6b5b157302968f23c61f1d19fadd7db2ec74bbfd
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwLJ_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m256d          dummy_mask,cutoff_mask;
84     __m128           tmpmask0,tmpmask1;
85     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
86     __m256d          one     = _mm256_set1_pd(1.0);
87     __m256d          two     = _mm256_set1_pd(2.0);
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = _mm256_set1_pd(fr->epsfac);
100     charge           = mdatoms->chargeA;
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     /* Avoid stupid compiler warnings */
106     jnrA = jnrB = jnrC = jnrD = 0;
107     j_coord_offsetA = 0;
108     j_coord_offsetB = 0;
109     j_coord_offsetC = 0;
110     j_coord_offsetD = 0;
111
112     outeriter        = 0;
113     inneriter        = 0;
114
115     for(iidx=0;iidx<4*DIM;iidx++)
116     {
117         scratch[iidx] = 0.0;
118     }
119
120     /* Start outer loop over neighborlists */
121     for(iidx=0; iidx<nri; iidx++)
122     {
123         /* Load shift vector for this list */
124         i_shift_offset   = DIM*shiftidx[iidx];
125
126         /* Load limits for loop over neighbors */
127         j_index_start    = jindex[iidx];
128         j_index_end      = jindex[iidx+1];
129
130         /* Get outer coordinate index */
131         inr              = iinr[iidx];
132         i_coord_offset   = DIM*inr;
133
134         /* Load i particle coords and add shift vector */
135         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
136
137         fix0             = _mm256_setzero_pd();
138         fiy0             = _mm256_setzero_pd();
139         fiz0             = _mm256_setzero_pd();
140
141         /* Load parameters for i particles */
142         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
143         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
144
145         /* Reset potential sums */
146         velecsum         = _mm256_setzero_pd();
147         vvdwsum          = _mm256_setzero_pd();
148
149         /* Start inner kernel loop */
150         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
151         {
152
153             /* Get j neighbor index, and coordinate index */
154             jnrA             = jjnr[jidx];
155             jnrB             = jjnr[jidx+1];
156             jnrC             = jjnr[jidx+2];
157             jnrD             = jjnr[jidx+3];
158             j_coord_offsetA  = DIM*jnrA;
159             j_coord_offsetB  = DIM*jnrB;
160             j_coord_offsetC  = DIM*jnrC;
161             j_coord_offsetD  = DIM*jnrD;
162
163             /* load j atom coordinates */
164             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
165                                                  x+j_coord_offsetC,x+j_coord_offsetD,
166                                                  &jx0,&jy0,&jz0);
167
168             /* Calculate displacement vector */
169             dx00             = _mm256_sub_pd(ix0,jx0);
170             dy00             = _mm256_sub_pd(iy0,jy0);
171             dz00             = _mm256_sub_pd(iz0,jz0);
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
175
176             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
177
178             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
179
180             /* Load parameters for j particles */
181             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
182                                                                  charge+jnrC+0,charge+jnrD+0);
183             vdwjidx0A        = 2*vdwtype[jnrA+0];
184             vdwjidx0B        = 2*vdwtype[jnrB+0];
185             vdwjidx0C        = 2*vdwtype[jnrC+0];
186             vdwjidx0D        = 2*vdwtype[jnrD+0];
187
188             /**************************
189              * CALCULATE INTERACTIONS *
190              **************************/
191
192             /* Compute parameters for interactions between i and j atoms */
193             qq00             = _mm256_mul_pd(iq0,jq0);
194             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
195                                             vdwioffsetptr0+vdwjidx0B,
196                                             vdwioffsetptr0+vdwjidx0C,
197                                             vdwioffsetptr0+vdwjidx0D,
198                                             &c6_00,&c12_00);
199
200             /* COULOMB ELECTROSTATICS */
201             velec            = _mm256_mul_pd(qq00,rinv00);
202             felec            = _mm256_mul_pd(velec,rinvsq00);
203
204             /* LENNARD-JONES DISPERSION/REPULSION */
205
206             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
207             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
208             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
209             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
210             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
211
212             /* Update potential sum for this i atom from the interaction with this j atom. */
213             velecsum         = _mm256_add_pd(velecsum,velec);
214             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
215
216             fscal            = _mm256_add_pd(felec,fvdw);
217
218             /* Calculate temporary vectorial force */
219             tx               = _mm256_mul_pd(fscal,dx00);
220             ty               = _mm256_mul_pd(fscal,dy00);
221             tz               = _mm256_mul_pd(fscal,dz00);
222
223             /* Update vectorial force */
224             fix0             = _mm256_add_pd(fix0,tx);
225             fiy0             = _mm256_add_pd(fiy0,ty);
226             fiz0             = _mm256_add_pd(fiz0,tz);
227
228             fjptrA             = f+j_coord_offsetA;
229             fjptrB             = f+j_coord_offsetB;
230             fjptrC             = f+j_coord_offsetC;
231             fjptrD             = f+j_coord_offsetD;
232             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
233
234             /* Inner loop uses 39 flops */
235         }
236
237         if(jidx<j_index_end)
238         {
239
240             /* Get j neighbor index, and coordinate index */
241             jnrlistA         = jjnr[jidx];
242             jnrlistB         = jjnr[jidx+1];
243             jnrlistC         = jjnr[jidx+2];
244             jnrlistD         = jjnr[jidx+3];
245             /* Sign of each element will be negative for non-real atoms.
246              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
247              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
248              */
249             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
250
251             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
252             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
253             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
254
255             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
256             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
257             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
258             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
259             j_coord_offsetA  = DIM*jnrA;
260             j_coord_offsetB  = DIM*jnrB;
261             j_coord_offsetC  = DIM*jnrC;
262             j_coord_offsetD  = DIM*jnrD;
263
264             /* load j atom coordinates */
265             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
266                                                  x+j_coord_offsetC,x+j_coord_offsetD,
267                                                  &jx0,&jy0,&jz0);
268
269             /* Calculate displacement vector */
270             dx00             = _mm256_sub_pd(ix0,jx0);
271             dy00             = _mm256_sub_pd(iy0,jy0);
272             dz00             = _mm256_sub_pd(iz0,jz0);
273
274             /* Calculate squared distance and things based on it */
275             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
276
277             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
278
279             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
280
281             /* Load parameters for j particles */
282             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
283                                                                  charge+jnrC+0,charge+jnrD+0);
284             vdwjidx0A        = 2*vdwtype[jnrA+0];
285             vdwjidx0B        = 2*vdwtype[jnrB+0];
286             vdwjidx0C        = 2*vdwtype[jnrC+0];
287             vdwjidx0D        = 2*vdwtype[jnrD+0];
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             /* Compute parameters for interactions between i and j atoms */
294             qq00             = _mm256_mul_pd(iq0,jq0);
295             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
296                                             vdwioffsetptr0+vdwjidx0B,
297                                             vdwioffsetptr0+vdwjidx0C,
298                                             vdwioffsetptr0+vdwjidx0D,
299                                             &c6_00,&c12_00);
300
301             /* COULOMB ELECTROSTATICS */
302             velec            = _mm256_mul_pd(qq00,rinv00);
303             felec            = _mm256_mul_pd(velec,rinvsq00);
304
305             /* LENNARD-JONES DISPERSION/REPULSION */
306
307             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
308             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
309             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
310             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
311             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
312
313             /* Update potential sum for this i atom from the interaction with this j atom. */
314             velec            = _mm256_andnot_pd(dummy_mask,velec);
315             velecsum         = _mm256_add_pd(velecsum,velec);
316             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
317             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
318
319             fscal            = _mm256_add_pd(felec,fvdw);
320
321             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
322
323             /* Calculate temporary vectorial force */
324             tx               = _mm256_mul_pd(fscal,dx00);
325             ty               = _mm256_mul_pd(fscal,dy00);
326             tz               = _mm256_mul_pd(fscal,dz00);
327
328             /* Update vectorial force */
329             fix0             = _mm256_add_pd(fix0,tx);
330             fiy0             = _mm256_add_pd(fiy0,ty);
331             fiz0             = _mm256_add_pd(fiz0,tz);
332
333             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
334             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
335             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
336             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
337             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
338
339             /* Inner loop uses 39 flops */
340         }
341
342         /* End of innermost loop */
343
344         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
345                                                  f+i_coord_offset,fshift+i_shift_offset);
346
347         ggid                        = gid[iidx];
348         /* Update potential energies */
349         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
350         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
351
352         /* Increment number of inner iterations */
353         inneriter                  += j_index_end - j_index_start;
354
355         /* Outer loop uses 9 flops */
356     }
357
358     /* Increment number of outer iterations */
359     outeriter        += nri;
360
361     /* Update outer/inner flops */
362
363     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*39);
364 }
365 /*
366  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
367  * Electrostatics interaction: Coulomb
368  * VdW interaction:            LennardJones
369  * Geometry:                   Particle-Particle
370  * Calculate force/pot:        Force
371  */
372 void
373 nb_kernel_ElecCoul_VdwLJ_GeomP1P1_F_avx_256_double
374                     (t_nblist * gmx_restrict                nlist,
375                      rvec * gmx_restrict                    xx,
376                      rvec * gmx_restrict                    ff,
377                      t_forcerec * gmx_restrict              fr,
378                      t_mdatoms * gmx_restrict               mdatoms,
379                      nb_kernel_data_t * gmx_restrict        kernel_data,
380                      t_nrnb * gmx_restrict                  nrnb)
381 {
382     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
383      * just 0 for non-waters.
384      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
385      * jnr indices corresponding to data put in the four positions in the SIMD register.
386      */
387     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
388     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
389     int              jnrA,jnrB,jnrC,jnrD;
390     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
391     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
392     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
393     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
394     real             rcutoff_scalar;
395     real             *shiftvec,*fshift,*x,*f;
396     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
397     real             scratch[4*DIM];
398     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
399     real *           vdwioffsetptr0;
400     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
401     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
402     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
403     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
404     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
405     real             *charge;
406     int              nvdwtype;
407     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
408     int              *vdwtype;
409     real             *vdwparam;
410     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
411     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
412     __m256d          dummy_mask,cutoff_mask;
413     __m128           tmpmask0,tmpmask1;
414     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
415     __m256d          one     = _mm256_set1_pd(1.0);
416     __m256d          two     = _mm256_set1_pd(2.0);
417     x                = xx[0];
418     f                = ff[0];
419
420     nri              = nlist->nri;
421     iinr             = nlist->iinr;
422     jindex           = nlist->jindex;
423     jjnr             = nlist->jjnr;
424     shiftidx         = nlist->shift;
425     gid              = nlist->gid;
426     shiftvec         = fr->shift_vec[0];
427     fshift           = fr->fshift[0];
428     facel            = _mm256_set1_pd(fr->epsfac);
429     charge           = mdatoms->chargeA;
430     nvdwtype         = fr->ntype;
431     vdwparam         = fr->nbfp;
432     vdwtype          = mdatoms->typeA;
433
434     /* Avoid stupid compiler warnings */
435     jnrA = jnrB = jnrC = jnrD = 0;
436     j_coord_offsetA = 0;
437     j_coord_offsetB = 0;
438     j_coord_offsetC = 0;
439     j_coord_offsetD = 0;
440
441     outeriter        = 0;
442     inneriter        = 0;
443
444     for(iidx=0;iidx<4*DIM;iidx++)
445     {
446         scratch[iidx] = 0.0;
447     }
448
449     /* Start outer loop over neighborlists */
450     for(iidx=0; iidx<nri; iidx++)
451     {
452         /* Load shift vector for this list */
453         i_shift_offset   = DIM*shiftidx[iidx];
454
455         /* Load limits for loop over neighbors */
456         j_index_start    = jindex[iidx];
457         j_index_end      = jindex[iidx+1];
458
459         /* Get outer coordinate index */
460         inr              = iinr[iidx];
461         i_coord_offset   = DIM*inr;
462
463         /* Load i particle coords and add shift vector */
464         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
465
466         fix0             = _mm256_setzero_pd();
467         fiy0             = _mm256_setzero_pd();
468         fiz0             = _mm256_setzero_pd();
469
470         /* Load parameters for i particles */
471         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
472         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
473
474         /* Start inner kernel loop */
475         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
476         {
477
478             /* Get j neighbor index, and coordinate index */
479             jnrA             = jjnr[jidx];
480             jnrB             = jjnr[jidx+1];
481             jnrC             = jjnr[jidx+2];
482             jnrD             = jjnr[jidx+3];
483             j_coord_offsetA  = DIM*jnrA;
484             j_coord_offsetB  = DIM*jnrB;
485             j_coord_offsetC  = DIM*jnrC;
486             j_coord_offsetD  = DIM*jnrD;
487
488             /* load j atom coordinates */
489             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
490                                                  x+j_coord_offsetC,x+j_coord_offsetD,
491                                                  &jx0,&jy0,&jz0);
492
493             /* Calculate displacement vector */
494             dx00             = _mm256_sub_pd(ix0,jx0);
495             dy00             = _mm256_sub_pd(iy0,jy0);
496             dz00             = _mm256_sub_pd(iz0,jz0);
497
498             /* Calculate squared distance and things based on it */
499             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
500
501             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
502
503             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
504
505             /* Load parameters for j particles */
506             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
507                                                                  charge+jnrC+0,charge+jnrD+0);
508             vdwjidx0A        = 2*vdwtype[jnrA+0];
509             vdwjidx0B        = 2*vdwtype[jnrB+0];
510             vdwjidx0C        = 2*vdwtype[jnrC+0];
511             vdwjidx0D        = 2*vdwtype[jnrD+0];
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             /* Compute parameters for interactions between i and j atoms */
518             qq00             = _mm256_mul_pd(iq0,jq0);
519             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
520                                             vdwioffsetptr0+vdwjidx0B,
521                                             vdwioffsetptr0+vdwjidx0C,
522                                             vdwioffsetptr0+vdwjidx0D,
523                                             &c6_00,&c12_00);
524
525             /* COULOMB ELECTROSTATICS */
526             velec            = _mm256_mul_pd(qq00,rinv00);
527             felec            = _mm256_mul_pd(velec,rinvsq00);
528
529             /* LENNARD-JONES DISPERSION/REPULSION */
530
531             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
532             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
533
534             fscal            = _mm256_add_pd(felec,fvdw);
535
536             /* Calculate temporary vectorial force */
537             tx               = _mm256_mul_pd(fscal,dx00);
538             ty               = _mm256_mul_pd(fscal,dy00);
539             tz               = _mm256_mul_pd(fscal,dz00);
540
541             /* Update vectorial force */
542             fix0             = _mm256_add_pd(fix0,tx);
543             fiy0             = _mm256_add_pd(fiy0,ty);
544             fiz0             = _mm256_add_pd(fiz0,tz);
545
546             fjptrA             = f+j_coord_offsetA;
547             fjptrB             = f+j_coord_offsetB;
548             fjptrC             = f+j_coord_offsetC;
549             fjptrD             = f+j_coord_offsetD;
550             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
551
552             /* Inner loop uses 33 flops */
553         }
554
555         if(jidx<j_index_end)
556         {
557
558             /* Get j neighbor index, and coordinate index */
559             jnrlistA         = jjnr[jidx];
560             jnrlistB         = jjnr[jidx+1];
561             jnrlistC         = jjnr[jidx+2];
562             jnrlistD         = jjnr[jidx+3];
563             /* Sign of each element will be negative for non-real atoms.
564              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
565              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
566              */
567             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
568
569             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
570             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
571             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
572
573             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
574             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
575             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
576             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
577             j_coord_offsetA  = DIM*jnrA;
578             j_coord_offsetB  = DIM*jnrB;
579             j_coord_offsetC  = DIM*jnrC;
580             j_coord_offsetD  = DIM*jnrD;
581
582             /* load j atom coordinates */
583             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
584                                                  x+j_coord_offsetC,x+j_coord_offsetD,
585                                                  &jx0,&jy0,&jz0);
586
587             /* Calculate displacement vector */
588             dx00             = _mm256_sub_pd(ix0,jx0);
589             dy00             = _mm256_sub_pd(iy0,jy0);
590             dz00             = _mm256_sub_pd(iz0,jz0);
591
592             /* Calculate squared distance and things based on it */
593             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
594
595             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
596
597             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
598
599             /* Load parameters for j particles */
600             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
601                                                                  charge+jnrC+0,charge+jnrD+0);
602             vdwjidx0A        = 2*vdwtype[jnrA+0];
603             vdwjidx0B        = 2*vdwtype[jnrB+0];
604             vdwjidx0C        = 2*vdwtype[jnrC+0];
605             vdwjidx0D        = 2*vdwtype[jnrD+0];
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             /* Compute parameters for interactions between i and j atoms */
612             qq00             = _mm256_mul_pd(iq0,jq0);
613             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
614                                             vdwioffsetptr0+vdwjidx0B,
615                                             vdwioffsetptr0+vdwjidx0C,
616                                             vdwioffsetptr0+vdwjidx0D,
617                                             &c6_00,&c12_00);
618
619             /* COULOMB ELECTROSTATICS */
620             velec            = _mm256_mul_pd(qq00,rinv00);
621             felec            = _mm256_mul_pd(velec,rinvsq00);
622
623             /* LENNARD-JONES DISPERSION/REPULSION */
624
625             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
626             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
627
628             fscal            = _mm256_add_pd(felec,fvdw);
629
630             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
631
632             /* Calculate temporary vectorial force */
633             tx               = _mm256_mul_pd(fscal,dx00);
634             ty               = _mm256_mul_pd(fscal,dy00);
635             tz               = _mm256_mul_pd(fscal,dz00);
636
637             /* Update vectorial force */
638             fix0             = _mm256_add_pd(fix0,tx);
639             fiy0             = _mm256_add_pd(fiy0,ty);
640             fiz0             = _mm256_add_pd(fiz0,tz);
641
642             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
643             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
644             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
645             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
646             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
647
648             /* Inner loop uses 33 flops */
649         }
650
651         /* End of innermost loop */
652
653         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
654                                                  f+i_coord_offset,fshift+i_shift_offset);
655
656         /* Increment number of inner iterations */
657         inneriter                  += j_index_end - j_index_start;
658
659         /* Outer loop uses 7 flops */
660     }
661
662     /* Increment number of outer iterations */
663     outeriter        += nri;
664
665     /* Update outer/inner flops */
666
667     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*33);
668 }