2c89d947447f1d09214f2813252a5a7b04689c00
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            LennardJones
40  * Geometry:                   Water3-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     real *           vdwioffsetptr1;
73     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     real *           vdwioffsetptr2;
75     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
77     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
79     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
80     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
81     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
88     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
89     __m128i          vfitab;
90     __m128i          ifour       = _mm_set1_epi32(4);
91     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
92     real             *vftab;
93     __m256d          dummy_mask,cutoff_mask;
94     __m128           tmpmask0,tmpmask1;
95     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
96     __m256d          one     = _mm256_set1_pd(1.0);
97     __m256d          two     = _mm256_set1_pd(2.0);
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = _mm256_set1_pd(fr->epsfac);
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114
115     vftab            = kernel_data->table_elec->data;
116     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
121     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
122     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
123     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
124
125     /* Avoid stupid compiler warnings */
126     jnrA = jnrB = jnrC = jnrD = 0;
127     j_coord_offsetA = 0;
128     j_coord_offsetB = 0;
129     j_coord_offsetC = 0;
130     j_coord_offsetD = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
156                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
157
158         fix0             = _mm256_setzero_pd();
159         fiy0             = _mm256_setzero_pd();
160         fiz0             = _mm256_setzero_pd();
161         fix1             = _mm256_setzero_pd();
162         fiy1             = _mm256_setzero_pd();
163         fiz1             = _mm256_setzero_pd();
164         fix2             = _mm256_setzero_pd();
165         fiy2             = _mm256_setzero_pd();
166         fiz2             = _mm256_setzero_pd();
167
168         /* Reset potential sums */
169         velecsum         = _mm256_setzero_pd();
170         vvdwsum          = _mm256_setzero_pd();
171
172         /* Start inner kernel loop */
173         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
174         {
175
176             /* Get j neighbor index, and coordinate index */
177             jnrA             = jjnr[jidx];
178             jnrB             = jjnr[jidx+1];
179             jnrC             = jjnr[jidx+2];
180             jnrD             = jjnr[jidx+3];
181             j_coord_offsetA  = DIM*jnrA;
182             j_coord_offsetB  = DIM*jnrB;
183             j_coord_offsetC  = DIM*jnrC;
184             j_coord_offsetD  = DIM*jnrD;
185
186             /* load j atom coordinates */
187             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
188                                                  x+j_coord_offsetC,x+j_coord_offsetD,
189                                                  &jx0,&jy0,&jz0);
190
191             /* Calculate displacement vector */
192             dx00             = _mm256_sub_pd(ix0,jx0);
193             dy00             = _mm256_sub_pd(iy0,jy0);
194             dz00             = _mm256_sub_pd(iz0,jz0);
195             dx10             = _mm256_sub_pd(ix1,jx0);
196             dy10             = _mm256_sub_pd(iy1,jy0);
197             dz10             = _mm256_sub_pd(iz1,jz0);
198             dx20             = _mm256_sub_pd(ix2,jx0);
199             dy20             = _mm256_sub_pd(iy2,jy0);
200             dz20             = _mm256_sub_pd(iz2,jz0);
201
202             /* Calculate squared distance and things based on it */
203             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
204             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
205             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
206
207             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
208             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
209             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
210
211             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
212
213             /* Load parameters for j particles */
214             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
215                                                                  charge+jnrC+0,charge+jnrD+0);
216             vdwjidx0A        = 2*vdwtype[jnrA+0];
217             vdwjidx0B        = 2*vdwtype[jnrB+0];
218             vdwjidx0C        = 2*vdwtype[jnrC+0];
219             vdwjidx0D        = 2*vdwtype[jnrD+0];
220
221             fjx0             = _mm256_setzero_pd();
222             fjy0             = _mm256_setzero_pd();
223             fjz0             = _mm256_setzero_pd();
224
225             /**************************
226              * CALCULATE INTERACTIONS *
227              **************************/
228
229             r00              = _mm256_mul_pd(rsq00,rinv00);
230
231             /* Compute parameters for interactions between i and j atoms */
232             qq00             = _mm256_mul_pd(iq0,jq0);
233             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
234                                             vdwioffsetptr0+vdwjidx0B,
235                                             vdwioffsetptr0+vdwjidx0C,
236                                             vdwioffsetptr0+vdwjidx0D,
237                                             &c6_00,&c12_00);
238
239             /* Calculate table index by multiplying r with table scale and truncate to integer */
240             rt               = _mm256_mul_pd(r00,vftabscale);
241             vfitab           = _mm256_cvttpd_epi32(rt);
242             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
243             vfitab           = _mm_slli_epi32(vfitab,2);
244
245             /* CUBIC SPLINE TABLE ELECTROSTATICS */
246             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
247             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
248             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
249             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
250             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
251             Heps             = _mm256_mul_pd(vfeps,H);
252             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
253             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
254             velec            = _mm256_mul_pd(qq00,VV);
255             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
256             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
257
258             /* LENNARD-JONES DISPERSION/REPULSION */
259
260             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
261             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
262             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
263             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
264             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
265
266             /* Update potential sum for this i atom from the interaction with this j atom. */
267             velecsum         = _mm256_add_pd(velecsum,velec);
268             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
269
270             fscal            = _mm256_add_pd(felec,fvdw);
271
272             /* Calculate temporary vectorial force */
273             tx               = _mm256_mul_pd(fscal,dx00);
274             ty               = _mm256_mul_pd(fscal,dy00);
275             tz               = _mm256_mul_pd(fscal,dz00);
276
277             /* Update vectorial force */
278             fix0             = _mm256_add_pd(fix0,tx);
279             fiy0             = _mm256_add_pd(fiy0,ty);
280             fiz0             = _mm256_add_pd(fiz0,tz);
281
282             fjx0             = _mm256_add_pd(fjx0,tx);
283             fjy0             = _mm256_add_pd(fjy0,ty);
284             fjz0             = _mm256_add_pd(fjz0,tz);
285
286             /**************************
287              * CALCULATE INTERACTIONS *
288              **************************/
289
290             r10              = _mm256_mul_pd(rsq10,rinv10);
291
292             /* Compute parameters for interactions between i and j atoms */
293             qq10             = _mm256_mul_pd(iq1,jq0);
294
295             /* Calculate table index by multiplying r with table scale and truncate to integer */
296             rt               = _mm256_mul_pd(r10,vftabscale);
297             vfitab           = _mm256_cvttpd_epi32(rt);
298             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
299             vfitab           = _mm_slli_epi32(vfitab,2);
300
301             /* CUBIC SPLINE TABLE ELECTROSTATICS */
302             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
303             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
304             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
305             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
306             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
307             Heps             = _mm256_mul_pd(vfeps,H);
308             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
309             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
310             velec            = _mm256_mul_pd(qq10,VV);
311             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
312             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
313
314             /* Update potential sum for this i atom from the interaction with this j atom. */
315             velecsum         = _mm256_add_pd(velecsum,velec);
316
317             fscal            = felec;
318
319             /* Calculate temporary vectorial force */
320             tx               = _mm256_mul_pd(fscal,dx10);
321             ty               = _mm256_mul_pd(fscal,dy10);
322             tz               = _mm256_mul_pd(fscal,dz10);
323
324             /* Update vectorial force */
325             fix1             = _mm256_add_pd(fix1,tx);
326             fiy1             = _mm256_add_pd(fiy1,ty);
327             fiz1             = _mm256_add_pd(fiz1,tz);
328
329             fjx0             = _mm256_add_pd(fjx0,tx);
330             fjy0             = _mm256_add_pd(fjy0,ty);
331             fjz0             = _mm256_add_pd(fjz0,tz);
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             r20              = _mm256_mul_pd(rsq20,rinv20);
338
339             /* Compute parameters for interactions between i and j atoms */
340             qq20             = _mm256_mul_pd(iq2,jq0);
341
342             /* Calculate table index by multiplying r with table scale and truncate to integer */
343             rt               = _mm256_mul_pd(r20,vftabscale);
344             vfitab           = _mm256_cvttpd_epi32(rt);
345             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
346             vfitab           = _mm_slli_epi32(vfitab,2);
347
348             /* CUBIC SPLINE TABLE ELECTROSTATICS */
349             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
350             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
351             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
352             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
353             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
354             Heps             = _mm256_mul_pd(vfeps,H);
355             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
356             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
357             velec            = _mm256_mul_pd(qq20,VV);
358             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
359             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
360
361             /* Update potential sum for this i atom from the interaction with this j atom. */
362             velecsum         = _mm256_add_pd(velecsum,velec);
363
364             fscal            = felec;
365
366             /* Calculate temporary vectorial force */
367             tx               = _mm256_mul_pd(fscal,dx20);
368             ty               = _mm256_mul_pd(fscal,dy20);
369             tz               = _mm256_mul_pd(fscal,dz20);
370
371             /* Update vectorial force */
372             fix2             = _mm256_add_pd(fix2,tx);
373             fiy2             = _mm256_add_pd(fiy2,ty);
374             fiz2             = _mm256_add_pd(fiz2,tz);
375
376             fjx0             = _mm256_add_pd(fjx0,tx);
377             fjy0             = _mm256_add_pd(fjy0,ty);
378             fjz0             = _mm256_add_pd(fjz0,tz);
379
380             fjptrA             = f+j_coord_offsetA;
381             fjptrB             = f+j_coord_offsetB;
382             fjptrC             = f+j_coord_offsetC;
383             fjptrD             = f+j_coord_offsetD;
384
385             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
386
387             /* Inner loop uses 145 flops */
388         }
389
390         if(jidx<j_index_end)
391         {
392
393             /* Get j neighbor index, and coordinate index */
394             jnrlistA         = jjnr[jidx];
395             jnrlistB         = jjnr[jidx+1];
396             jnrlistC         = jjnr[jidx+2];
397             jnrlistD         = jjnr[jidx+3];
398             /* Sign of each element will be negative for non-real atoms.
399              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
400              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
401              */
402             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
403
404             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
405             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
406             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
407
408             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
409             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
410             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
411             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
412             j_coord_offsetA  = DIM*jnrA;
413             j_coord_offsetB  = DIM*jnrB;
414             j_coord_offsetC  = DIM*jnrC;
415             j_coord_offsetD  = DIM*jnrD;
416
417             /* load j atom coordinates */
418             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
419                                                  x+j_coord_offsetC,x+j_coord_offsetD,
420                                                  &jx0,&jy0,&jz0);
421
422             /* Calculate displacement vector */
423             dx00             = _mm256_sub_pd(ix0,jx0);
424             dy00             = _mm256_sub_pd(iy0,jy0);
425             dz00             = _mm256_sub_pd(iz0,jz0);
426             dx10             = _mm256_sub_pd(ix1,jx0);
427             dy10             = _mm256_sub_pd(iy1,jy0);
428             dz10             = _mm256_sub_pd(iz1,jz0);
429             dx20             = _mm256_sub_pd(ix2,jx0);
430             dy20             = _mm256_sub_pd(iy2,jy0);
431             dz20             = _mm256_sub_pd(iz2,jz0);
432
433             /* Calculate squared distance and things based on it */
434             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
435             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
436             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
437
438             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
439             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
440             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
441
442             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
443
444             /* Load parameters for j particles */
445             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
446                                                                  charge+jnrC+0,charge+jnrD+0);
447             vdwjidx0A        = 2*vdwtype[jnrA+0];
448             vdwjidx0B        = 2*vdwtype[jnrB+0];
449             vdwjidx0C        = 2*vdwtype[jnrC+0];
450             vdwjidx0D        = 2*vdwtype[jnrD+0];
451
452             fjx0             = _mm256_setzero_pd();
453             fjy0             = _mm256_setzero_pd();
454             fjz0             = _mm256_setzero_pd();
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             r00              = _mm256_mul_pd(rsq00,rinv00);
461             r00              = _mm256_andnot_pd(dummy_mask,r00);
462
463             /* Compute parameters for interactions between i and j atoms */
464             qq00             = _mm256_mul_pd(iq0,jq0);
465             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
466                                             vdwioffsetptr0+vdwjidx0B,
467                                             vdwioffsetptr0+vdwjidx0C,
468                                             vdwioffsetptr0+vdwjidx0D,
469                                             &c6_00,&c12_00);
470
471             /* Calculate table index by multiplying r with table scale and truncate to integer */
472             rt               = _mm256_mul_pd(r00,vftabscale);
473             vfitab           = _mm256_cvttpd_epi32(rt);
474             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
475             vfitab           = _mm_slli_epi32(vfitab,2);
476
477             /* CUBIC SPLINE TABLE ELECTROSTATICS */
478             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
479             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
480             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
481             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
482             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
483             Heps             = _mm256_mul_pd(vfeps,H);
484             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
485             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
486             velec            = _mm256_mul_pd(qq00,VV);
487             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
488             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
489
490             /* LENNARD-JONES DISPERSION/REPULSION */
491
492             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
493             vvdw6            = _mm256_mul_pd(c6_00,rinvsix);
494             vvdw12           = _mm256_mul_pd(c12_00,_mm256_mul_pd(rinvsix,rinvsix));
495             vvdw             = _mm256_sub_pd( _mm256_mul_pd(vvdw12,one_twelfth) , _mm256_mul_pd(vvdw6,one_sixth) );
496             fvdw             = _mm256_mul_pd(_mm256_sub_pd(vvdw12,vvdw6),rinvsq00);
497
498             /* Update potential sum for this i atom from the interaction with this j atom. */
499             velec            = _mm256_andnot_pd(dummy_mask,velec);
500             velecsum         = _mm256_add_pd(velecsum,velec);
501             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
502             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
503
504             fscal            = _mm256_add_pd(felec,fvdw);
505
506             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
507
508             /* Calculate temporary vectorial force */
509             tx               = _mm256_mul_pd(fscal,dx00);
510             ty               = _mm256_mul_pd(fscal,dy00);
511             tz               = _mm256_mul_pd(fscal,dz00);
512
513             /* Update vectorial force */
514             fix0             = _mm256_add_pd(fix0,tx);
515             fiy0             = _mm256_add_pd(fiy0,ty);
516             fiz0             = _mm256_add_pd(fiz0,tz);
517
518             fjx0             = _mm256_add_pd(fjx0,tx);
519             fjy0             = _mm256_add_pd(fjy0,ty);
520             fjz0             = _mm256_add_pd(fjz0,tz);
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             r10              = _mm256_mul_pd(rsq10,rinv10);
527             r10              = _mm256_andnot_pd(dummy_mask,r10);
528
529             /* Compute parameters for interactions between i and j atoms */
530             qq10             = _mm256_mul_pd(iq1,jq0);
531
532             /* Calculate table index by multiplying r with table scale and truncate to integer */
533             rt               = _mm256_mul_pd(r10,vftabscale);
534             vfitab           = _mm256_cvttpd_epi32(rt);
535             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
536             vfitab           = _mm_slli_epi32(vfitab,2);
537
538             /* CUBIC SPLINE TABLE ELECTROSTATICS */
539             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
540             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
541             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
542             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
543             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
544             Heps             = _mm256_mul_pd(vfeps,H);
545             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
546             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
547             velec            = _mm256_mul_pd(qq10,VV);
548             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
549             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
550
551             /* Update potential sum for this i atom from the interaction with this j atom. */
552             velec            = _mm256_andnot_pd(dummy_mask,velec);
553             velecsum         = _mm256_add_pd(velecsum,velec);
554
555             fscal            = felec;
556
557             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
558
559             /* Calculate temporary vectorial force */
560             tx               = _mm256_mul_pd(fscal,dx10);
561             ty               = _mm256_mul_pd(fscal,dy10);
562             tz               = _mm256_mul_pd(fscal,dz10);
563
564             /* Update vectorial force */
565             fix1             = _mm256_add_pd(fix1,tx);
566             fiy1             = _mm256_add_pd(fiy1,ty);
567             fiz1             = _mm256_add_pd(fiz1,tz);
568
569             fjx0             = _mm256_add_pd(fjx0,tx);
570             fjy0             = _mm256_add_pd(fjy0,ty);
571             fjz0             = _mm256_add_pd(fjz0,tz);
572
573             /**************************
574              * CALCULATE INTERACTIONS *
575              **************************/
576
577             r20              = _mm256_mul_pd(rsq20,rinv20);
578             r20              = _mm256_andnot_pd(dummy_mask,r20);
579
580             /* Compute parameters for interactions between i and j atoms */
581             qq20             = _mm256_mul_pd(iq2,jq0);
582
583             /* Calculate table index by multiplying r with table scale and truncate to integer */
584             rt               = _mm256_mul_pd(r20,vftabscale);
585             vfitab           = _mm256_cvttpd_epi32(rt);
586             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
587             vfitab           = _mm_slli_epi32(vfitab,2);
588
589             /* CUBIC SPLINE TABLE ELECTROSTATICS */
590             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
591             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
592             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
593             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
594             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
595             Heps             = _mm256_mul_pd(vfeps,H);
596             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
597             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
598             velec            = _mm256_mul_pd(qq20,VV);
599             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
600             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
601
602             /* Update potential sum for this i atom from the interaction with this j atom. */
603             velec            = _mm256_andnot_pd(dummy_mask,velec);
604             velecsum         = _mm256_add_pd(velecsum,velec);
605
606             fscal            = felec;
607
608             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
609
610             /* Calculate temporary vectorial force */
611             tx               = _mm256_mul_pd(fscal,dx20);
612             ty               = _mm256_mul_pd(fscal,dy20);
613             tz               = _mm256_mul_pd(fscal,dz20);
614
615             /* Update vectorial force */
616             fix2             = _mm256_add_pd(fix2,tx);
617             fiy2             = _mm256_add_pd(fiy2,ty);
618             fiz2             = _mm256_add_pd(fiz2,tz);
619
620             fjx0             = _mm256_add_pd(fjx0,tx);
621             fjy0             = _mm256_add_pd(fjy0,ty);
622             fjz0             = _mm256_add_pd(fjz0,tz);
623
624             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
625             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
626             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
627             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
628
629             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
630
631             /* Inner loop uses 148 flops */
632         }
633
634         /* End of innermost loop */
635
636         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
637                                                  f+i_coord_offset,fshift+i_shift_offset);
638
639         ggid                        = gid[iidx];
640         /* Update potential energies */
641         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
642         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
643
644         /* Increment number of inner iterations */
645         inneriter                  += j_index_end - j_index_start;
646
647         /* Outer loop uses 20 flops */
648     }
649
650     /* Increment number of outer iterations */
651     outeriter        += nri;
652
653     /* Update outer/inner flops */
654
655     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*148);
656 }
657 /*
658  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
659  * Electrostatics interaction: CubicSplineTable
660  * VdW interaction:            LennardJones
661  * Geometry:                   Water3-Particle
662  * Calculate force/pot:        Force
663  */
664 void
665 nb_kernel_ElecCSTab_VdwLJ_GeomW3P1_F_avx_256_double
666                     (t_nblist * gmx_restrict                nlist,
667                      rvec * gmx_restrict                    xx,
668                      rvec * gmx_restrict                    ff,
669                      t_forcerec * gmx_restrict              fr,
670                      t_mdatoms * gmx_restrict               mdatoms,
671                      nb_kernel_data_t * gmx_restrict        kernel_data,
672                      t_nrnb * gmx_restrict                  nrnb)
673 {
674     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
675      * just 0 for non-waters.
676      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
677      * jnr indices corresponding to data put in the four positions in the SIMD register.
678      */
679     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
680     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
681     int              jnrA,jnrB,jnrC,jnrD;
682     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
683     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
684     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
685     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
686     real             rcutoff_scalar;
687     real             *shiftvec,*fshift,*x,*f;
688     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
689     real             scratch[4*DIM];
690     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
691     real *           vdwioffsetptr0;
692     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
693     real *           vdwioffsetptr1;
694     __m256d          ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
695     real *           vdwioffsetptr2;
696     __m256d          ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
697     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
698     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
699     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
700     __m256d          dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
701     __m256d          dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
702     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
703     real             *charge;
704     int              nvdwtype;
705     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
706     int              *vdwtype;
707     real             *vdwparam;
708     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
709     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
710     __m128i          vfitab;
711     __m128i          ifour       = _mm_set1_epi32(4);
712     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
713     real             *vftab;
714     __m256d          dummy_mask,cutoff_mask;
715     __m128           tmpmask0,tmpmask1;
716     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
717     __m256d          one     = _mm256_set1_pd(1.0);
718     __m256d          two     = _mm256_set1_pd(2.0);
719     x                = xx[0];
720     f                = ff[0];
721
722     nri              = nlist->nri;
723     iinr             = nlist->iinr;
724     jindex           = nlist->jindex;
725     jjnr             = nlist->jjnr;
726     shiftidx         = nlist->shift;
727     gid              = nlist->gid;
728     shiftvec         = fr->shift_vec[0];
729     fshift           = fr->fshift[0];
730     facel            = _mm256_set1_pd(fr->epsfac);
731     charge           = mdatoms->chargeA;
732     nvdwtype         = fr->ntype;
733     vdwparam         = fr->nbfp;
734     vdwtype          = mdatoms->typeA;
735
736     vftab            = kernel_data->table_elec->data;
737     vftabscale       = _mm256_set1_pd(kernel_data->table_elec->scale);
738
739     /* Setup water-specific parameters */
740     inr              = nlist->iinr[0];
741     iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
742     iq1              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+1]));
743     iq2              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+2]));
744     vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
745
746     /* Avoid stupid compiler warnings */
747     jnrA = jnrB = jnrC = jnrD = 0;
748     j_coord_offsetA = 0;
749     j_coord_offsetB = 0;
750     j_coord_offsetC = 0;
751     j_coord_offsetD = 0;
752
753     outeriter        = 0;
754     inneriter        = 0;
755
756     for(iidx=0;iidx<4*DIM;iidx++)
757     {
758         scratch[iidx] = 0.0;
759     }
760
761     /* Start outer loop over neighborlists */
762     for(iidx=0; iidx<nri; iidx++)
763     {
764         /* Load shift vector for this list */
765         i_shift_offset   = DIM*shiftidx[iidx];
766
767         /* Load limits for loop over neighbors */
768         j_index_start    = jindex[iidx];
769         j_index_end      = jindex[iidx+1];
770
771         /* Get outer coordinate index */
772         inr              = iinr[iidx];
773         i_coord_offset   = DIM*inr;
774
775         /* Load i particle coords and add shift vector */
776         gmx_mm256_load_shift_and_3rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,
777                                                     &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
778
779         fix0             = _mm256_setzero_pd();
780         fiy0             = _mm256_setzero_pd();
781         fiz0             = _mm256_setzero_pd();
782         fix1             = _mm256_setzero_pd();
783         fiy1             = _mm256_setzero_pd();
784         fiz1             = _mm256_setzero_pd();
785         fix2             = _mm256_setzero_pd();
786         fiy2             = _mm256_setzero_pd();
787         fiz2             = _mm256_setzero_pd();
788
789         /* Start inner kernel loop */
790         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
791         {
792
793             /* Get j neighbor index, and coordinate index */
794             jnrA             = jjnr[jidx];
795             jnrB             = jjnr[jidx+1];
796             jnrC             = jjnr[jidx+2];
797             jnrD             = jjnr[jidx+3];
798             j_coord_offsetA  = DIM*jnrA;
799             j_coord_offsetB  = DIM*jnrB;
800             j_coord_offsetC  = DIM*jnrC;
801             j_coord_offsetD  = DIM*jnrD;
802
803             /* load j atom coordinates */
804             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
805                                                  x+j_coord_offsetC,x+j_coord_offsetD,
806                                                  &jx0,&jy0,&jz0);
807
808             /* Calculate displacement vector */
809             dx00             = _mm256_sub_pd(ix0,jx0);
810             dy00             = _mm256_sub_pd(iy0,jy0);
811             dz00             = _mm256_sub_pd(iz0,jz0);
812             dx10             = _mm256_sub_pd(ix1,jx0);
813             dy10             = _mm256_sub_pd(iy1,jy0);
814             dz10             = _mm256_sub_pd(iz1,jz0);
815             dx20             = _mm256_sub_pd(ix2,jx0);
816             dy20             = _mm256_sub_pd(iy2,jy0);
817             dz20             = _mm256_sub_pd(iz2,jz0);
818
819             /* Calculate squared distance and things based on it */
820             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
821             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
822             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
823
824             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
825             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
826             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
827
828             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
829
830             /* Load parameters for j particles */
831             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
832                                                                  charge+jnrC+0,charge+jnrD+0);
833             vdwjidx0A        = 2*vdwtype[jnrA+0];
834             vdwjidx0B        = 2*vdwtype[jnrB+0];
835             vdwjidx0C        = 2*vdwtype[jnrC+0];
836             vdwjidx0D        = 2*vdwtype[jnrD+0];
837
838             fjx0             = _mm256_setzero_pd();
839             fjy0             = _mm256_setzero_pd();
840             fjz0             = _mm256_setzero_pd();
841
842             /**************************
843              * CALCULATE INTERACTIONS *
844              **************************/
845
846             r00              = _mm256_mul_pd(rsq00,rinv00);
847
848             /* Compute parameters for interactions between i and j atoms */
849             qq00             = _mm256_mul_pd(iq0,jq0);
850             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
851                                             vdwioffsetptr0+vdwjidx0B,
852                                             vdwioffsetptr0+vdwjidx0C,
853                                             vdwioffsetptr0+vdwjidx0D,
854                                             &c6_00,&c12_00);
855
856             /* Calculate table index by multiplying r with table scale and truncate to integer */
857             rt               = _mm256_mul_pd(r00,vftabscale);
858             vfitab           = _mm256_cvttpd_epi32(rt);
859             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
860             vfitab           = _mm_slli_epi32(vfitab,2);
861
862             /* CUBIC SPLINE TABLE ELECTROSTATICS */
863             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
864             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
865             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
866             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
867             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
868             Heps             = _mm256_mul_pd(vfeps,H);
869             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
870             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
871             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
872
873             /* LENNARD-JONES DISPERSION/REPULSION */
874
875             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
876             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
877
878             fscal            = _mm256_add_pd(felec,fvdw);
879
880             /* Calculate temporary vectorial force */
881             tx               = _mm256_mul_pd(fscal,dx00);
882             ty               = _mm256_mul_pd(fscal,dy00);
883             tz               = _mm256_mul_pd(fscal,dz00);
884
885             /* Update vectorial force */
886             fix0             = _mm256_add_pd(fix0,tx);
887             fiy0             = _mm256_add_pd(fiy0,ty);
888             fiz0             = _mm256_add_pd(fiz0,tz);
889
890             fjx0             = _mm256_add_pd(fjx0,tx);
891             fjy0             = _mm256_add_pd(fjy0,ty);
892             fjz0             = _mm256_add_pd(fjz0,tz);
893
894             /**************************
895              * CALCULATE INTERACTIONS *
896              **************************/
897
898             r10              = _mm256_mul_pd(rsq10,rinv10);
899
900             /* Compute parameters for interactions between i and j atoms */
901             qq10             = _mm256_mul_pd(iq1,jq0);
902
903             /* Calculate table index by multiplying r with table scale and truncate to integer */
904             rt               = _mm256_mul_pd(r10,vftabscale);
905             vfitab           = _mm256_cvttpd_epi32(rt);
906             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
907             vfitab           = _mm_slli_epi32(vfitab,2);
908
909             /* CUBIC SPLINE TABLE ELECTROSTATICS */
910             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
911             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
912             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
913             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
914             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
915             Heps             = _mm256_mul_pd(vfeps,H);
916             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
917             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
918             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
919
920             fscal            = felec;
921
922             /* Calculate temporary vectorial force */
923             tx               = _mm256_mul_pd(fscal,dx10);
924             ty               = _mm256_mul_pd(fscal,dy10);
925             tz               = _mm256_mul_pd(fscal,dz10);
926
927             /* Update vectorial force */
928             fix1             = _mm256_add_pd(fix1,tx);
929             fiy1             = _mm256_add_pd(fiy1,ty);
930             fiz1             = _mm256_add_pd(fiz1,tz);
931
932             fjx0             = _mm256_add_pd(fjx0,tx);
933             fjy0             = _mm256_add_pd(fjy0,ty);
934             fjz0             = _mm256_add_pd(fjz0,tz);
935
936             /**************************
937              * CALCULATE INTERACTIONS *
938              **************************/
939
940             r20              = _mm256_mul_pd(rsq20,rinv20);
941
942             /* Compute parameters for interactions between i and j atoms */
943             qq20             = _mm256_mul_pd(iq2,jq0);
944
945             /* Calculate table index by multiplying r with table scale and truncate to integer */
946             rt               = _mm256_mul_pd(r20,vftabscale);
947             vfitab           = _mm256_cvttpd_epi32(rt);
948             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
949             vfitab           = _mm_slli_epi32(vfitab,2);
950
951             /* CUBIC SPLINE TABLE ELECTROSTATICS */
952             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
953             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
954             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
955             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
956             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
957             Heps             = _mm256_mul_pd(vfeps,H);
958             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
959             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
960             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
961
962             fscal            = felec;
963
964             /* Calculate temporary vectorial force */
965             tx               = _mm256_mul_pd(fscal,dx20);
966             ty               = _mm256_mul_pd(fscal,dy20);
967             tz               = _mm256_mul_pd(fscal,dz20);
968
969             /* Update vectorial force */
970             fix2             = _mm256_add_pd(fix2,tx);
971             fiy2             = _mm256_add_pd(fiy2,ty);
972             fiz2             = _mm256_add_pd(fiz2,tz);
973
974             fjx0             = _mm256_add_pd(fjx0,tx);
975             fjy0             = _mm256_add_pd(fjy0,ty);
976             fjz0             = _mm256_add_pd(fjz0,tz);
977
978             fjptrA             = f+j_coord_offsetA;
979             fjptrB             = f+j_coord_offsetB;
980             fjptrC             = f+j_coord_offsetC;
981             fjptrD             = f+j_coord_offsetD;
982
983             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
984
985             /* Inner loop uses 128 flops */
986         }
987
988         if(jidx<j_index_end)
989         {
990
991             /* Get j neighbor index, and coordinate index */
992             jnrlistA         = jjnr[jidx];
993             jnrlistB         = jjnr[jidx+1];
994             jnrlistC         = jjnr[jidx+2];
995             jnrlistD         = jjnr[jidx+3];
996             /* Sign of each element will be negative for non-real atoms.
997              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
998              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
999              */
1000             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1001
1002             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
1003             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
1004             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
1005
1006             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
1007             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
1008             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
1009             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
1010             j_coord_offsetA  = DIM*jnrA;
1011             j_coord_offsetB  = DIM*jnrB;
1012             j_coord_offsetC  = DIM*jnrC;
1013             j_coord_offsetD  = DIM*jnrD;
1014
1015             /* load j atom coordinates */
1016             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
1017                                                  x+j_coord_offsetC,x+j_coord_offsetD,
1018                                                  &jx0,&jy0,&jz0);
1019
1020             /* Calculate displacement vector */
1021             dx00             = _mm256_sub_pd(ix0,jx0);
1022             dy00             = _mm256_sub_pd(iy0,jy0);
1023             dz00             = _mm256_sub_pd(iz0,jz0);
1024             dx10             = _mm256_sub_pd(ix1,jx0);
1025             dy10             = _mm256_sub_pd(iy1,jy0);
1026             dz10             = _mm256_sub_pd(iz1,jz0);
1027             dx20             = _mm256_sub_pd(ix2,jx0);
1028             dy20             = _mm256_sub_pd(iy2,jy0);
1029             dz20             = _mm256_sub_pd(iz2,jz0);
1030
1031             /* Calculate squared distance and things based on it */
1032             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
1033             rsq10            = gmx_mm256_calc_rsq_pd(dx10,dy10,dz10);
1034             rsq20            = gmx_mm256_calc_rsq_pd(dx20,dy20,dz20);
1035
1036             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
1037             rinv10           = gmx_mm256_invsqrt_pd(rsq10);
1038             rinv20           = gmx_mm256_invsqrt_pd(rsq20);
1039
1040             rinvsq00         = _mm256_mul_pd(rinv00,rinv00);
1041
1042             /* Load parameters for j particles */
1043             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
1044                                                                  charge+jnrC+0,charge+jnrD+0);
1045             vdwjidx0A        = 2*vdwtype[jnrA+0];
1046             vdwjidx0B        = 2*vdwtype[jnrB+0];
1047             vdwjidx0C        = 2*vdwtype[jnrC+0];
1048             vdwjidx0D        = 2*vdwtype[jnrD+0];
1049
1050             fjx0             = _mm256_setzero_pd();
1051             fjy0             = _mm256_setzero_pd();
1052             fjz0             = _mm256_setzero_pd();
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             r00              = _mm256_mul_pd(rsq00,rinv00);
1059             r00              = _mm256_andnot_pd(dummy_mask,r00);
1060
1061             /* Compute parameters for interactions between i and j atoms */
1062             qq00             = _mm256_mul_pd(iq0,jq0);
1063             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
1064                                             vdwioffsetptr0+vdwjidx0B,
1065                                             vdwioffsetptr0+vdwjidx0C,
1066                                             vdwioffsetptr0+vdwjidx0D,
1067                                             &c6_00,&c12_00);
1068
1069             /* Calculate table index by multiplying r with table scale and truncate to integer */
1070             rt               = _mm256_mul_pd(r00,vftabscale);
1071             vfitab           = _mm256_cvttpd_epi32(rt);
1072             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1073             vfitab           = _mm_slli_epi32(vfitab,2);
1074
1075             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1076             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1077             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1078             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1079             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1080             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1081             Heps             = _mm256_mul_pd(vfeps,H);
1082             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1083             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1084             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
1085
1086             /* LENNARD-JONES DISPERSION/REPULSION */
1087
1088             rinvsix          = _mm256_mul_pd(_mm256_mul_pd(rinvsq00,rinvsq00),rinvsq00);
1089             fvdw             = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(c12_00,rinvsix),c6_00),_mm256_mul_pd(rinvsix,rinvsq00));
1090
1091             fscal            = _mm256_add_pd(felec,fvdw);
1092
1093             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = _mm256_mul_pd(fscal,dx00);
1097             ty               = _mm256_mul_pd(fscal,dy00);
1098             tz               = _mm256_mul_pd(fscal,dz00);
1099
1100             /* Update vectorial force */
1101             fix0             = _mm256_add_pd(fix0,tx);
1102             fiy0             = _mm256_add_pd(fiy0,ty);
1103             fiz0             = _mm256_add_pd(fiz0,tz);
1104
1105             fjx0             = _mm256_add_pd(fjx0,tx);
1106             fjy0             = _mm256_add_pd(fjy0,ty);
1107             fjz0             = _mm256_add_pd(fjz0,tz);
1108
1109             /**************************
1110              * CALCULATE INTERACTIONS *
1111              **************************/
1112
1113             r10              = _mm256_mul_pd(rsq10,rinv10);
1114             r10              = _mm256_andnot_pd(dummy_mask,r10);
1115
1116             /* Compute parameters for interactions between i and j atoms */
1117             qq10             = _mm256_mul_pd(iq1,jq0);
1118
1119             /* Calculate table index by multiplying r with table scale and truncate to integer */
1120             rt               = _mm256_mul_pd(r10,vftabscale);
1121             vfitab           = _mm256_cvttpd_epi32(rt);
1122             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1123             vfitab           = _mm_slli_epi32(vfitab,2);
1124
1125             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1126             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1127             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1128             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1129             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1130             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1131             Heps             = _mm256_mul_pd(vfeps,H);
1132             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1133             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1134             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq10,FF),_mm256_mul_pd(vftabscale,rinv10)));
1135
1136             fscal            = felec;
1137
1138             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1139
1140             /* Calculate temporary vectorial force */
1141             tx               = _mm256_mul_pd(fscal,dx10);
1142             ty               = _mm256_mul_pd(fscal,dy10);
1143             tz               = _mm256_mul_pd(fscal,dz10);
1144
1145             /* Update vectorial force */
1146             fix1             = _mm256_add_pd(fix1,tx);
1147             fiy1             = _mm256_add_pd(fiy1,ty);
1148             fiz1             = _mm256_add_pd(fiz1,tz);
1149
1150             fjx0             = _mm256_add_pd(fjx0,tx);
1151             fjy0             = _mm256_add_pd(fjy0,ty);
1152             fjz0             = _mm256_add_pd(fjz0,tz);
1153
1154             /**************************
1155              * CALCULATE INTERACTIONS *
1156              **************************/
1157
1158             r20              = _mm256_mul_pd(rsq20,rinv20);
1159             r20              = _mm256_andnot_pd(dummy_mask,r20);
1160
1161             /* Compute parameters for interactions between i and j atoms */
1162             qq20             = _mm256_mul_pd(iq2,jq0);
1163
1164             /* Calculate table index by multiplying r with table scale and truncate to integer */
1165             rt               = _mm256_mul_pd(r20,vftabscale);
1166             vfitab           = _mm256_cvttpd_epi32(rt);
1167             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
1168             vfitab           = _mm_slli_epi32(vfitab,2);
1169
1170             /* CUBIC SPLINE TABLE ELECTROSTATICS */
1171             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
1172             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
1173             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
1174             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
1175             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
1176             Heps             = _mm256_mul_pd(vfeps,H);
1177             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
1178             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
1179             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq20,FF),_mm256_mul_pd(vftabscale,rinv20)));
1180
1181             fscal            = felec;
1182
1183             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = _mm256_mul_pd(fscal,dx20);
1187             ty               = _mm256_mul_pd(fscal,dy20);
1188             tz               = _mm256_mul_pd(fscal,dz20);
1189
1190             /* Update vectorial force */
1191             fix2             = _mm256_add_pd(fix2,tx);
1192             fiy2             = _mm256_add_pd(fiy2,ty);
1193             fiz2             = _mm256_add_pd(fiz2,tz);
1194
1195             fjx0             = _mm256_add_pd(fjx0,tx);
1196             fjy0             = _mm256_add_pd(fjy0,ty);
1197             fjz0             = _mm256_add_pd(fjz0,tz);
1198
1199             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1200             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1201             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1202             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1203
1204             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1205
1206             /* Inner loop uses 131 flops */
1207         }
1208
1209         /* End of innermost loop */
1210
1211         gmx_mm256_update_iforce_3atom_swizzle_pd(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1212                                                  f+i_coord_offset,fshift+i_shift_offset);
1213
1214         /* Increment number of inner iterations */
1215         inneriter                  += j_index_end - j_index_start;
1216
1217         /* Outer loop uses 18 flops */
1218     }
1219
1220     /* Increment number of outer iterations */
1221     outeriter        += nri;
1222
1223     /* Update outer/inner flops */
1224
1225     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*131);
1226 }