made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Ewald
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          ewitab;
90     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
91     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
92     real             *ewtab;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
116     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
117     beta2            = _mm256_mul_pd(beta,beta);
118     beta3            = _mm256_mul_pd(beta,beta2);
119
120     ewtab            = fr->ic->tabq_coul_FDV0;
121     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
122     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
123
124     /* Setup water-specific parameters */
125     inr              = nlist->iinr[0];
126     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
127     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
128     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
129     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
130
131     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
132     rcutoff_scalar   = fr->rcoulomb;
133     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
134     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
135
136     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
137     rvdw             = _mm256_set1_pd(fr->rvdw);
138
139     /* Avoid stupid compiler warnings */
140     jnrA = jnrB = jnrC = jnrD = 0;
141     j_coord_offsetA = 0;
142     j_coord_offsetB = 0;
143     j_coord_offsetC = 0;
144     j_coord_offsetD = 0;
145
146     outeriter        = 0;
147     inneriter        = 0;
148
149     for(iidx=0;iidx<4*DIM;iidx++)
150     {
151         scratch[iidx] = 0.0;
152     }
153
154     /* Start outer loop over neighborlists */
155     for(iidx=0; iidx<nri; iidx++)
156     {
157         /* Load shift vector for this list */
158         i_shift_offset   = DIM*shiftidx[iidx];
159
160         /* Load limits for loop over neighbors */
161         j_index_start    = jindex[iidx];
162         j_index_end      = jindex[iidx+1];
163
164         /* Get outer coordinate index */
165         inr              = iinr[iidx];
166         i_coord_offset   = DIM*inr;
167
168         /* Load i particle coords and add shift vector */
169         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
170                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
171
172         fix0             = _mm256_setzero_pd();
173         fiy0             = _mm256_setzero_pd();
174         fiz0             = _mm256_setzero_pd();
175         fix1             = _mm256_setzero_pd();
176         fiy1             = _mm256_setzero_pd();
177         fiz1             = _mm256_setzero_pd();
178         fix2             = _mm256_setzero_pd();
179         fiy2             = _mm256_setzero_pd();
180         fiz2             = _mm256_setzero_pd();
181
182         /* Reset potential sums */
183         velecsum         = _mm256_setzero_pd();
184         vvdwsum          = _mm256_setzero_pd();
185
186         /* Start inner kernel loop */
187         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
188         {
189
190             /* Get j neighbor index, and coordinate index */
191             jnrA             = jjnr[jidx];
192             jnrB             = jjnr[jidx+1];
193             jnrC             = jjnr[jidx+2];
194             jnrD             = jjnr[jidx+3];
195             j_coord_offsetA  = DIM*jnrA;
196             j_coord_offsetB  = DIM*jnrB;
197             j_coord_offsetC  = DIM*jnrC;
198             j_coord_offsetD  = DIM*jnrD;
199
200             /* load j atom coordinates */
201             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
202                                                  x+j_coord_offsetC,x+j_coord_offsetD,
203                                                  &jx0,&jy0,&jz0);
204
205             /* Calculate displacement vector */
206             dx00             = _mm256_sub_pd(ix0,jx0);
207             dy00             = _mm256_sub_pd(iy0,jy0);
208             dz00             = _mm256_sub_pd(iz0,jz0);
209             dx10             = _mm256_sub_pd(ix1,jx0);
210             dy10             = _mm256_sub_pd(iy1,jy0);
211             dz10             = _mm256_sub_pd(iz1,jz0);
212             dx20             = _mm256_sub_pd(ix2,jx0);
213             dy20             = _mm256_sub_pd(iy2,jy0);
214             dz20             = _mm256_sub_pd(iz2,jz0);
215
216             /* Calculate squared distance and things based on it */
217             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
218             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
219             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
220
221             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
222             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
223             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
224
225             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
226             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
227             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
228
229             /* Load parameters for j particles */
230             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
231                                                                  charge+jnrC+0,charge+jnrD+0);
232             vdwjidx0A        = 2*vdwtype[jnrA+0];
233             vdwjidx0B        = 2*vdwtype[jnrB+0];
234             vdwjidx0C        = 2*vdwtype[jnrC+0];
235             vdwjidx0D        = 2*vdwtype[jnrD+0];
236
237             fjx0             = _mm256_setzero_pd();
238             fjy0             = _mm256_setzero_pd();
239             fjz0             = _mm256_setzero_pd();
240
241             /**************************
242              * CALCULATE INTERACTIONS *
243              **************************/
244
245             if (gmx_mm256_any_lt(rsq00,rcutoff2))
246             {
247
248             r00              = _mm256_mul_pd(rsq00,rinv00);
249
250             /* Compute parameters for interactions between i and j atoms */
251             qq00             = _mm256_mul_pd(iq0,jq0);
252             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
253                                             vdwioffsetptr0+vdwjidx0B,
254                                             vdwioffsetptr0+vdwjidx0C,
255                                             vdwioffsetptr0+vdwjidx0D,
256                                             &c6_00,&c12_00);
257
258             /* EWALD ELECTROSTATICS */
259
260             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
261             ewrt             = _mm256_mul_pd(r00,ewtabscale);
262             ewitab           = _mm256_cvttpd_epi32(ewrt);
263             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
264             ewitab           = _mm_slli_epi32(ewitab,2);
265             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
266             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
267             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
268             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
269             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
270             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
271             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
272             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
273             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
274
275             /* LENNARD-JONES DISPERSION/REPULSION */
276
277             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
278             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
279             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
280             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
281                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
282             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
283
284             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
285
286             /* Update potential sum for this i atom from the interaction with this j atom. */
287             velec            = _mm256_and_pd(velec,cutoff_mask);
288             velecsum         = _mm256_add_pd(velecsum,velec);
289             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
290             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
291
292             fscal            = _mm256_add_pd(felec,fvdw);
293
294             fscal            = _mm256_and_pd(fscal,cutoff_mask);
295
296             /* Calculate temporary vectorial force */
297             tx               = _mm256_mul_pd(fscal,dx00);
298             ty               = _mm256_mul_pd(fscal,dy00);
299             tz               = _mm256_mul_pd(fscal,dz00);
300
301             /* Update vectorial force */
302             fix0             = _mm256_add_pd(fix0,tx);
303             fiy0             = _mm256_add_pd(fiy0,ty);
304             fiz0             = _mm256_add_pd(fiz0,tz);
305
306             fjx0             = _mm256_add_pd(fjx0,tx);
307             fjy0             = _mm256_add_pd(fjy0,ty);
308             fjz0             = _mm256_add_pd(fjz0,tz);
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (gmx_mm256_any_lt(rsq10,rcutoff2))
317             {
318
319             r10              = _mm256_mul_pd(rsq10,rinv10);
320
321             /* Compute parameters for interactions between i and j atoms */
322             qq10             = _mm256_mul_pd(iq1,jq0);
323
324             /* EWALD ELECTROSTATICS */
325
326             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
327             ewrt             = _mm256_mul_pd(r10,ewtabscale);
328             ewitab           = _mm256_cvttpd_epi32(ewrt);
329             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
330             ewitab           = _mm_slli_epi32(ewitab,2);
331             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
332             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
333             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
334             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
335             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
336             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
337             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
338             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
339             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
340
341             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
342
343             /* Update potential sum for this i atom from the interaction with this j atom. */
344             velec            = _mm256_and_pd(velec,cutoff_mask);
345             velecsum         = _mm256_add_pd(velecsum,velec);
346
347             fscal            = felec;
348
349             fscal            = _mm256_and_pd(fscal,cutoff_mask);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_pd(fscal,dx10);
353             ty               = _mm256_mul_pd(fscal,dy10);
354             tz               = _mm256_mul_pd(fscal,dz10);
355
356             /* Update vectorial force */
357             fix1             = _mm256_add_pd(fix1,tx);
358             fiy1             = _mm256_add_pd(fiy1,ty);
359             fiz1             = _mm256_add_pd(fiz1,tz);
360
361             fjx0             = _mm256_add_pd(fjx0,tx);
362             fjy0             = _mm256_add_pd(fjy0,ty);
363             fjz0             = _mm256_add_pd(fjz0,tz);
364
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (gmx_mm256_any_lt(rsq20,rcutoff2))
372             {
373
374             r20              = _mm256_mul_pd(rsq20,rinv20);
375
376             /* Compute parameters for interactions between i and j atoms */
377             qq20             = _mm256_mul_pd(iq2,jq0);
378
379             /* EWALD ELECTROSTATICS */
380
381             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
382             ewrt             = _mm256_mul_pd(r20,ewtabscale);
383             ewitab           = _mm256_cvttpd_epi32(ewrt);
384             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
385             ewitab           = _mm_slli_epi32(ewitab,2);
386             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
387             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
388             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
389             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
390             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
391             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
392             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
393             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
394             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
395
396             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
397
398             /* Update potential sum for this i atom from the interaction with this j atom. */
399             velec            = _mm256_and_pd(velec,cutoff_mask);
400             velecsum         = _mm256_add_pd(velecsum,velec);
401
402             fscal            = felec;
403
404             fscal            = _mm256_and_pd(fscal,cutoff_mask);
405
406             /* Calculate temporary vectorial force */
407             tx               = _mm256_mul_pd(fscal,dx20);
408             ty               = _mm256_mul_pd(fscal,dy20);
409             tz               = _mm256_mul_pd(fscal,dz20);
410
411             /* Update vectorial force */
412             fix2             = _mm256_add_pd(fix2,tx);
413             fiy2             = _mm256_add_pd(fiy2,ty);
414             fiz2             = _mm256_add_pd(fiz2,tz);
415
416             fjx0             = _mm256_add_pd(fjx0,tx);
417             fjy0             = _mm256_add_pd(fjy0,ty);
418             fjz0             = _mm256_add_pd(fjz0,tz);
419
420             }
421
422             fjptrA             = f+j_coord_offsetA;
423             fjptrB             = f+j_coord_offsetB;
424             fjptrC             = f+j_coord_offsetC;
425             fjptrD             = f+j_coord_offsetD;
426
427             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
428
429             /* Inner loop uses 159 flops */
430         }
431
432         if(jidx<j_index_end)
433         {
434
435             /* Get j neighbor index, and coordinate index */
436             jnrlistA         = jjnr[jidx];
437             jnrlistB         = jjnr[jidx+1];
438             jnrlistC         = jjnr[jidx+2];
439             jnrlistD         = jjnr[jidx+3];
440             /* Sign of each element will be negative for non-real atoms.
441              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
442              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
443              */
444             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
445
446             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
447             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
448             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
449
450             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
451             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
452             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
453             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
454             j_coord_offsetA  = DIM*jnrA;
455             j_coord_offsetB  = DIM*jnrB;
456             j_coord_offsetC  = DIM*jnrC;
457             j_coord_offsetD  = DIM*jnrD;
458
459             /* load j atom coordinates */
460             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
461                                                  x+j_coord_offsetC,x+j_coord_offsetD,
462                                                  &jx0,&jy0,&jz0);
463
464             /* Calculate displacement vector */
465             dx00             = _mm256_sub_pd(ix0,jx0);
466             dy00             = _mm256_sub_pd(iy0,jy0);
467             dz00             = _mm256_sub_pd(iz0,jz0);
468             dx10             = _mm256_sub_pd(ix1,jx0);
469             dy10             = _mm256_sub_pd(iy1,jy0);
470             dz10             = _mm256_sub_pd(iz1,jz0);
471             dx20             = _mm256_sub_pd(ix2,jx0);
472             dy20             = _mm256_sub_pd(iy2,jy0);
473             dz20             = _mm256_sub_pd(iz2,jz0);
474
475             /* Calculate squared distance and things based on it */
476             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
477             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
478             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
479
480             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
481             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
482             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
483
484             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
485             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
486             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
487
488             /* Load parameters for j particles */
489             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
490                                                                  charge+jnrC+0,charge+jnrD+0);
491             vdwjidx0A        = 2*vdwtype[jnrA+0];
492             vdwjidx0B        = 2*vdwtype[jnrB+0];
493             vdwjidx0C        = 2*vdwtype[jnrC+0];
494             vdwjidx0D        = 2*vdwtype[jnrD+0];
495
496             fjx0             = _mm256_setzero_pd();
497             fjy0             = _mm256_setzero_pd();
498             fjz0             = _mm256_setzero_pd();
499
500             /**************************
501              * CALCULATE INTERACTIONS *
502              **************************/
503
504             if (gmx_mm256_any_lt(rsq00,rcutoff2))
505             {
506
507             r00              = _mm256_mul_pd(rsq00,rinv00);
508             r00              = _mm256_andnot_pd(dummy_mask,r00);
509
510             /* Compute parameters for interactions between i and j atoms */
511             qq00             = _mm256_mul_pd(iq0,jq0);
512             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
513                                             vdwioffsetptr0+vdwjidx0B,
514                                             vdwioffsetptr0+vdwjidx0C,
515                                             vdwioffsetptr0+vdwjidx0D,
516                                             &c6_00,&c12_00);
517
518             /* EWALD ELECTROSTATICS */
519
520             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
521             ewrt             = _mm256_mul_pd(r00,ewtabscale);
522             ewitab           = _mm256_cvttpd_epi32(ewrt);
523             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
524             ewitab           = _mm_slli_epi32(ewitab,2);
525             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
526             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
527             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
528             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
529             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
530             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
531             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
532             velec            = _mm256_mul_pd(qq00,_mm256_sub_pd(_mm256_sub_pd(rinv00,sh_ewald),velec));
533             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
534
535             /* LENNARD-JONES DISPERSION/REPULSION */
536
537             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
538             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
539             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
540             vvdw             = _mm256_sub_pd(_mm256_mul_pd( _mm256_sub_pd(vvdw12 , _mm256_mul_pd(c12_00,_mm256_mul_pd(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
541                                           _mm256_mul_pd( _mm256_sub_pd(vvdw6,_mm256_mul_pd(c6_00,sh_vdw_invrcut6)),one_sixth));
542             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
543
544             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
545
546             /* Update potential sum for this i atom from the interaction with this j atom. */
547             velec            = _mm256_and_pd(velec,cutoff_mask);
548             velec            = _mm256_andnot_pd(dummy_mask,velec);
549             velecsum         = _mm256_add_pd(velecsum,velec);
550             vvdw             = _mm256_and_pd(vvdw,cutoff_mask);
551             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
552             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
553
554             fscal            = _mm256_add_pd(felec,fvdw);
555
556             fscal            = _mm256_and_pd(fscal,cutoff_mask);
557
558             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
559
560             /* Calculate temporary vectorial force */
561             tx               = _mm256_mul_pd(fscal,dx00);
562             ty               = _mm256_mul_pd(fscal,dy00);
563             tz               = _mm256_mul_pd(fscal,dz00);
564
565             /* Update vectorial force */
566             fix0             = _mm256_add_pd(fix0,tx);
567             fiy0             = _mm256_add_pd(fiy0,ty);
568             fiz0             = _mm256_add_pd(fiz0,tz);
569
570             fjx0             = _mm256_add_pd(fjx0,tx);
571             fjy0             = _mm256_add_pd(fjy0,ty);
572             fjz0             = _mm256_add_pd(fjz0,tz);
573
574             }
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             if (gmx_mm256_any_lt(rsq10,rcutoff2))
581             {
582
583             r10              = _mm256_mul_pd(rsq10,rinv10);
584             r10              = _mm256_andnot_pd(dummy_mask,r10);
585
586             /* Compute parameters for interactions between i and j atoms */
587             qq10             = _mm256_mul_pd(iq1,jq0);
588
589             /* EWALD ELECTROSTATICS */
590
591             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592             ewrt             = _mm256_mul_pd(r10,ewtabscale);
593             ewitab           = _mm256_cvttpd_epi32(ewrt);
594             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
595             ewitab           = _mm_slli_epi32(ewitab,2);
596             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
597             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
598             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
599             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
600             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
601             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
602             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
603             velec            = _mm256_mul_pd(qq10,_mm256_sub_pd(_mm256_sub_pd(rinv10,sh_ewald),velec));
604             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
605
606             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
607
608             /* Update potential sum for this i atom from the interaction with this j atom. */
609             velec            = _mm256_and_pd(velec,cutoff_mask);
610             velec            = _mm256_andnot_pd(dummy_mask,velec);
611             velecsum         = _mm256_add_pd(velecsum,velec);
612
613             fscal            = felec;
614
615             fscal            = _mm256_and_pd(fscal,cutoff_mask);
616
617             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
618
619             /* Calculate temporary vectorial force */
620             tx               = _mm256_mul_pd(fscal,dx10);
621             ty               = _mm256_mul_pd(fscal,dy10);
622             tz               = _mm256_mul_pd(fscal,dz10);
623
624             /* Update vectorial force */
625             fix1             = _mm256_add_pd(fix1,tx);
626             fiy1             = _mm256_add_pd(fiy1,ty);
627             fiz1             = _mm256_add_pd(fiz1,tz);
628
629             fjx0             = _mm256_add_pd(fjx0,tx);
630             fjy0             = _mm256_add_pd(fjy0,ty);
631             fjz0             = _mm256_add_pd(fjz0,tz);
632
633             }
634
635             /**************************
636              * CALCULATE INTERACTIONS *
637              **************************/
638
639             if (gmx_mm256_any_lt(rsq20,rcutoff2))
640             {
641
642             r20              = _mm256_mul_pd(rsq20,rinv20);
643             r20              = _mm256_andnot_pd(dummy_mask,r20);
644
645             /* Compute parameters for interactions between i and j atoms */
646             qq20             = _mm256_mul_pd(iq2,jq0);
647
648             /* EWALD ELECTROSTATICS */
649
650             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
651             ewrt             = _mm256_mul_pd(r20,ewtabscale);
652             ewitab           = _mm256_cvttpd_epi32(ewrt);
653             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
654             ewitab           = _mm_slli_epi32(ewitab,2);
655             ewtabF           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,0) );
656             ewtabD           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,1) );
657             ewtabV           = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,2) );
658             ewtabFn          = _mm256_load_pd( ewtab + _mm_extract_epi32(ewitab,3) );
659             GMX_MM256_FULLTRANSPOSE4_PD(ewtabF,ewtabD,ewtabV,ewtabFn);
660             felec            = _mm256_add_pd(ewtabF,_mm256_mul_pd(eweps,ewtabD));
661             velec            = _mm256_sub_pd(ewtabV,_mm256_mul_pd(_mm256_mul_pd(ewtabhalfspace,eweps),_mm256_add_pd(ewtabF,felec)));
662             velec            = _mm256_mul_pd(qq20,_mm256_sub_pd(_mm256_sub_pd(rinv20,sh_ewald),velec));
663             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
664
665             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
666
667             /* Update potential sum for this i atom from the interaction with this j atom. */
668             velec            = _mm256_and_pd(velec,cutoff_mask);
669             velec            = _mm256_andnot_pd(dummy_mask,velec);
670             velecsum         = _mm256_add_pd(velecsum,velec);
671
672             fscal            = felec;
673
674             fscal            = _mm256_and_pd(fscal,cutoff_mask);
675
676             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
677
678             /* Calculate temporary vectorial force */
679             tx               = _mm256_mul_pd(fscal,dx20);
680             ty               = _mm256_mul_pd(fscal,dy20);
681             tz               = _mm256_mul_pd(fscal,dz20);
682
683             /* Update vectorial force */
684             fix2             = _mm256_add_pd(fix2,tx);
685             fiy2             = _mm256_add_pd(fiy2,ty);
686             fiz2             = _mm256_add_pd(fiz2,tz);
687
688             fjx0             = _mm256_add_pd(fjx0,tx);
689             fjy0             = _mm256_add_pd(fjy0,ty);
690             fjz0             = _mm256_add_pd(fjz0,tz);
691
692             }
693
694             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
695             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
696             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
697             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
698
699             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
700
701             /* Inner loop uses 162 flops */
702         }
703
704         /* End of innermost loop */
705
706         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
707                                                  f+i_coord_offset,fshift+i_shift_offset);
708
709         ggid                        = gid[iidx];
710         /* Update potential energies */
711         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
712         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
713
714         /* Increment number of inner iterations */
715         inneriter                  += j_index_end - j_index_start;
716
717         /* Outer loop uses 20 flops */
718     }
719
720     /* Increment number of outer iterations */
721     outeriter        += nri;
722
723     /* Update outer/inner flops */
724
725     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*162);
726 }
727 /*
728  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_double
729  * Electrostatics interaction: Ewald
730  * VdW interaction:            LennardJones
731  * Geometry:                   Water3-Particle
732  * Calculate force/pot:        Force
733  */
734 void
735 nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_avx_256_double
736                     (t_nblist * gmx_restrict                nlist,
737                      rvec * gmx_restrict                    xx,
738                      rvec * gmx_restrict                    ff,
739                      t_forcerec * gmx_restrict              fr,
740                      t_mdatoms * gmx_restrict               mdatoms,
741                      nb_kernel_data_t * gmx_restrict        kernel_data,
742                      t_nrnb * gmx_restrict                  nrnb)
743 {
744     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
745      * just 0 for non-waters.
746      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
747      * jnr indices corresponding to data put in the four positions in the SIMD register.
748      */
749     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
750     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
751     int              jnrA,jnrB,jnrC,jnrD;
752     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
753     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
754     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
755     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
756     real             rcutoff_scalar;
757     real             *shiftvec,*fshift,*x,*f;
758     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
759     real             scratch[4*DIM];
760     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
761     real *           vdwioffsetptr0;
762     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
763     real *           vdwioffsetptr1;
764     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
765     real *           vdwioffsetptr2;
766     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
767     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
768     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
769     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
770     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
771     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
772     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
773     real             *charge;
774     int              nvdwtype;
775     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
776     int              *vdwtype;
777     real             *vdwparam;
778     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
779     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
780     __m128i          ewitab;
781     __m256d          ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
782     __m256d          beta,beta2,beta3,zeta2,pmecorrF,pmecorrV,rinv3;
783     real             *ewtab;
784     __m256d          dummy_mask,cutoff_mask;
785     __m128           tmpmask0,tmpmask1;
786     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
787     __m256d          one     = _mm256_set1_pd(1.0);
788     __m256d          two     = _mm256_set1_pd(2.0);
789     x                = xx[0];
790     f                = ff[0];
791
792     nri              = nlist->nri;
793     iinr             = nlist->iinr;
794     jindex           = nlist->jindex;
795     jjnr             = nlist->jjnr;
796     shiftidx         = nlist->shift;
797     gid              = nlist->gid;
798     shiftvec         = fr->shift_vec[0];
799     fshift           = fr->fshift[0];
800     facel            = _mm256_set1_pd(fr->epsfac);
801     charge           = mdatoms->chargeA;
802     nvdwtype         = fr->ntype;
803     vdwparam         = fr->nbfp;
804     vdwtype          = mdatoms->typeA;
805
806     sh_ewald         = _mm256_set1_pd(fr->ic->sh_ewald);
807     beta             = _mm256_set1_pd(fr->ic->ewaldcoeff);
808     beta2            = _mm256_mul_pd(beta,beta);
809     beta3            = _mm256_mul_pd(beta,beta2);
810
811     ewtab            = fr->ic->tabq_coul_F;
812     ewtabscale       = _mm256_set1_pd(fr->ic->tabq_scale);
813     ewtabhalfspace   = _mm256_set1_pd(0.5/fr->ic->tabq_scale);
814
815     /* Setup water-specific parameters */
816     inr              = nlist->iinr[0];
817     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
818     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
819     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
820     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
821
822     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
823     rcutoff_scalar   = fr->rcoulomb;
824     rcutoff          = _mm256_set1_pd(rcutoff_scalar);
825     rcutoff2         = _mm256_mul_pd(rcutoff,rcutoff);
826
827     sh_vdw_invrcut6  = _mm256_set1_pd(fr->ic->sh_invrc6);
828     rvdw             = _mm256_set1_pd(fr->rvdw);
829
830     /* Avoid stupid compiler warnings */
831     jnrA = jnrB = jnrC = jnrD = 0;
832     j_coord_offsetA = 0;
833     j_coord_offsetB = 0;
834     j_coord_offsetC = 0;
835     j_coord_offsetD = 0;
836
837     outeriter        = 0;
838     inneriter        = 0;
839
840     for(iidx=0;iidx<4*DIM;iidx++)
841     {
842         scratch[iidx] = 0.0;
843     }
844
845     /* Start outer loop over neighborlists */
846     for(iidx=0; iidx<nri; iidx++)
847     {
848         /* Load shift vector for this list */
849         i_shift_offset   = DIM*shiftidx[iidx];
850
851         /* Load limits for loop over neighbors */
852         j_index_start    = jindex[iidx];
853         j_index_end      = jindex[iidx+1];
854
855         /* Get outer coordinate index */
856         inr              = iinr[iidx];
857         i_coord_offset   = DIM*inr;
858
859         /* Load i particle coords and add shift vector */
860         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
861                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
862
863         fix0             = _mm256_setzero_pd();
864         fiy0             = _mm256_setzero_pd();
865         fiz0             = _mm256_setzero_pd();
866         fix1             = _mm256_setzero_pd();
867         fiy1             = _mm256_setzero_pd();
868         fiz1             = _mm256_setzero_pd();
869         fix2             = _mm256_setzero_pd();
870         fiy2             = _mm256_setzero_pd();
871         fiz2             = _mm256_setzero_pd();
872
873         /* Start inner kernel loop */
874         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
875         {
876
877             /* Get j neighbor index, and coordinate index */
878             jnrA             = jjnr[jidx];
879             jnrB             = jjnr[jidx+1];
880             jnrC             = jjnr[jidx+2];
881             jnrD             = jjnr[jidx+3];
882             j_coord_offsetA  = DIM*jnrA;
883             j_coord_offsetB  = DIM*jnrB;
884             j_coord_offsetC  = DIM*jnrC;
885             j_coord_offsetD  = DIM*jnrD;
886
887             /* load j atom coordinates */
888             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
889                                                  x+j_coord_offsetC,x+j_coord_offsetD,
890                                                  &jx0,&jy0,&jz0);
891
892             /* Calculate displacement vector */
893             dx00             = _mm256_sub_pd(ix0,jx0);
894             dy00             = _mm256_sub_pd(iy0,jy0);
895             dz00             = _mm256_sub_pd(iz0,jz0);
896             dx10             = _mm256_sub_pd(ix1,jx0);
897             dy10             = _mm256_sub_pd(iy1,jy0);
898             dz10             = _mm256_sub_pd(iz1,jz0);
899             dx20             = _mm256_sub_pd(ix2,jx0);
900             dy20             = _mm256_sub_pd(iy2,jy0);
901             dz20             = _mm256_sub_pd(iz2,jz0);
902
903             /* Calculate squared distance and things based on it */
904             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
905             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
906             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
907
908             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
909             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
910             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
911
912             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
913             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
914             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
915
916             /* Load parameters for j particles */
917             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
918                                                                  charge+jnrC+0,charge+jnrD+0);
919             vdwjidx0A        = 2*vdwtype[jnrA+0];
920             vdwjidx0B        = 2*vdwtype[jnrB+0];
921             vdwjidx0C        = 2*vdwtype[jnrC+0];
922             vdwjidx0D        = 2*vdwtype[jnrD+0];
923
924             fjx0             = _mm256_setzero_pd();
925             fjy0             = _mm256_setzero_pd();
926             fjz0             = _mm256_setzero_pd();
927
928             /**************************
929              * CALCULATE INTERACTIONS *
930              **************************/
931
932             if (gmx_mm256_any_lt(rsq00,rcutoff2))
933             {
934
935             r00              = _mm256_mul_pd(rsq00,rinv00);
936
937             /* Compute parameters for interactions between i and j atoms */
938             qq00             = _mm256_mul_pd(iq0,jq0);
939             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
940                                             vdwioffsetptr0+vdwjidx0B,
941                                             vdwioffsetptr0+vdwjidx0C,
942                                             vdwioffsetptr0+vdwjidx0D,
943                                             &c6_00,&c12_00);
944
945             /* EWALD ELECTROSTATICS */
946
947             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
948             ewrt             = _mm256_mul_pd(r00,ewtabscale);
949             ewitab           = _mm256_cvttpd_epi32(ewrt);
950             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
951             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
952                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
953                                             &ewtabF,&ewtabFn);
954             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
955             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
956
957             /* LENNARD-JONES DISPERSION/REPULSION */
958
959             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
960             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
961
962             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
963
964             fscal            = _mm256_add_pd(felec,fvdw);
965
966             fscal            = _mm256_and_pd(fscal,cutoff_mask);
967
968             /* Calculate temporary vectorial force */
969             tx               = _mm256_mul_pd(fscal,dx00);
970             ty               = _mm256_mul_pd(fscal,dy00);
971             tz               = _mm256_mul_pd(fscal,dz00);
972
973             /* Update vectorial force */
974             fix0             = _mm256_add_pd(fix0,tx);
975             fiy0             = _mm256_add_pd(fiy0,ty);
976             fiz0             = _mm256_add_pd(fiz0,tz);
977
978             fjx0             = _mm256_add_pd(fjx0,tx);
979             fjy0             = _mm256_add_pd(fjy0,ty);
980             fjz0             = _mm256_add_pd(fjz0,tz);
981
982             }
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             if (gmx_mm256_any_lt(rsq10,rcutoff2))
989             {
990
991             r10              = _mm256_mul_pd(rsq10,rinv10);
992
993             /* Compute parameters for interactions between i and j atoms */
994             qq10             = _mm256_mul_pd(iq1,jq0);
995
996             /* EWALD ELECTROSTATICS */
997
998             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
999             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1000             ewitab           = _mm256_cvttpd_epi32(ewrt);
1001             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1002             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1003                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1004                                             &ewtabF,&ewtabFn);
1005             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1006             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1007
1008             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1009
1010             fscal            = felec;
1011
1012             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = _mm256_mul_pd(fscal,dx10);
1016             ty               = _mm256_mul_pd(fscal,dy10);
1017             tz               = _mm256_mul_pd(fscal,dz10);
1018
1019             /* Update vectorial force */
1020             fix1             = _mm256_add_pd(fix1,tx);
1021             fiy1             = _mm256_add_pd(fiy1,ty);
1022             fiz1             = _mm256_add_pd(fiz1,tz);
1023
1024             fjx0             = _mm256_add_pd(fjx0,tx);
1025             fjy0             = _mm256_add_pd(fjy0,ty);
1026             fjz0             = _mm256_add_pd(fjz0,tz);
1027
1028             }
1029
1030             /**************************
1031              * CALCULATE INTERACTIONS *
1032              **************************/
1033
1034             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1035             {
1036
1037             r20              = _mm256_mul_pd(rsq20,rinv20);
1038
1039             /* Compute parameters for interactions between i and j atoms */
1040             qq20             = _mm256_mul_pd(iq2,jq0);
1041
1042             /* EWALD ELECTROSTATICS */
1043
1044             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1045             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1046             ewitab           = _mm256_cvttpd_epi32(ewrt);
1047             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1048             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1049                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1050                                             &ewtabF,&ewtabFn);
1051             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1052             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1053
1054             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1055
1056             fscal            = felec;
1057
1058             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1059
1060             /* Calculate temporary vectorial force */
1061             tx               = _mm256_mul_pd(fscal,dx20);
1062             ty               = _mm256_mul_pd(fscal,dy20);
1063             tz               = _mm256_mul_pd(fscal,dz20);
1064
1065             /* Update vectorial force */
1066             fix2             = _mm256_add_pd(fix2,tx);
1067             fiy2             = _mm256_add_pd(fiy2,ty);
1068             fiz2             = _mm256_add_pd(fiz2,tz);
1069
1070             fjx0             = _mm256_add_pd(fjx0,tx);
1071             fjy0             = _mm256_add_pd(fjy0,ty);
1072             fjz0             = _mm256_add_pd(fjz0,tz);
1073
1074             }
1075
1076             fjptrA             = f+j_coord_offsetA;
1077             fjptrB             = f+j_coord_offsetB;
1078             fjptrC             = f+j_coord_offsetC;
1079             fjptrD             = f+j_coord_offsetD;
1080
1081             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1082
1083             /* Inner loop uses 127 flops */
1084         }
1085
1086         if(jidx<j_index_end)
1087         {
1088
1089             /* Get j neighbor index, and coordinate index */
1090             jnrlistA         = jjnr[jidx];
1091             jnrlistB         = jjnr[jidx+1];
1092             jnrlistC         = jjnr[jidx+2];
1093             jnrlistD         = jjnr[jidx+3];
1094             /* Sign of each element will be negative for non-real atoms.
1095              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1096              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
1097              */
1098             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1099
1100             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1101             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1102             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1103
1104             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1105             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1106             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1107             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1108             j_coord_offsetA  = DIM*jnrA;
1109             j_coord_offsetB  = DIM*jnrB;
1110             j_coord_offsetC  = DIM*jnrC;
1111             j_coord_offsetD  = DIM*jnrD;
1112
1113             /* load j atom coordinates */
1114             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1115                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1116                                                  &jx0,&jy0,&jz0);
1117
1118             /* Calculate displacement vector */
1119             dx00             = _mm256_sub_pd(ix0,jx0);
1120             dy00             = _mm256_sub_pd(iy0,jy0);
1121             dz00             = _mm256_sub_pd(iz0,jz0);
1122             dx10             = _mm256_sub_pd(ix1,jx0);
1123             dy10             = _mm256_sub_pd(iy1,jy0);
1124             dz10             = _mm256_sub_pd(iz1,jz0);
1125             dx20             = _mm256_sub_pd(ix2,jx0);
1126             dy20             = _mm256_sub_pd(iy2,jy0);
1127             dz20             = _mm256_sub_pd(iz2,jz0);
1128
1129             /* Calculate squared distance and things based on it */
1130             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1131             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1132             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1133
1134             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1135             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1136             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1137
1138             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1139             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
1140             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
1141
1142             /* Load parameters for j particles */
1143             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1144                                                                  charge+jnrC+0,charge+jnrD+0);
1145             vdwjidx0A        = 2*vdwtype[jnrA+0];
1146             vdwjidx0B        = 2*vdwtype[jnrB+0];
1147             vdwjidx0C        = 2*vdwtype[jnrC+0];
1148             vdwjidx0D        = 2*vdwtype[jnrD+0];
1149
1150             fjx0             = _mm256_setzero_pd();
1151             fjy0             = _mm256_setzero_pd();
1152             fjz0             = _mm256_setzero_pd();
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             if (gmx_mm256_any_lt(rsq00,rcutoff2))
1159             {
1160
1161             r00              = _mm256_mul_pd(rsq00,rinv00);
1162             r00              = _mm256_andnot_pd(dummy_mask,r00);
1163
1164             /* Compute parameters for interactions between i and j atoms */
1165             qq00             = _mm256_mul_pd(iq0,jq0);
1166             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1167                                             vdwioffsetptr0+vdwjidx0B,
1168                                             vdwioffsetptr0+vdwjidx0C,
1169                                             vdwioffsetptr0+vdwjidx0D,
1170                                             &c6_00,&c12_00);
1171
1172             /* EWALD ELECTROSTATICS */
1173
1174             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1175             ewrt             = _mm256_mul_pd(r00,ewtabscale);
1176             ewitab           = _mm256_cvttpd_epi32(ewrt);
1177             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1178             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1179                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1180                                             &ewtabF,&ewtabFn);
1181             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1182             felec            = _mm256_mul_pd(_mm256_mul_pd(qq00,rinv00),_mm256_sub_pd(rinvsq00,felec));
1183
1184             /* LENNARD-JONES DISPERSION/REPULSION */
1185
1186             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1187             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1188
1189             cutoff_mask      = _mm256_cmp_pd(rsq00,rcutoff2,_CMP_LT_OQ);
1190
1191             fscal            = _mm256_add_pd(felec,fvdw);
1192
1193             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1194
1195             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1196
1197             /* Calculate temporary vectorial force */
1198             tx               = _mm256_mul_pd(fscal,dx00);
1199             ty               = _mm256_mul_pd(fscal,dy00);
1200             tz               = _mm256_mul_pd(fscal,dz00);
1201
1202             /* Update vectorial force */
1203             fix0             = _mm256_add_pd(fix0,tx);
1204             fiy0             = _mm256_add_pd(fiy0,ty);
1205             fiz0             = _mm256_add_pd(fiz0,tz);
1206
1207             fjx0             = _mm256_add_pd(fjx0,tx);
1208             fjy0             = _mm256_add_pd(fjy0,ty);
1209             fjz0             = _mm256_add_pd(fjz0,tz);
1210
1211             }
1212
1213             /**************************
1214              * CALCULATE INTERACTIONS *
1215              **************************/
1216
1217             if (gmx_mm256_any_lt(rsq10,rcutoff2))
1218             {
1219
1220             r10              = _mm256_mul_pd(rsq10,rinv10);
1221             r10              = _mm256_andnot_pd(dummy_mask,r10);
1222
1223             /* Compute parameters for interactions between i and j atoms */
1224             qq10             = _mm256_mul_pd(iq1,jq0);
1225
1226             /* EWALD ELECTROSTATICS */
1227
1228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1229             ewrt             = _mm256_mul_pd(r10,ewtabscale);
1230             ewitab           = _mm256_cvttpd_epi32(ewrt);
1231             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1232             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1233                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1234                                             &ewtabF,&ewtabFn);
1235             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1236             felec            = _mm256_mul_pd(_mm256_mul_pd(qq10,rinv10),_mm256_sub_pd(rinvsq10,felec));
1237
1238             cutoff_mask      = _mm256_cmp_pd(rsq10,rcutoff2,_CMP_LT_OQ);
1239
1240             fscal            = felec;
1241
1242             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1243
1244             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1245
1246             /* Calculate temporary vectorial force */
1247             tx               = _mm256_mul_pd(fscal,dx10);
1248             ty               = _mm256_mul_pd(fscal,dy10);
1249             tz               = _mm256_mul_pd(fscal,dz10);
1250
1251             /* Update vectorial force */
1252             fix1             = _mm256_add_pd(fix1,tx);
1253             fiy1             = _mm256_add_pd(fiy1,ty);
1254             fiz1             = _mm256_add_pd(fiz1,tz);
1255
1256             fjx0             = _mm256_add_pd(fjx0,tx);
1257             fjy0             = _mm256_add_pd(fjy0,ty);
1258             fjz0             = _mm256_add_pd(fjz0,tz);
1259
1260             }
1261
1262             /**************************
1263              * CALCULATE INTERACTIONS *
1264              **************************/
1265
1266             if (gmx_mm256_any_lt(rsq20,rcutoff2))
1267             {
1268
1269             r20              = _mm256_mul_pd(rsq20,rinv20);
1270             r20              = _mm256_andnot_pd(dummy_mask,r20);
1271
1272             /* Compute parameters for interactions between i and j atoms */
1273             qq20             = _mm256_mul_pd(iq2,jq0);
1274
1275             /* EWALD ELECTROSTATICS */
1276
1277             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1278             ewrt             = _mm256_mul_pd(r20,ewtabscale);
1279             ewitab           = _mm256_cvttpd_epi32(ewrt);
1280             eweps            = _mm256_sub_pd(ewrt,_mm256_round_pd(ewrt, _MM_FROUND_FLOOR));
1281             gmx_mm256_load_4pair_swizzle_pd(ewtab + _mm_extract_epi32(ewitab,0),ewtab + _mm_extract_epi32(ewitab,1),
1282                                             ewtab + _mm_extract_epi32(ewitab,2),ewtab + _mm_extract_epi32(ewitab,3),
1283                                             &ewtabF,&ewtabFn);
1284             felec            = _mm256_add_pd(_mm256_mul_pd( _mm256_sub_pd(one,eweps),ewtabF),_mm256_mul_pd(eweps,ewtabFn));
1285             felec            = _mm256_mul_pd(_mm256_mul_pd(qq20,rinv20),_mm256_sub_pd(rinvsq20,felec));
1286
1287             cutoff_mask      = _mm256_cmp_pd(rsq20,rcutoff2,_CMP_LT_OQ);
1288
1289             fscal            = felec;
1290
1291             fscal            = _mm256_and_pd(fscal,cutoff_mask);
1292
1293             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1294
1295             /* Calculate temporary vectorial force */
1296             tx               = _mm256_mul_pd(fscal,dx20);
1297             ty               = _mm256_mul_pd(fscal,dy20);
1298             tz               = _mm256_mul_pd(fscal,dz20);
1299
1300             /* Update vectorial force */
1301             fix2             = _mm256_add_pd(fix2,tx);
1302             fiy2             = _mm256_add_pd(fiy2,ty);
1303             fiz2             = _mm256_add_pd(fiz2,tz);
1304
1305             fjx0             = _mm256_add_pd(fjx0,tx);
1306             fjy0             = _mm256_add_pd(fjy0,ty);
1307             fjz0             = _mm256_add_pd(fjz0,tz);
1308
1309             }
1310
1311             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1312             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1313             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1314             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1315
1316             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1317
1318             /* Inner loop uses 130 flops */
1319         }
1320
1321         /* End of innermost loop */
1322
1323         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1324                                                  f+i_coord_offset,fshift+i_shift_offset);
1325
1326         /* Increment number of inner iterations */
1327         inneriter                  += j_index_end - j_index_start;
1328
1329         /* Outer loop uses 18 flops */
1330     }
1331
1332     /* Increment number of outer iterations */
1333     outeriter        += nri;
1334
1335     /* Update outer/inner flops */
1336
1337     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*130);
1338 }