2f277f714ca757e3aa189e02112625496ec93d8e
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: CubicSplineTable
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
82     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
83     __m128i          vfitab;
84     __m128i          ifour       = _mm_set1_epi32(4);
85     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
86     real             *vftab;
87     __m256d          dummy_mask,cutoff_mask;
88     __m128           tmpmask0,tmpmask1;
89     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
90     __m256d          one     = _mm256_set1_pd(1.0);
91     __m256d          two     = _mm256_set1_pd(2.0);
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = _mm256_set1_pd(fr->epsfac);
104     charge           = mdatoms->chargeA;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     vftab            = kernel_data->table_elec_vdw->data;
110     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
111
112     /* Avoid stupid compiler warnings */
113     jnrA = jnrB = jnrC = jnrD = 0;
114     j_coord_offsetA = 0;
115     j_coord_offsetB = 0;
116     j_coord_offsetC = 0;
117     j_coord_offsetD = 0;
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     for(iidx=0;iidx<4*DIM;iidx++)
123     {
124         scratch[iidx] = 0.0;
125     }
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
143
144         fix0             = _mm256_setzero_pd();
145         fiy0             = _mm256_setzero_pd();
146         fiz0             = _mm256_setzero_pd();
147
148         /* Load parameters for i particles */
149         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
150         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
151
152         /* Reset potential sums */
153         velecsum         = _mm256_setzero_pd();
154         vvdwsum          = _mm256_setzero_pd();
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
158         {
159
160             /* Get j neighbor index, and coordinate index */
161             jnrA             = jjnr[jidx];
162             jnrB             = jjnr[jidx+1];
163             jnrC             = jjnr[jidx+2];
164             jnrD             = jjnr[jidx+3];
165             j_coord_offsetA  = DIM*jnrA;
166             j_coord_offsetB  = DIM*jnrB;
167             j_coord_offsetC  = DIM*jnrC;
168             j_coord_offsetD  = DIM*jnrD;
169
170             /* load j atom coordinates */
171             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
172                                                  x+j_coord_offsetC,x+j_coord_offsetD,
173                                                  &jx0,&jy0,&jz0);
174
175             /* Calculate displacement vector */
176             dx00             = _mm256_sub_pd(ix0,jx0);
177             dy00             = _mm256_sub_pd(iy0,jy0);
178             dz00             = _mm256_sub_pd(iz0,jz0);
179
180             /* Calculate squared distance and things based on it */
181             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
182
183             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
184
185             /* Load parameters for j particles */
186             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
187                                                                  charge+jnrC+0,charge+jnrD+0);
188             vdwjidx0A        = 2*vdwtype[jnrA+0];
189             vdwjidx0B        = 2*vdwtype[jnrB+0];
190             vdwjidx0C        = 2*vdwtype[jnrC+0];
191             vdwjidx0D        = 2*vdwtype[jnrD+0];
192
193             /**************************
194              * CALCULATE INTERACTIONS *
195              **************************/
196
197             r00              = _mm256_mul_pd(rsq00,rinv00);
198
199             /* Compute parameters for interactions between i and j atoms */
200             qq00             = _mm256_mul_pd(iq0,jq0);
201             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
202                                             vdwioffsetptr0+vdwjidx0B,
203                                             vdwioffsetptr0+vdwjidx0C,
204                                             vdwioffsetptr0+vdwjidx0D,
205                                             &c6_00,&c12_00);
206
207             /* Calculate table index by multiplying r with table scale and truncate to integer */
208             rt               = _mm256_mul_pd(r00,vftabscale);
209             vfitab           = _mm256_cvttpd_epi32(rt);
210             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
211             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
212
213             /* CUBIC SPLINE TABLE ELECTROSTATICS */
214             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
215             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
216             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
217             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
218             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
219             Heps             = _mm256_mul_pd(vfeps,H);
220             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
221             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
222             velec            = _mm256_mul_pd(qq00,VV);
223             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
224             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
225
226             /* CUBIC SPLINE TABLE DISPERSION */
227             vfitab           = _mm_add_epi32(vfitab,ifour);
228             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
229             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
230             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
231             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
232             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
233             Heps             = _mm256_mul_pd(vfeps,H);
234             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
235             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
236             vvdw6            = _mm256_mul_pd(c6_00,VV);
237             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
238             fvdw6            = _mm256_mul_pd(c6_00,FF);
239
240             /* CUBIC SPLINE TABLE REPULSION */
241             vfitab           = _mm_add_epi32(vfitab,ifour);
242             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
243             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
244             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
245             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
246             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
247             Heps             = _mm256_mul_pd(vfeps,H);
248             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
249             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
250             vvdw12           = _mm256_mul_pd(c12_00,VV);
251             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
252             fvdw12           = _mm256_mul_pd(c12_00,FF);
253             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
254             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
255
256             /* Update potential sum for this i atom from the interaction with this j atom. */
257             velecsum         = _mm256_add_pd(velecsum,velec);
258             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
259
260             fscal            = _mm256_add_pd(felec,fvdw);
261
262             /* Calculate temporary vectorial force */
263             tx               = _mm256_mul_pd(fscal,dx00);
264             ty               = _mm256_mul_pd(fscal,dy00);
265             tz               = _mm256_mul_pd(fscal,dz00);
266
267             /* Update vectorial force */
268             fix0             = _mm256_add_pd(fix0,tx);
269             fiy0             = _mm256_add_pd(fiy0,ty);
270             fiz0             = _mm256_add_pd(fiz0,tz);
271
272             fjptrA             = f+j_coord_offsetA;
273             fjptrB             = f+j_coord_offsetB;
274             fjptrC             = f+j_coord_offsetC;
275             fjptrD             = f+j_coord_offsetD;
276             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
277
278             /* Inner loop uses 73 flops */
279         }
280
281         if(jidx<j_index_end)
282         {
283
284             /* Get j neighbor index, and coordinate index */
285             jnrlistA         = jjnr[jidx];
286             jnrlistB         = jjnr[jidx+1];
287             jnrlistC         = jjnr[jidx+2];
288             jnrlistD         = jjnr[jidx+3];
289             /* Sign of each element will be negative for non-real atoms.
290              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
291              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
292              */
293             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
294
295             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
296             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
297             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
298
299             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
300             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
301             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
302             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
303             j_coord_offsetA  = DIM*jnrA;
304             j_coord_offsetB  = DIM*jnrB;
305             j_coord_offsetC  = DIM*jnrC;
306             j_coord_offsetD  = DIM*jnrD;
307
308             /* load j atom coordinates */
309             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
310                                                  x+j_coord_offsetC,x+j_coord_offsetD,
311                                                  &jx0,&jy0,&jz0);
312
313             /* Calculate displacement vector */
314             dx00             = _mm256_sub_pd(ix0,jx0);
315             dy00             = _mm256_sub_pd(iy0,jy0);
316             dz00             = _mm256_sub_pd(iz0,jz0);
317
318             /* Calculate squared distance and things based on it */
319             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
320
321             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
322
323             /* Load parameters for j particles */
324             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
325                                                                  charge+jnrC+0,charge+jnrD+0);
326             vdwjidx0A        = 2*vdwtype[jnrA+0];
327             vdwjidx0B        = 2*vdwtype[jnrB+0];
328             vdwjidx0C        = 2*vdwtype[jnrC+0];
329             vdwjidx0D        = 2*vdwtype[jnrD+0];
330
331             /**************************
332              * CALCULATE INTERACTIONS *
333              **************************/
334
335             r00              = _mm256_mul_pd(rsq00,rinv00);
336             r00              = _mm256_andnot_pd(dummy_mask,r00);
337
338             /* Compute parameters for interactions between i and j atoms */
339             qq00             = _mm256_mul_pd(iq0,jq0);
340             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
341                                             vdwioffsetptr0+vdwjidx0B,
342                                             vdwioffsetptr0+vdwjidx0C,
343                                             vdwioffsetptr0+vdwjidx0D,
344                                             &c6_00,&c12_00);
345
346             /* Calculate table index by multiplying r with table scale and truncate to integer */
347             rt               = _mm256_mul_pd(r00,vftabscale);
348             vfitab           = _mm256_cvttpd_epi32(rt);
349             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
350             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
351
352             /* CUBIC SPLINE TABLE ELECTROSTATICS */
353             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
354             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
355             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
356             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
357             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
358             Heps             = _mm256_mul_pd(vfeps,H);
359             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
360             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
361             velec            = _mm256_mul_pd(qq00,VV);
362             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
363             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
364
365             /* CUBIC SPLINE TABLE DISPERSION */
366             vfitab           = _mm_add_epi32(vfitab,ifour);
367             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
368             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
369             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
370             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
371             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
372             Heps             = _mm256_mul_pd(vfeps,H);
373             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
374             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
375             vvdw6            = _mm256_mul_pd(c6_00,VV);
376             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
377             fvdw6            = _mm256_mul_pd(c6_00,FF);
378
379             /* CUBIC SPLINE TABLE REPULSION */
380             vfitab           = _mm_add_epi32(vfitab,ifour);
381             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
382             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
383             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
384             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
385             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
386             Heps             = _mm256_mul_pd(vfeps,H);
387             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
388             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
389             vvdw12           = _mm256_mul_pd(c12_00,VV);
390             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
391             fvdw12           = _mm256_mul_pd(c12_00,FF);
392             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
393             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
394
395             /* Update potential sum for this i atom from the interaction with this j atom. */
396             velec            = _mm256_andnot_pd(dummy_mask,velec);
397             velecsum         = _mm256_add_pd(velecsum,velec);
398             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
399             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
400
401             fscal            = _mm256_add_pd(felec,fvdw);
402
403             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
404
405             /* Calculate temporary vectorial force */
406             tx               = _mm256_mul_pd(fscal,dx00);
407             ty               = _mm256_mul_pd(fscal,dy00);
408             tz               = _mm256_mul_pd(fscal,dz00);
409
410             /* Update vectorial force */
411             fix0             = _mm256_add_pd(fix0,tx);
412             fiy0             = _mm256_add_pd(fiy0,ty);
413             fiz0             = _mm256_add_pd(fiz0,tz);
414
415             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
416             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
417             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
418             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
419             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
420
421             /* Inner loop uses 74 flops */
422         }
423
424         /* End of innermost loop */
425
426         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
427                                                  f+i_coord_offset,fshift+i_shift_offset);
428
429         ggid                        = gid[iidx];
430         /* Update potential energies */
431         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
432         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
433
434         /* Increment number of inner iterations */
435         inneriter                  += j_index_end - j_index_start;
436
437         /* Outer loop uses 9 flops */
438     }
439
440     /* Increment number of outer iterations */
441     outeriter        += nri;
442
443     /* Update outer/inner flops */
444
445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*74);
446 }
447 /*
448  * Gromacs nonbonded kernel:   nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
449  * Electrostatics interaction: CubicSplineTable
450  * VdW interaction:            CubicSplineTable
451  * Geometry:                   Particle-Particle
452  * Calculate force/pot:        Force
453  */
454 void
455 nb_kernel_ElecCSTab_VdwCSTab_GeomP1P1_F_avx_256_double
456                     (t_nblist * gmx_restrict                nlist,
457                      rvec * gmx_restrict                    xx,
458                      rvec * gmx_restrict                    ff,
459                      t_forcerec * gmx_restrict              fr,
460                      t_mdatoms * gmx_restrict               mdatoms,
461                      nb_kernel_data_t * gmx_restrict        kernel_data,
462                      t_nrnb * gmx_restrict                  nrnb)
463 {
464     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
465      * just 0 for non-waters.
466      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
467      * jnr indices corresponding to data put in the four positions in the SIMD register.
468      */
469     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
470     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
471     int              jnrA,jnrB,jnrC,jnrD;
472     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
473     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
474     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
475     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
476     real             rcutoff_scalar;
477     real             *shiftvec,*fshift,*x,*f;
478     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
479     real             scratch[4*DIM];
480     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
481     real *           vdwioffsetptr0;
482     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
483     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
484     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
485     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
486     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
487     real             *charge;
488     int              nvdwtype;
489     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
490     int              *vdwtype;
491     real             *vdwparam;
492     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
493     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
494     __m128i          vfitab;
495     __m128i          ifour       = _mm_set1_epi32(4);
496     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
497     real             *vftab;
498     __m256d          dummy_mask,cutoff_mask;
499     __m128           tmpmask0,tmpmask1;
500     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
501     __m256d          one     = _mm256_set1_pd(1.0);
502     __m256d          two     = _mm256_set1_pd(2.0);
503     x                = xx[0];
504     f                = ff[0];
505
506     nri              = nlist->nri;
507     iinr             = nlist->iinr;
508     jindex           = nlist->jindex;
509     jjnr             = nlist->jjnr;
510     shiftidx         = nlist->shift;
511     gid              = nlist->gid;
512     shiftvec         = fr->shift_vec[0];
513     fshift           = fr->fshift[0];
514     facel            = _mm256_set1_pd(fr->epsfac);
515     charge           = mdatoms->chargeA;
516     nvdwtype         = fr->ntype;
517     vdwparam         = fr->nbfp;
518     vdwtype          = mdatoms->typeA;
519
520     vftab            = kernel_data->table_elec_vdw->data;
521     vftabscale       = _mm256_set1_pd(kernel_data->table_elec_vdw->scale);
522
523     /* Avoid stupid compiler warnings */
524     jnrA = jnrB = jnrC = jnrD = 0;
525     j_coord_offsetA = 0;
526     j_coord_offsetB = 0;
527     j_coord_offsetC = 0;
528     j_coord_offsetD = 0;
529
530     outeriter        = 0;
531     inneriter        = 0;
532
533     for(iidx=0;iidx<4*DIM;iidx++)
534     {
535         scratch[iidx] = 0.0;
536     }
537
538     /* Start outer loop over neighborlists */
539     for(iidx=0; iidx<nri; iidx++)
540     {
541         /* Load shift vector for this list */
542         i_shift_offset   = DIM*shiftidx[iidx];
543
544         /* Load limits for loop over neighbors */
545         j_index_start    = jindex[iidx];
546         j_index_end      = jindex[iidx+1];
547
548         /* Get outer coordinate index */
549         inr              = iinr[iidx];
550         i_coord_offset   = DIM*inr;
551
552         /* Load i particle coords and add shift vector */
553         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
554
555         fix0             = _mm256_setzero_pd();
556         fiy0             = _mm256_setzero_pd();
557         fiz0             = _mm256_setzero_pd();
558
559         /* Load parameters for i particles */
560         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
561         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
562
563         /* Start inner kernel loop */
564         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
565         {
566
567             /* Get j neighbor index, and coordinate index */
568             jnrA             = jjnr[jidx];
569             jnrB             = jjnr[jidx+1];
570             jnrC             = jjnr[jidx+2];
571             jnrD             = jjnr[jidx+3];
572             j_coord_offsetA  = DIM*jnrA;
573             j_coord_offsetB  = DIM*jnrB;
574             j_coord_offsetC  = DIM*jnrC;
575             j_coord_offsetD  = DIM*jnrD;
576
577             /* load j atom coordinates */
578             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
579                                                  x+j_coord_offsetC,x+j_coord_offsetD,
580                                                  &jx0,&jy0,&jz0);
581
582             /* Calculate displacement vector */
583             dx00             = _mm256_sub_pd(ix0,jx0);
584             dy00             = _mm256_sub_pd(iy0,jy0);
585             dz00             = _mm256_sub_pd(iz0,jz0);
586
587             /* Calculate squared distance and things based on it */
588             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
589
590             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
591
592             /* Load parameters for j particles */
593             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
594                                                                  charge+jnrC+0,charge+jnrD+0);
595             vdwjidx0A        = 2*vdwtype[jnrA+0];
596             vdwjidx0B        = 2*vdwtype[jnrB+0];
597             vdwjidx0C        = 2*vdwtype[jnrC+0];
598             vdwjidx0D        = 2*vdwtype[jnrD+0];
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r00              = _mm256_mul_pd(rsq00,rinv00);
605
606             /* Compute parameters for interactions between i and j atoms */
607             qq00             = _mm256_mul_pd(iq0,jq0);
608             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
609                                             vdwioffsetptr0+vdwjidx0B,
610                                             vdwioffsetptr0+vdwjidx0C,
611                                             vdwioffsetptr0+vdwjidx0D,
612                                             &c6_00,&c12_00);
613
614             /* Calculate table index by multiplying r with table scale and truncate to integer */
615             rt               = _mm256_mul_pd(r00,vftabscale);
616             vfitab           = _mm256_cvttpd_epi32(rt);
617             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
618             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
619
620             /* CUBIC SPLINE TABLE ELECTROSTATICS */
621             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
622             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
623             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
624             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
625             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
626             Heps             = _mm256_mul_pd(vfeps,H);
627             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
628             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
629             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
630
631             /* CUBIC SPLINE TABLE DISPERSION */
632             vfitab           = _mm_add_epi32(vfitab,ifour);
633             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
634             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
635             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
636             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
637             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
638             Heps             = _mm256_mul_pd(vfeps,H);
639             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
640             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
641             fvdw6            = _mm256_mul_pd(c6_00,FF);
642
643             /* CUBIC SPLINE TABLE REPULSION */
644             vfitab           = _mm_add_epi32(vfitab,ifour);
645             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
646             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
647             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
648             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
649             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
650             Heps             = _mm256_mul_pd(vfeps,H);
651             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
652             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
653             fvdw12           = _mm256_mul_pd(c12_00,FF);
654             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
655
656             fscal            = _mm256_add_pd(felec,fvdw);
657
658             /* Calculate temporary vectorial force */
659             tx               = _mm256_mul_pd(fscal,dx00);
660             ty               = _mm256_mul_pd(fscal,dy00);
661             tz               = _mm256_mul_pd(fscal,dz00);
662
663             /* Update vectorial force */
664             fix0             = _mm256_add_pd(fix0,tx);
665             fiy0             = _mm256_add_pd(fiy0,ty);
666             fiz0             = _mm256_add_pd(fiz0,tz);
667
668             fjptrA             = f+j_coord_offsetA;
669             fjptrB             = f+j_coord_offsetB;
670             fjptrC             = f+j_coord_offsetC;
671             fjptrD             = f+j_coord_offsetD;
672             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
673
674             /* Inner loop uses 61 flops */
675         }
676
677         if(jidx<j_index_end)
678         {
679
680             /* Get j neighbor index, and coordinate index */
681             jnrlistA         = jjnr[jidx];
682             jnrlistB         = jjnr[jidx+1];
683             jnrlistC         = jjnr[jidx+2];
684             jnrlistD         = jjnr[jidx+3];
685             /* Sign of each element will be negative for non-real atoms.
686              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
687              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
688              */
689             tmpmask0 = gmx_mm_castsi128_pd(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
690
691             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
692             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
693             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
694
695             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
696             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
697             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
698             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
699             j_coord_offsetA  = DIM*jnrA;
700             j_coord_offsetB  = DIM*jnrB;
701             j_coord_offsetC  = DIM*jnrC;
702             j_coord_offsetD  = DIM*jnrD;
703
704             /* load j atom coordinates */
705             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
706                                                  x+j_coord_offsetC,x+j_coord_offsetD,
707                                                  &jx0,&jy0,&jz0);
708
709             /* Calculate displacement vector */
710             dx00             = _mm256_sub_pd(ix0,jx0);
711             dy00             = _mm256_sub_pd(iy0,jy0);
712             dz00             = _mm256_sub_pd(iz0,jz0);
713
714             /* Calculate squared distance and things based on it */
715             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
716
717             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
718
719             /* Load parameters for j particles */
720             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
721                                                                  charge+jnrC+0,charge+jnrD+0);
722             vdwjidx0A        = 2*vdwtype[jnrA+0];
723             vdwjidx0B        = 2*vdwtype[jnrB+0];
724             vdwjidx0C        = 2*vdwtype[jnrC+0];
725             vdwjidx0D        = 2*vdwtype[jnrD+0];
726
727             /**************************
728              * CALCULATE INTERACTIONS *
729              **************************/
730
731             r00              = _mm256_mul_pd(rsq00,rinv00);
732             r00              = _mm256_andnot_pd(dummy_mask,r00);
733
734             /* Compute parameters for interactions between i and j atoms */
735             qq00             = _mm256_mul_pd(iq0,jq0);
736             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
737                                             vdwioffsetptr0+vdwjidx0B,
738                                             vdwioffsetptr0+vdwjidx0C,
739                                             vdwioffsetptr0+vdwjidx0D,
740                                             &c6_00,&c12_00);
741
742             /* Calculate table index by multiplying r with table scale and truncate to integer */
743             rt               = _mm256_mul_pd(r00,vftabscale);
744             vfitab           = _mm256_cvttpd_epi32(rt);
745             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
746             vfitab           = _mm_slli_epi32(_mm_add_epi32(vfitab,_mm_slli_epi32(vfitab,1)),2);
747
748             /* CUBIC SPLINE TABLE ELECTROSTATICS */
749             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
750             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
751             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
752             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
753             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
754             Heps             = _mm256_mul_pd(vfeps,H);
755             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
756             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
757             felec            = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_mul_pd(qq00,FF),_mm256_mul_pd(vftabscale,rinv00)));
758
759             /* CUBIC SPLINE TABLE DISPERSION */
760             vfitab           = _mm_add_epi32(vfitab,ifour);
761             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
762             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
763             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
764             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
765             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
766             Heps             = _mm256_mul_pd(vfeps,H);
767             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
768             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
769             fvdw6            = _mm256_mul_pd(c6_00,FF);
770
771             /* CUBIC SPLINE TABLE REPULSION */
772             vfitab           = _mm_add_epi32(vfitab,ifour);
773             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
774             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
775             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
776             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
777             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
778             Heps             = _mm256_mul_pd(vfeps,H);
779             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
780             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
781             fvdw12           = _mm256_mul_pd(c12_00,FF);
782             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
783
784             fscal            = _mm256_add_pd(felec,fvdw);
785
786             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
787
788             /* Calculate temporary vectorial force */
789             tx               = _mm256_mul_pd(fscal,dx00);
790             ty               = _mm256_mul_pd(fscal,dy00);
791             tz               = _mm256_mul_pd(fscal,dz00);
792
793             /* Update vectorial force */
794             fix0             = _mm256_add_pd(fix0,tx);
795             fiy0             = _mm256_add_pd(fiy0,ty);
796             fiz0             = _mm256_add_pd(fiz0,tz);
797
798             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
799             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
800             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
801             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
802             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
803
804             /* Inner loop uses 62 flops */
805         }
806
807         /* End of innermost loop */
808
809         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
810                                                  f+i_coord_offset,fshift+i_shift_offset);
811
812         /* Increment number of inner iterations */
813         inneriter                  += j_index_end - j_index_start;
814
815         /* Outer loop uses 7 flops */
816     }
817
818     /* Increment number of outer iterations */
819     outeriter        += nri;
820
821     /* Update outer/inner flops */
822
823     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62);
824 }