jnrD+0);
1276             vdwjidx0A        = 2*vdwtype[jnrA+0];
1277             vdwjidx0B        = 2*vdwtype[jnrB+0];
1278             vdwjidx0C        = 2*vdwtype[jnrC+0];
1279             vdwjidx0D        = 2*vdwtype[jnrD+0];
1280
1281             fjx0             = _mm256_setzero_pd();
1282             fjy0             = _mm256_setzero_pd();
1283             fjz0             = _mm256_setzero_pd();
1284
1285             /**************************
1286              * CALCULATE INTERACTIONS *
1287              **************************/
1288
1289             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1290             {
1291
1292             /* Compute parameters for interactions between i and j atoms */
1293             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1294                                             vdwioffsetptr0+vdwjidx0B,
1295                                             vdwioffsetptr0+vdwjidx0C,
1296                                             vdwioffsetptr0+vdwjidx0D,
1297                                             &c6_00,&c12_00);
1298
1299             /* LENNARD-JONES DISPERSION/REPULSION */
1300
1301             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1302             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1303
1304             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1305
1306             fscal            = fvdw;
1307
1308             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1309
1310             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1311
1312             /* Calculate temporary vectorial force */
1313             tx               = _mm256_mul_pd(fscal,dx00);
1314             ty               = _mm256_mul_pd(fscal,dy00);
1315             tz               = _mm256_mul_pd(fscal,dz00);
1316
1317             /* Update vectorial force */
1318             fix0             = _mm256_add_pd(fix0,tx);
1319             fiy0             = _mm256_add_pd(fiy0,ty);
1320             fiz0             = _mm256_add_pd(fiz0,tz);
1321
1322             fjx0             = _mm256_add_pd(fjx0,tx);
1323             fjy0             = _mm256_add_pd(fjy0,ty);
1324             fjz0             = _mm256_add_pd(fjz0,tz);
1325
1326             }
1327
1328             /**************************
1329              * CALCULATE INTERACTIONS *
1330              **************************/
1331
1332             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1333             {
1334
1335             r10              = _mm256_mul_pd(rsq10,rinv10);
1336             r10              = _mm256_andnot_pd(dummy_mask,r10);
1337
1338             /* Compute parameters for interactions between i and j atoms */
1339             qq10             = _mm256_mul_pd(iq1,jq0);
1340
1341             /* EWALD ELECTROSTATICS */
1342
1343             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1344             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1345             ewitab           = _mm256_cvttpd_epi32(ewrt);
1346             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1347             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1348                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1349                                             &ewtabF,&ewtabFn);
1350             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1351             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1352
1353             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1354
1355             fscal            = felec;
1356
1357             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1358
1359             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1360
1361             /* Calculate temporary vectorial force */
1362             tx               = _mm256_mul_pd(fscal,dx10);
1363             ty               = _mm256_mul_pd(fscal,dy10);
1364             tz               = _mm256_mul_pd(fscal,dz10);
1365
1366             /* Update vectorial force */
1367             fix1             = _mm256_add_pd(fix1,tx);
1368             fiy1             = _mm256_add_pd(fiy1,ty);
1369             fiz1             = _mm256_add_pd(fiz1,tz);
1370
1371             fjx0             = _mm256_add_pd(fjx0,tx);
1372             fjy0             = _mm256_add_pd(fjy0,ty);
1373             fjz0             = _mm256_add_pd(fjz0,tz);
1374
1375             }
1376
1377             /**************************
1378              * CALCULATE INTERACTIONS *
1379              **************************/
1380
1381             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1382             {
1383
1384             r20              = _mm256_mul_pd(rsq20,rinv20);
1385             r20              = _mm256_andnot_pd(dummy_mask,r20);
1386
1387             /* Compute parameters for interactions between i and j atoms */
1388             qq20             = _mm256_mul_pd(iq2,jq0);
1389
1390             /* EWALD ELECTROSTATICS */
1391
1392             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1393             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1394             ewitab           = _mm256_cvttpd_epi32(ewrt);
1395             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1396             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1397                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1398                                             &ewtabF,&ewtabFn);
1399             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1400             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1401
1402             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1403
1404             fscal            = felec;
1405
1406             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1407
1408             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1409
1410             /* Calculate temporary vectorial force */
1411             tx               = _mm256_mul_pd(fscal,dx20);
1412             ty               = _mm256_mul_pd(fscal,dy20);
1413             tz               = _mm256_mul_pd(fscal,dz20);
1414
1415             /* Update vectorial force */
1416             fix2             = _mm256_add_pd(fix2,tx);
1417             fiy2             = _mm256_add_pd(fiy2,ty);
1418             fiz2             = _mm256_add_pd(fiz2,tz);
1419
1420             fjx0             = _mm256_add_pd(fjx0,tx);
1421             fjy0             = _mm256_add_pd(fjy0,ty);
1422             fjz0             = _mm256_add_pd(fjz0,tz);
1423
1424             }
1425
1426             /**************************
1427              * CALCULATE INTERACTIONS *
1428              **************************/
1429
1430             if (gmx_mm256_any_lt(rsq30,rcutoff2))
1431             {
1432
1433             r30              = _mm256_mul_pd(rsq30,rinv30);
1434             r30              = _mm256_andnot_pd(dummy_mask,r30);
1435
1436             /* Compute parameters for interactions between i and j atoms */
1437             qq30             = _mm256_mul_pd(iq3,jq0);
1438
1439             /* EWALD ELECTROSTATICS */
1440
1441             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1442             ewrt             = _mm256_mul_pd(r30,ewtabscale);
1443             ewitab           = _mm256_cvttpd_epi32(ewrt);
1444             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1445             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1446                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1447                                             &ewtabF,&ewtabFn);
1448             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1449             felec            = _mm256_mul_pd(_mm256_mul_pd(qq30,rinv30),_mm256_sub_pd(rinvsq30,felec));
1450
1451             cutoff_mask      = _mm256_cmp_pd(rsq30,rcutoff2,_CMP_LT_OQ);
1452
1453             fscal            = felec;
1454
1455             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1456
1457             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1458
1459             /* Calculate temporary vectorial force */
1460             tx               = _mm256_mul_pd(fscal,dx30);
1461             ty               = _mm256_mul_pd(fscal,dy30);
1462             tz               = _mm256_mul_pd(fscal,dz30);
1463
1464             /* Update vectorial force */
1465             fix3             = _mm256_add_pd(fix3,tx);
1466             fiy3             = _mm256_add_pd(fiy3,ty);
1467             fiz3             = _mm256_add_pd(fiz3,tz);
1468
1469             fjx0             = _mm256_add_pd(fjx0,tx);
1470             fjy0             = _mm256_add_pd(fjy0,ty);
1471             fjz0             = _mm256_add_pd(fjz0,tz);
1472
1473             }
1474
1475             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1476             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1477             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1478             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1479
1480             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1481
1482             /* Inner loop uses 153 flops */
1483         }
1484
1485         /* End of innermost loop */
1486
1487         gmx_mm256_update_iforce_4atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1488                                                  f+i_coord_offset,fshift+i_shift_offset);
1489
1490         /* Increment number of inner iterations */
1491         inneriter                  += j_index_end - j_index_start;
1492
1493         /* Outer loop uses 24 flops */
1494     }
1495
1496     /* Increment number of outer iterations */
1497     outeriter        += nri;
1498
1499     /* Update outer/inner flops */
1500
1501     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*153);
1502 }