made errors during GPU detection non-fatal
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: Coulomb
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          vfitab;
90     __m128i          ifour       = _mm_set1_epi32(4);
91     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
92     real             *vftab;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     vftab            = kernel_data->table_vdw->data;
116     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
121     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
122     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
123     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
156                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
157
158         fix0             = _mm256_setzero_pd();
159         fiy0             = _mm256_setzero_pd();
160         fiz0             = _mm256_setzero_pd();
161         fix1             = _mm256_setzero_pd();
162         fiy1             = _mm256_setzero_pd();
163         fiz1             = _mm256_setzero_pd();
164         fix2             = _mm256_setzero_pd();
165         fiy2             = _mm256_setzero_pd();
166         fiz2             = _mm256_setzero_pd();
167
168         /* Reset potential sums */
169         velecsum         = _mm256_setzero_pd();
170         vvdwsum          = _mm256_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_pd(ix0,jx0);
193             dy00             = _mm256_sub_pd(iy0,jy0);
194             dz00             = _mm256_sub_pd(iz0,jz0);
195             dx10             = _mm256_sub_pd(ix1,jx0);
196             dy10             = _mm256_sub_pd(iy1,jy0);
197             dz10             = _mm256_sub_pd(iz1,jz0);
198             dx20             = _mm256_sub_pd(ix2,jx0);
199             dy20             = _mm256_sub_pd(iy2,jy0);
200             dz20             = _mm256_sub_pd(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
206
207             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
208             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
209             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
210
211             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
212             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
213             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
214
215             /* Load parameters for j particles */
216             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
217                                                                  charge+jnrC+0,charge+jnrD+0);
218             vdwjidx0A        = 2*vdwtype[jnrA+0];
219             vdwjidx0B        = 2*vdwtype[jnrB+0];
220             vdwjidx0C        = 2*vdwtype[jnrC+0];
221             vdwjidx0D        = 2*vdwtype[jnrD+0];
222
223             fjx0             = _mm256_setzero_pd();
224             fjy0             = _mm256_setzero_pd();
225             fjz0             = _mm256_setzero_pd();
226
227             /**************************
228              * CALCULATE INTERACTIONS *
229              **************************/
230
231             r00              = _mm256_mul_pd(rsq00,rinv00);
232
233             /* Compute parameters for interactions between i and j atoms */
234             qq00             = _mm256_mul_pd(iq0,jq0);
235             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
236                                             vdwioffsetptr0+vdwjidx0B,
237                                             vdwioffsetptr0+vdwjidx0C,
238                                             vdwioffsetptr0+vdwjidx0D,
239                                             &c6_00,&c12_00);
240
241             /* Calculate table index by multiplying r with table scale and truncate to integer */
242             rt               = _mm256_mul_pd(r00,vftabscale);
243             vfitab           = _mm256_cvttpd_epi32(rt);
244             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
245             vfitab           = _mm_slli_epi32(vfitab,3);
246
247             /* COULOMB ELECTROSTATICS */
248             velec            = _mm256_mul_pd(qq00,rinv00);
249             felec            = _mm256_mul_pd(velec,rinvsq00);
250
251             /* CUBIC SPLINE TABLE DISPERSION */
252             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
253             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
254             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
255             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
256             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
257             Heps             = _mm256_mul_pd(vfeps,H);
258             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
259             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
260             vvdw6            = _mm256_mul_pd(c6_00,VV);
261             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
262             fvdw6            = _mm256_mul_pd(c6_00,FF);
263
264             /* CUBIC SPLINE TABLE REPULSION */
265             vfitab           = _mm_add_epi32(vfitab,ifour);
266             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
267             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
268             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
269             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
270             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
271             Heps             = _mm256_mul_pd(vfeps,H);
272             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
273             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
274             vvdw12           = _mm256_mul_pd(c12_00,VV);
275             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
276             fvdw12           = _mm256_mul_pd(c12_00,FF);
277             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
278             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
279
280             /* Update potential sum for this i atom from the interaction with this j atom. */
281             velecsum         = _mm256_add_pd(velecsum,velec);
282             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
283
284             fscal            = _mm256_add_pd(felec,fvdw);
285
286             /* Calculate temporary vectorial force */
287             tx               = _mm256_mul_pd(fscal,dx00);
288             ty               = _mm256_mul_pd(fscal,dy00);
289             tz               = _mm256_mul_pd(fscal,dz00);
290
291             /* Update vectorial force */
292             fix0             = _mm256_add_pd(fix0,tx);
293             fiy0             = _mm256_add_pd(fiy0,ty);
294             fiz0             = _mm256_add_pd(fiz0,tz);
295
296             fjx0             = _mm256_add_pd(fjx0,tx);
297             fjy0             = _mm256_add_pd(fjy0,ty);
298             fjz0             = _mm256_add_pd(fjz0,tz);
299
300             /**************************
301              * CALCULATE INTERACTIONS *
302              **************************/
303
304             /* Compute parameters for interactions between i and j atoms */
305             qq10             = _mm256_mul_pd(iq1,jq0);
306
307             /* COULOMB ELECTROSTATICS */
308             velec            = _mm256_mul_pd(qq10,rinv10);
309             felec            = _mm256_mul_pd(velec,rinvsq10);
310
311             /* Update potential sum for this i atom from the interaction with this j atom. */
312             velecsum         = _mm256_add_pd(velecsum,velec);
313
314             fscal            = felec;
315
316             /* Calculate temporary vectorial force */
317             tx               = _mm256_mul_pd(fscal,dx10);
318             ty               = _mm256_mul_pd(fscal,dy10);
319             tz               = _mm256_mul_pd(fscal,dz10);
320
321             /* Update vectorial force */
322             fix1             = _mm256_add_pd(fix1,tx);
323             fiy1             = _mm256_add_pd(fiy1,ty);
324             fiz1             = _mm256_add_pd(fiz1,tz);
325
326             fjx0             = _mm256_add_pd(fjx0,tx);
327             fjy0             = _mm256_add_pd(fjy0,ty);
328             fjz0             = _mm256_add_pd(fjz0,tz);
329
330             /**************************
331              * CALCULATE INTERACTIONS *
332              **************************/
333
334             /* Compute parameters for interactions between i and j atoms */
335             qq20             = _mm256_mul_pd(iq2,jq0);
336
337             /* COULOMB ELECTROSTATICS */
338             velec            = _mm256_mul_pd(qq20,rinv20);
339             felec            = _mm256_mul_pd(velec,rinvsq20);
340
341             /* Update potential sum for this i atom from the interaction with this j atom. */
342             velecsum         = _mm256_add_pd(velecsum,velec);
343
344             fscal            = felec;
345
346             /* Calculate temporary vectorial force */
347             tx               = _mm256_mul_pd(fscal,dx20);
348             ty               = _mm256_mul_pd(fscal,dy20);
349             tz               = _mm256_mul_pd(fscal,dz20);
350
351             /* Update vectorial force */
352             fix2             = _mm256_add_pd(fix2,tx);
353             fiy2             = _mm256_add_pd(fiy2,ty);
354             fiz2             = _mm256_add_pd(fiz2,tz);
355
356             fjx0             = _mm256_add_pd(fjx0,tx);
357             fjy0             = _mm256_add_pd(fjy0,ty);
358             fjz0             = _mm256_add_pd(fjz0,tz);
359
360             fjptrA             = f+j_coord_offsetA;
361             fjptrB             = f+j_coord_offsetB;
362             fjptrC             = f+j_coord_offsetC;
363             fjptrD             = f+j_coord_offsetD;
364
365             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
366
367             /* Inner loop uses 119 flops */
368         }
369
370         if(jidx<j_index_end)
371         {
372
373             /* Get j neighbor index, and coordinate index */
374             jnrlistA         = jjnr[jidx];
375             jnrlistB         = jjnr[jidx+1];
376             jnrlistC         = jjnr[jidx+2];
377             jnrlistD         = jjnr[jidx+3];
378             /* Sign of each element will be negative for non-real atoms.
379              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
380              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
381              */
382             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
383
384             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
385             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
386             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
387
388             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
389             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
390             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
391             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
392             j_coord_offsetA  = DIM*jnrA;
393             j_coord_offsetB  = DIM*jnrB;
394             j_coord_offsetC  = DIM*jnrC;
395             j_coord_offsetD  = DIM*jnrD;
396
397             /* load j atom coordinates */
398             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
399                                                  x+j_coord_offsetC,x+j_coord_offsetD,
400                                                  &jx0,&jy0,&jz0);
401
402             /* Calculate displacement vector */
403             dx00             = _mm256_sub_pd(ix0,jx0);
404             dy00             = _mm256_sub_pd(iy0,jy0);
405             dz00             = _mm256_sub_pd(iz0,jz0);
406             dx10             = _mm256_sub_pd(ix1,jx0);
407             dy10             = _mm256_sub_pd(iy1,jy0);
408             dz10             = _mm256_sub_pd(iz1,jz0);
409             dx20             = _mm256_sub_pd(ix2,jx0);
410             dy20             = _mm256_sub_pd(iy2,jy0);
411             dz20             = _mm256_sub_pd(iz2,jz0);
412
413             /* Calculate squared distance and things based on it */
414             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
415             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
416             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
417
418             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
419             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
420             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
421
422             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
423             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
424             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
425
426             /* Load parameters for j particles */
427             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
428                                                                  charge+jnrC+0,charge+jnrD+0);
429             vdwjidx0A        = 2*vdwtype[jnrA+0];
430             vdwjidx0B        = 2*vdwtype[jnrB+0];
431             vdwjidx0C        = 2*vdwtype[jnrC+0];
432             vdwjidx0D        = 2*vdwtype[jnrD+0];
433
434             fjx0             = _mm256_setzero_pd();
435             fjy0             = _mm256_setzero_pd();
436             fjz0             = _mm256_setzero_pd();
437
438             /**************************
439              * CALCULATE INTERACTIONS *
440              **************************/
441
442             r00              = _mm256_mul_pd(rsq00,rinv00);
443             r00              = _mm256_andnot_pd(dummy_mask,r00);
444
445             /* Compute parameters for interactions between i and j atoms */
446             qq00             = _mm256_mul_pd(iq0,jq0);
447             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
448                                             vdwioffsetptr0+vdwjidx0B,
449                                             vdwioffsetptr0+vdwjidx0C,
450                                             vdwioffsetptr0+vdwjidx0D,
451                                             &c6_00,&c12_00);
452
453             /* Calculate table index by multiplying r with table scale and truncate to integer */
454             rt               = _mm256_mul_pd(r00,vftabscale);
455             vfitab           = _mm256_cvttpd_epi32(rt);
456             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
457             vfitab           = _mm_slli_epi32(vfitab,3);
458
459             /* COULOMB ELECTROSTATICS */
460             velec            = _mm256_mul_pd(qq00,rinv00);
461             felec            = _mm256_mul_pd(velec,rinvsq00);
462
463             /* CUBIC SPLINE TABLE DISPERSION */
464             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
465             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
466             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
467             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
468             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
469             Heps             = _mm256_mul_pd(vfeps,H);
470             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
471             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
472             vvdw6            = _mm256_mul_pd(c6_00,VV);
473             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
474             fvdw6            = _mm256_mul_pd(c6_00,FF);
475
476             /* CUBIC SPLINE TABLE REPULSION */
477             vfitab           = _mm_add_epi32(vfitab,ifour);
478             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
479             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
480             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
481             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
482             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
483             Heps             = _mm256_mul_pd(vfeps,H);
484             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
485             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
486             vvdw12           = _mm256_mul_pd(c12_00,VV);
487             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
488             fvdw12           = _mm256_mul_pd(c12_00,FF);
489             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
490             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
491
492             /* Update potential sum for this i atom from the interaction with this j atom. */
493             velec            = _mm256_andnot_pd(dummy_mask,velec);
494             velecsum         = _mm256_add_pd(velecsum,velec);
495             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
496             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
497
498             fscal            = _mm256_add_pd(felec,fvdw);
499
500             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
501
502             /* Calculate temporary vectorial force */
503             tx               = _mm256_mul_pd(fscal,dx00);
504             ty               = _mm256_mul_pd(fscal,dy00);
505             tz               = _mm256_mul_pd(fscal,dz00);
506
507             /* Update vectorial force */
508             fix0             = _mm256_add_pd(fix0,tx);
509             fiy0             = _mm256_add_pd(fiy0,ty);
510             fiz0             = _mm256_add_pd(fiz0,tz);
511
512             fjx0             = _mm256_add_pd(fjx0,tx);
513             fjy0             = _mm256_add_pd(fjy0,ty);
514             fjz0             = _mm256_add_pd(fjz0,tz);
515
516             /**************************
517              * CALCULATE INTERACTIONS *
518              **************************/
519
520             /* Compute parameters for interactions between i and j atoms */
521             qq10             = _mm256_mul_pd(iq1,jq0);
522
523             /* COULOMB ELECTROSTATICS */
524             velec            = _mm256_mul_pd(qq10,rinv10);
525             felec            = _mm256_mul_pd(velec,rinvsq10);
526
527             /* Update potential sum for this i atom from the interaction with this j atom. */
528             velec            = _mm256_andnot_pd(dummy_mask,velec);
529             velecsum         = _mm256_add_pd(velecsum,velec);
530
531             fscal            = felec;
532
533             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
534
535             /* Calculate temporary vectorial force */
536             tx               = _mm256_mul_pd(fscal,dx10);
537             ty               = _mm256_mul_pd(fscal,dy10);
538             tz               = _mm256_mul_pd(fscal,dz10);
539
540             /* Update vectorial force */
541             fix1             = _mm256_add_pd(fix1,tx);
542             fiy1             = _mm256_add_pd(fiy1,ty);
543             fiz1             = _mm256_add_pd(fiz1,tz);
544
545             fjx0             = _mm256_add_pd(fjx0,tx);
546             fjy0             = _mm256_add_pd(fjy0,ty);
547             fjz0             = _mm256_add_pd(fjz0,tz);
548
549             /**************************
550              * CALCULATE INTERACTIONS *
551              **************************/
552
553             /* Compute parameters for interactions between i and j atoms */
554             qq20             = _mm256_mul_pd(iq2,jq0);
555
556             /* COULOMB ELECTROSTATICS */
557             velec            = _mm256_mul_pd(qq20,rinv20);
558             felec            = _mm256_mul_pd(velec,rinvsq20);
559
560             /* Update potential sum for this i atom from the interaction with this j atom. */
561             velec            = _mm256_andnot_pd(dummy_mask,velec);
562             velecsum         = _mm256_add_pd(velecsum,velec);
563
564             fscal            = felec;
565
566             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
567
568             /* Calculate temporary vectorial force */
569             tx               = _mm256_mul_pd(fscal,dx20);
570             ty               = _mm256_mul_pd(fscal,dy20);
571             tz               = _mm256_mul_pd(fscal,dz20);
572
573             /* Update vectorial force */
574             fix2             = _mm256_add_pd(fix2,tx);
575             fiy2             = _mm256_add_pd(fiy2,ty);
576             fiz2             = _mm256_add_pd(fiz2,tz);
577
578             fjx0             = _mm256_add_pd(fjx0,tx);
579             fjy0             = _mm256_add_pd(fjy0,ty);
580             fjz0             = _mm256_add_pd(fjz0,tz);
581
582             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
583             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
584             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
585             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
586
587             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
588
589             /* Inner loop uses 120 flops */
590         }
591
592         /* End of innermost loop */
593
594         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
595                                                  f+i_coord_offset,fshift+i_shift_offset);
596
597         ggid                        = gid[iidx];
598         /* Update potential energies */
599         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
600         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
601
602         /* Increment number of inner iterations */
603         inneriter                  += j_index_end - j_index_start;
604
605         /* Outer loop uses 20 flops */
606     }
607
608     /* Increment number of outer iterations */
609     outeriter        += nri;
610
611     /* Update outer/inner flops */
612
613     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*120);
614 }
615 /*
616  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_double
617  * Electrostatics interaction: Coulomb
618  * VdW interaction:            CubicSplineTable
619  * Geometry:                   Water3-Particle
620  * Calculate force/pot:        Force
621  */
622 void
623 nb_kernel_ElecCoul_VdwCSTab_GeomW3P1_F_avx_256_double
624                     (t_nblist * gmx_restrict                nlist,
625                      rvec * gmx_restrict                    xx,
626                      rvec * gmx_restrict                    ff,
627                      t_forcerec * gmx_restrict              fr,
628                      t_mdatoms * gmx_restrict               mdatoms,
629                      nb_kernel_data_t * gmx_restrict        kernel_data,
630                      t_nrnb * gmx_restrict                  nrnb)
631 {
632     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
633      * just 0 for non-waters.
634      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
635      * jnr indices corresponding to data put in the four positions in the SIMD register.
636      */
637     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
638     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
639     int              jnrA,jnrB,jnrC,jnrD;
640     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
641     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
642     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
643     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
644     real             rcutoff_scalar;
645     real             *shiftvec,*fshift,*x,*f;
646     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
647     real             scratch[4*DIM];
648     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
649     real *           vdwioffsetptr0;
650     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
651     real *           vdwioffsetptr1;
652     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
653     real *           vdwioffsetptr2;
654     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
655     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
656     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
657     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
658     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
659     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
660     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
661     real             *charge;
662     int              nvdwtype;
663     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
664     int              *vdwtype;
665     real             *vdwparam;
666     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
667     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
668     __m128i          vfitab;
669     __m128i          ifour       = _mm_set1_epi32(4);
670     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
671     real             *vftab;
672     __m256d          dummy_mask,cutoff_mask;
673     __m128           tmpmask0,tmpmask1;
674     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
675     __m256d          one     = _mm256_set1_pd(1.0);
676     __m256d          two     = _mm256_set1_pd(2.0);
677     x                = xx[0];
678     f                = ff[0];
679
680     nri              = nlist->nri;
681     iinr             = nlist->iinr;
682     jindex           = nlist->jindex;
683     jjnr             = nlist->jjnr;
684     shiftidx         = nlist->shift;
685     gid              = nlist->gid;
686     shiftvec         = fr->shift_vec[0];
687     fshift           = fr->fshift[0];
688     facel            = _mm256_set1_pd(fr->epsfac);
689     charge           = mdatoms->chargeA;
690     nvdwtype         = fr->ntype;
691     vdwparam         = fr->nbfp;
692     vdwtype          = mdatoms->typeA;
693
694     vftab            = kernel_data->table_vdw->data;
695     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
696
697     /* Setup water-specific parameters */
698     inr              = nlist->iinr[0];
699     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
700     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
701     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
702     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
703
704     /* Avoid stupid compiler warnings */
705     jnrA = jnrB = jnrC = jnrD = 0;
706     j_coord_offsetA = 0;
707     j_coord_offsetB = 0;
708     j_coord_offsetC = 0;
709     j_coord_offsetD = 0;
710
711     outeriter        = 0;
712     inneriter        = 0;
713
714     for(iidx=0;iidx<4*DIM;iidx++)
715     {
716         scratch[iidx] = 0.0;
717     }
718
719     /* Start outer loop over neighborlists */
720     for(iidx=0; iidx<nri; iidx++)
721     {
722         /* Load shift vector for this list */
723         i_shift_offset   = DIM*shiftidx[iidx];
724
725         /* Load limits for loop over neighbors */
726         j_index_start    = jindex[iidx];
727         j_index_end      = jindex[iidx+1];
728
729         /* Get outer coordinate index */
730         inr              = iinr[iidx];
731         i_coord_offset   = DIM*inr;
732
733         /* Load i particle coords and add shift vector */
734         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
735                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
736
737         fix0             = _mm256_setzero_pd();
738         fiy0             = _mm256_setzero_pd();
739         fiz0             = _mm256_setzero_pd();
740         fix1             = _mm256_setzero_pd();
741         fiy1             = _mm256_setzero_pd();
742         fiz1             = _mm256_setzero_pd();
743         fix2             = _mm256_setzero_pd();
744         fiy2             = _mm256_setzero_pd();
745         fiz2             = _mm256_setzero_pd();
746
747         /* Start inner kernel loop */
748         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
749         {
750
751             /* Get j neighbor index, and coordinate index */
752             jnrA             = jjnr[jidx];
753             jnrB             = jjnr[jidx+1];
754             jnrC             = jjnr[jidx+2];
755             jnrD             = jjnr[jidx+3];
756             j_coord_offsetA  = DIM*jnrA;
757             j_coord_offsetB  = DIM*jnrB;
758             j_coord_offsetC  = DIM*jnrC;
759             j_coord_offsetD  = DIM*jnrD;
760
761             /* load j atom coordinates */
762             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
763                                                  x+j_coord_offsetC,x+j_coord_offsetD,
764                                                  &jx0,&jy0,&jz0);
765
766             /* Calculate displacement vector */
767             dx00             = _mm256_sub_pd(ix0,jx0);
768             dy00             = _mm256_sub_pd(iy0,jy0);
769             dz00             = _mm256_sub_pd(iz0,jz0);
770             dx10             = _mm256_sub_pd(ix1,jx0);
771             dy10             = _mm256_sub_pd(iy1,jy0);
772             dz10             = _mm256_sub_pd(iz1,jz0);
773             dx20             = _mm256_sub_pd(ix2,jx0);
774             dy20             = _mm256_sub_pd(iy2,jy0);
775             dz20             = _mm256_sub_pd(iz2,jz0);
776
777             /* Calculate squared distance and things based on it */
778             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
779             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
780             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
781
782             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
783             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
784             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
785
786             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
787             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
788             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
789
790             /* Load parameters for j particles */
791             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
792                                                                  charge+jnrC+0,charge+jnrD+0);
793             vdwjidx0A        = 2*vdwtype[jnrA+0];
794             vdwjidx0B        = 2*vdwtype[jnrB+0];
795             vdwjidx0C        = 2*vdwtype[jnrC+0];
796             vdwjidx0D        = 2*vdwtype[jnrD+0];
797
798             fjx0             = _mm256_setzero_pd();
799             fjy0             = _mm256_setzero_pd();
800             fjz0             = _mm256_setzero_pd();
801
802             /**************************
803              * CALCULATE INTERACTIONS *
804              **************************/
805
806             r00              = _mm256_mul_pd(rsq00,rinv00);
807
808             /* Compute parameters for interactions between i and j atoms */
809             qq00             = _mm256_mul_pd(iq0,jq0);
810             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
811                                             vdwioffsetptr0+vdwjidx0B,
812                                             vdwioffsetptr0+vdwjidx0C,
813                                             vdwioffsetptr0+vdwjidx0D,
814                                             &c6_00,&c12_00);
815
816             /* Calculate table index by multiplying r with table scale and truncate to integer */
817             rt               = _mm256_mul_pd(r00,vftabscale);
818             vfitab           = _mm256_cvttpd_epi32(rt);
819             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
820             vfitab           = _mm_slli_epi32(vfitab,3);
821
822             /* COULOMB ELECTROSTATICS */
823             velec            = _mm256_mul_pd(qq00,rinv00);
824             felec            = _mm256_mul_pd(velec,rinvsq00);
825
826             /* CUBIC SPLINE TABLE DISPERSION */
827             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
828             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
829             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
830             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
831             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
832             Heps             = _mm256_mul_pd(vfeps,H);
833             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
834             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
835             fvdw6            = _mm256_mul_pd(c6_00,FF);
836
837             /* CUBIC SPLINE TABLE REPULSION */
838             vfitab           = _mm_add_epi32(vfitab,ifour);
839             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
840             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
841             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
842             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
843             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
844             Heps             = _mm256_mul_pd(vfeps,H);
845             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
846             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
847             fvdw12           = _mm256_mul_pd(c12_00,FF);
848             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
849
850             fscal            = _mm256_add_pd(felec,fvdw);
851
852             /* Calculate temporary vectorial force */
853             tx               = _mm256_mul_pd(fscal,dx00);
854             ty               = _mm256_mul_pd(fscal,dy00);
855             tz               = _mm256_mul_pd(fscal,dz00);
856
857             /* Update vectorial force */
858             fix0             = _mm256_add_pd(fix0,tx);
859             fiy0             = _mm256_add_pd(fiy0,ty);
860             fiz0             = _mm256_add_pd(fiz0,tz);
861
862             fjx0             = _mm256_add_pd(fjx0,tx);
863             fjy0             = _mm256_add_pd(fjy0,ty);
864             fjz0             = _mm256_add_pd(fjz0,tz);
865
866             /**************************
867              * CALCULATE INTERACTIONS *
868              **************************/
869
870             /* Compute parameters for interactions between i and j atoms */
871             qq10             = _mm256_mul_pd(iq1,jq0);
872
873             /* COULOMB ELECTROSTATICS */
874             velec            = _mm256_mul_pd(qq10,rinv10);
875             felec            = _mm256_mul_pd(velec,rinvsq10);
876
877             fscal            = felec;
878
879             /* Calculate temporary vectorial force */
880             tx               = _mm256_mul_pd(fscal,dx10);
881             ty               = _mm256_mul_pd(fscal,dy10);
882             tz               = _mm256_mul_pd(fscal,dz10);
883
884             /* Update vectorial force */
885             fix1             = _mm256_add_pd(fix1,tx);
886             fiy1             = _mm256_add_pd(fiy1,ty);
887             fiz1             = _mm256_add_pd(fiz1,tz);
888
889             fjx0             = _mm256_add_pd(fjx0,tx);
890             fjy0             = _mm256_add_pd(fjy0,ty);
891             fjz0             = _mm256_add_pd(fjz0,tz);
892
893             /**************************
894              * CALCULATE INTERACTIONS *
895              **************************/
896
897             /* Compute parameters for interactions between i and j atoms */
898             qq20             = _mm256_mul_pd(iq2,jq0);
899
900             /* COULOMB ELECTROSTATICS */
901             velec            = _mm256_mul_pd(qq20,rinv20);
902             felec            = _mm256_mul_pd(velec,rinvsq20);
903
904             fscal            = felec;
905
906             /* Calculate temporary vectorial force */
907             tx               = _mm256_mul_pd(fscal,dx20);
908             ty               = _mm256_mul_pd(fscal,dy20);
909             tz               = _mm256_mul_pd(fscal,dz20);
910
911             /* Update vectorial force */
912             fix2             = _mm256_add_pd(fix2,tx);
913             fiy2             = _mm256_add_pd(fiy2,ty);
914             fiz2             = _mm256_add_pd(fiz2,tz);
915
916             fjx0             = _mm256_add_pd(fjx0,tx);
917             fjy0             = _mm256_add_pd(fjy0,ty);
918             fjz0             = _mm256_add_pd(fjz0,tz);
919
920             fjptrA             = f+j_coord_offsetA;
921             fjptrB             = f+j_coord_offsetB;
922             fjptrC             = f+j_coord_offsetC;
923             fjptrD             = f+j_coord_offsetD;
924
925             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
926
927             /* Inner loop uses 108 flops */
928         }
929
930         if(jidx<j_index_end)
931         {
932
933             /* Get j neighbor index, and coordinate index */
934             jnrlistA         = jjnr[jidx];
935             jnrlistB         = jjnr[jidx+1];
936             jnrlistC         = jjnr[jidx+2];
937             jnrlistD         = jjnr[jidx+3];
938             /* Sign of each element will be negative for non-real atoms.
939              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
940              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
941              */
942             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
943
944             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
945             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
946             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
947
948             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
949             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
950             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
951             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
952             j_coord_offsetA  = DIM*jnrA;
953             j_coord_offsetB  = DIM*jnrB;
954             j_coord_offsetC  = DIM*jnrC;
955             j_coord_offsetD  = DIM*jnrD;
956
957             /* load j atom coordinates */
958             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
959                                                  x+j_coord_offsetC,x+j_coord_offsetD,
960                                                  &jx0,&jy0,&jz0);
961
962             /* Calculate displacement vector */
963             dx00             = _mm256_sub_pd(ix0,jx0);
964             dy00             = _mm256_sub_pd(iy0,jy0);
965             dz00             = _mm256_sub_pd(iz0,jz0);
966             dx10             = _mm256_sub_pd(ix1,jx0);
967             dy10             = _mm256_sub_pd(iy1,jy0);
968             dz10             = _mm256_sub_pd(iz1,jz0);
969             dx20             = _mm256_sub_pd(ix2,jx0);
970             dy20             = _mm256_sub_pd(iy2,jy0);
971             dz20             = _mm256_sub_pd(iz2,jz0);
972
973             /* Calculate squared distance and things based on it */
974             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
975             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
976             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
977
978             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
979             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
980             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
981
982             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
983             rinvsq10         = _mm256_mul_pd(rinv10,rinv10);
984             rinvsq20         = _mm256_mul_pd(rinv20,rinv20);
985
986             /* Load parameters for j particles */
987             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
988                                                                  charge+jnrC+0,charge+jnrD+0);
989             vdwjidx0A        = 2*vdwtype[jnrA+0];
990             vdwjidx0B        = 2*vdwtype[jnrB+0];
991             vdwjidx0C        = 2*vdwtype[jnrC+0];
992             vdwjidx0D        = 2*vdwtype[jnrD+0];
993
994             fjx0             = _mm256_setzero_pd();
995             fjy0             = _mm256_setzero_pd();
996             fjz0             = _mm256_setzero_pd();
997
998             /**************************
999              * CALCULATE INTERACTIONS *
1000              **************************/
1001
1002             r00              = _mm256_mul_pd(rsq00,rinv00);
1003             r00              = _mm256_andnot_pd(dummy_mask,r00);
1004
1005             /* Compute parameters for interactions between i and j atoms */
1006             qq00             = _mm256_mul_pd(iq0,jq0);
1007             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1008                                             vdwioffsetptr0+vdwjidx0B,
1009                                             vdwioffsetptr0+vdwjidx0C,
1010                                             vdwioffsetptr0+vdwjidx0D,
1011                                             &c6_00,&c12_00);
1012
1013             /* Calculate table index by multiplying r with table scale and truncate to integer */
1014             rt               = _mm256_mul_pd(r00,vftabscale);
1015             vfitab           = _mm256_cvttpd_epi32(rt);
1016             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1017             vfitab           = _mm_slli_epi32(vfitab,3);
1018
1019             /* COULOMB ELECTROSTATICS */
1020             velec            = _mm256_mul_pd(qq00,rinv00);
1021             felec            = _mm256_mul_pd(velec,rinvsq00);
1022
1023             /* CUBIC SPLINE TABLE DISPERSION */
1024             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1025             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1026             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1027             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1028             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1029             Heps             = _mm256_mul_pd(vfeps,H);
1030             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1031             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1032             fvdw6            = _mm256_mul_pd(c6_00,FF);
1033
1034             /* CUBIC SPLINE TABLE REPULSION */
1035             vfitab           = _mm_add_epi32(vfitab,ifour);
1036             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1037             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1038             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1039             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1040             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1041             Heps             = _mm256_mul_pd(vfeps,H);
1042             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1043             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1044             fvdw12           = _mm256_mul_pd(c12_00,FF);
1045             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
1046
1047             fscal            = _mm256_add_pd(felec,fvdw);
1048
1049             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = _mm256_mul_pd(fscal,dx00);
1053             ty               = _mm256_mul_pd(fscal,dy00);
1054             tz               = _mm256_mul_pd(fscal,dz00);
1055
1056             /* Update vectorial force */
1057             fix0             = _mm256_add_pd(fix0,tx);
1058             fiy0             = _mm256_add_pd(fiy0,ty);
1059             fiz0             = _mm256_add_pd(fiz0,tz);
1060
1061             fjx0             = _mm256_add_pd(fjx0,tx);
1062             fjy0             = _mm256_add_pd(fjy0,ty);
1063             fjz0             = _mm256_add_pd(fjz0,tz);
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             /* Compute parameters for interactions between i and j atoms */
1070             qq10             = _mm256_mul_pd(iq1,jq0);
1071
1072             /* COULOMB ELECTROSTATICS */
1073             velec            = _mm256_mul_pd(qq10,rinv10);
1074             felec            = _mm256_mul_pd(velec,rinvsq10);
1075
1076             fscal            = felec;
1077
1078             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = _mm256_mul_pd(fscal,dx10);
1082             ty               = _mm256_mul_pd(fscal,dy10);
1083             tz               = _mm256_mul_pd(fscal,dz10);
1084
1085             /* Update vectorial force */
1086             fix1             = _mm256_add_pd(fix1,tx);
1087             fiy1             = _mm256_add_pd(fiy1,ty);
1088             fiz1             = _mm256_add_pd(fiz1,tz);
1089
1090             fjx0             = _mm256_add_pd(fjx0,tx);
1091             fjy0             = _mm256_add_pd(fjy0,ty);
1092             fjz0             = _mm256_add_pd(fjz0,tz);
1093
1094             /**************************
1095              * CALCULATE INTERACTIONS *
1096              **************************/
1097
1098             /* Compute parameters for interactions between i and j atoms */
1099             qq20             = _mm256_mul_pd(iq2,jq0);
1100
1101             /* COULOMB ELECTROSTATICS */
1102             velec            = _mm256_mul_pd(qq20,rinv20);
1103             felec            = _mm256_mul_pd(velec,rinvsq20);
1104
1105             fscal            = felec;
1106
1107             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1108
1109             /* Calculate temporary vectorial force */
1110             tx               = _mm256_mul_pd(fscal,dx20);
1111             ty               = _mm256_mul_pd(fscal,dy20);
1112             tz               = _mm256_mul_pd(fscal,dz20);
1113
1114             /* Update vectorial force */
1115             fix2             = _mm256_add_pd(fix2,tx);
1116             fiy2             = _mm256_add_pd(fiy2,ty);
1117             fiz2             = _mm256_add_pd(fiz2,tz);
1118
1119             fjx0             = _mm256_add_pd(fjx0,tx);
1120             fjy0             = _mm256_add_pd(fjy0,ty);
1121             fjz0             = _mm256_add_pd(fjz0,tz);
1122
1123             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1124             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1125             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1126             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1127
1128             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1129
1130             /* Inner loop uses 109 flops */
1131         }
1132
1133         /* End of innermost loop */
1134
1135         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1136                                                  f+i_coord_offset,fshift+i_shift_offset);
1137
1138         /* Increment number of inner iterations */
1139         inneriter                  += j_index_end - j_index_start;
1140
1141         /* Outer loop uses 18 flops */
1142     }
1143
1144     /* Increment number of outer iterations */
1145     outeriter        += nri;
1146
1147     /* Update outer/inner flops */
1148
1149     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*109);
1150 }