0e3143a7f4c613bf6ef837fa47ef7c55f74c235e
[alexxy/gromacs.git] / src / gmxlib / nonbonded / nb_kernel_avx_128_fma_single / nb_kernel_ElecRF_VdwLJ_GeomP1P1_avx_128_fma_single.c
1 /*
2  * Note: this file was generated by the Gromacs avx_128_fma_single kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_128_fma_single.h"
34 #include "kernelutil_x86_avx_128_fma_single.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_single
38  * Electrostatics interaction: ReactionField
39  * VdW interaction:            LennardJones
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecRF_VdwLJ_GeomP1P1_VF_avx_128_fma_single
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
63     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
64     real             rcutoff_scalar;
65     real             *shiftvec,*fshift,*x,*f;
66     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
67     real             scratch[4*DIM];
68     __m128           fscal,rcutoff,rcutoff2,jidxall;
69     int              vdwioffset0;
70     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
71     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
72     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
73     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
74     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
75     real             *charge;
76     int              nvdwtype;
77     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
78     int              *vdwtype;
79     real             *vdwparam;
80     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
81     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
82     __m128           dummy_mask,cutoff_mask;
83     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
84     __m128           one     = _mm_set1_ps(1.0);
85     __m128           two     = _mm_set1_ps(2.0);
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = _mm_set1_ps(fr->epsfac);
98     charge           = mdatoms->chargeA;
99     krf              = _mm_set1_ps(fr->ic->k_rf);
100     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
101     crf              = _mm_set1_ps(fr->ic->c_rf);
102     nvdwtype         = fr->ntype;
103     vdwparam         = fr->nbfp;
104     vdwtype          = mdatoms->typeA;
105
106     /* Avoid stupid compiler warnings */
107     jnrA = jnrB = jnrC = jnrD = 0;
108     j_coord_offsetA = 0;
109     j_coord_offsetB = 0;
110     j_coord_offsetC = 0;
111     j_coord_offsetD = 0;
112
113     outeriter        = 0;
114     inneriter        = 0;
115
116     for(iidx=0;iidx<4*DIM;iidx++)
117     {
118         scratch[iidx] = 0.0;
119     }
120
121     /* Start outer loop over neighborlists */
122     for(iidx=0; iidx<nri; iidx++)
123     {
124         /* Load shift vector for this list */
125         i_shift_offset   = DIM*shiftidx[iidx];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
137
138         fix0             = _mm_setzero_ps();
139         fiy0             = _mm_setzero_ps();
140         fiz0             = _mm_setzero_ps();
141
142         /* Load parameters for i particles */
143         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
144         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
145
146         /* Reset potential sums */
147         velecsum         = _mm_setzero_ps();
148         vvdwsum          = _mm_setzero_ps();
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
152         {
153
154             /* Get j neighbor index, and coordinate index */
155             jnrA             = jjnr[jidx];
156             jnrB             = jjnr[jidx+1];
157             jnrC             = jjnr[jidx+2];
158             jnrD             = jjnr[jidx+3];
159             j_coord_offsetA  = DIM*jnrA;
160             j_coord_offsetB  = DIM*jnrB;
161             j_coord_offsetC  = DIM*jnrC;
162             j_coord_offsetD  = DIM*jnrD;
163
164             /* load j atom coordinates */
165             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
166                                               x+j_coord_offsetC,x+j_coord_offsetD,
167                                               &jx0,&jy0,&jz0);
168
169             /* Calculate displacement vector */
170             dx00             = _mm_sub_ps(ix0,jx0);
171             dy00             = _mm_sub_ps(iy0,jy0);
172             dz00             = _mm_sub_ps(iz0,jz0);
173
174             /* Calculate squared distance and things based on it */
175             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
176
177             rinv00           = gmx_mm_invsqrt_ps(rsq00);
178
179             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
180
181             /* Load parameters for j particles */
182             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
183                                                               charge+jnrC+0,charge+jnrD+0);
184             vdwjidx0A        = 2*vdwtype[jnrA+0];
185             vdwjidx0B        = 2*vdwtype[jnrB+0];
186             vdwjidx0C        = 2*vdwtype[jnrC+0];
187             vdwjidx0D        = 2*vdwtype[jnrD+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             /* Compute parameters for interactions between i and j atoms */
194             qq00             = _mm_mul_ps(iq0,jq0);
195             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
196                                          vdwparam+vdwioffset0+vdwjidx0B,
197                                          vdwparam+vdwioffset0+vdwjidx0C,
198                                          vdwparam+vdwioffset0+vdwjidx0D,
199                                          &c6_00,&c12_00);
200
201             /* REACTION-FIELD ELECTROSTATICS */
202             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
203             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
204
205             /* LENNARD-JONES DISPERSION/REPULSION */
206
207             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
208             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
209             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
210             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
211             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
212
213             /* Update potential sum for this i atom from the interaction with this j atom. */
214             velecsum         = _mm_add_ps(velecsum,velec);
215             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
216
217             fscal            = _mm_add_ps(felec,fvdw);
218
219              /* Update vectorial force */
220             fix0             = _mm_macc_ps(dx00,fscal,fix0);
221             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
222             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
223
224             fjptrA             = f+j_coord_offsetA;
225             fjptrB             = f+j_coord_offsetB;
226             fjptrC             = f+j_coord_offsetC;
227             fjptrD             = f+j_coord_offsetD;
228             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
229                                                    _mm_mul_ps(dx00,fscal),
230                                                    _mm_mul_ps(dy00,fscal),
231                                                    _mm_mul_ps(dz00,fscal));
232
233             /* Inner loop uses 47 flops */
234         }
235
236         if(jidx<j_index_end)
237         {
238
239             /* Get j neighbor index, and coordinate index */
240             jnrlistA         = jjnr[jidx];
241             jnrlistB         = jjnr[jidx+1];
242             jnrlistC         = jjnr[jidx+2];
243             jnrlistD         = jjnr[jidx+3];
244             /* Sign of each element will be negative for non-real atoms.
245              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
246              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
247              */
248             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
249             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
250             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
251             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
252             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
253             j_coord_offsetA  = DIM*jnrA;
254             j_coord_offsetB  = DIM*jnrB;
255             j_coord_offsetC  = DIM*jnrC;
256             j_coord_offsetD  = DIM*jnrD;
257
258             /* load j atom coordinates */
259             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
260                                               x+j_coord_offsetC,x+j_coord_offsetD,
261                                               &jx0,&jy0,&jz0);
262
263             /* Calculate displacement vector */
264             dx00             = _mm_sub_ps(ix0,jx0);
265             dy00             = _mm_sub_ps(iy0,jy0);
266             dz00             = _mm_sub_ps(iz0,jz0);
267
268             /* Calculate squared distance and things based on it */
269             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
270
271             rinv00           = gmx_mm_invsqrt_ps(rsq00);
272
273             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
274
275             /* Load parameters for j particles */
276             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
277                                                               charge+jnrC+0,charge+jnrD+0);
278             vdwjidx0A        = 2*vdwtype[jnrA+0];
279             vdwjidx0B        = 2*vdwtype[jnrB+0];
280             vdwjidx0C        = 2*vdwtype[jnrC+0];
281             vdwjidx0D        = 2*vdwtype[jnrD+0];
282
283             /**************************
284              * CALCULATE INTERACTIONS *
285              **************************/
286
287             /* Compute parameters for interactions between i and j atoms */
288             qq00             = _mm_mul_ps(iq0,jq0);
289             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
290                                          vdwparam+vdwioffset0+vdwjidx0B,
291                                          vdwparam+vdwioffset0+vdwjidx0C,
292                                          vdwparam+vdwioffset0+vdwjidx0D,
293                                          &c6_00,&c12_00);
294
295             /* REACTION-FIELD ELECTROSTATICS */
296             velec            = _mm_mul_ps(qq00,_mm_sub_ps(_mm_macc_ps(krf,rsq00,rinv00),crf));
297             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
298
299             /* LENNARD-JONES DISPERSION/REPULSION */
300
301             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
302             vvdw6            = _mm_mul_ps(c6_00,rinvsix);
303             vvdw12           = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
304             vvdw             = _mm_msub_ps(vvdw12,one_twelfth,_mm_mul_ps(vvdw6,one_sixth));
305             fvdw             = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
306
307             /* Update potential sum for this i atom from the interaction with this j atom. */
308             velec            = _mm_andnot_ps(dummy_mask,velec);
309             velecsum         = _mm_add_ps(velecsum,velec);
310             vvdw             = _mm_andnot_ps(dummy_mask,vvdw);
311             vvdwsum          = _mm_add_ps(vvdwsum,vvdw);
312
313             fscal            = _mm_add_ps(felec,fvdw);
314
315             fscal            = _mm_andnot_ps(dummy_mask,fscal);
316
317              /* Update vectorial force */
318             fix0             = _mm_macc_ps(dx00,fscal,fix0);
319             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
320             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
321
322             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
323             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
324             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
325             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
326             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
327                                                    _mm_mul_ps(dx00,fscal),
328                                                    _mm_mul_ps(dy00,fscal),
329                                                    _mm_mul_ps(dz00,fscal));
330
331             /* Inner loop uses 47 flops */
332         }
333
334         /* End of innermost loop */
335
336         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
337                                               f+i_coord_offset,fshift+i_shift_offset);
338
339         ggid                        = gid[iidx];
340         /* Update potential energies */
341         gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
342         gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
343
344         /* Increment number of inner iterations */
345         inneriter                  += j_index_end - j_index_start;
346
347         /* Outer loop uses 9 flops */
348     }
349
350     /* Increment number of outer iterations */
351     outeriter        += nri;
352
353     /* Update outer/inner flops */
354
355     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*47);
356 }
357 /*
358  * Gromacs nonbonded kernel:   nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_single
359  * Electrostatics interaction: ReactionField
360  * VdW interaction:            LennardJones
361  * Geometry:                   Particle-Particle
362  * Calculate force/pot:        Force
363  */
364 void
365 nb_kernel_ElecRF_VdwLJ_GeomP1P1_F_avx_128_fma_single
366                     (t_nblist * gmx_restrict                nlist,
367                      rvec * gmx_restrict                    xx,
368                      rvec * gmx_restrict                    ff,
369                      t_forcerec * gmx_restrict              fr,
370                      t_mdatoms * gmx_restrict               mdatoms,
371                      nb_kernel_data_t * gmx_restrict        kernel_data,
372                      t_nrnb * gmx_restrict                  nrnb)
373 {
374     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
375      * just 0 for non-waters.
376      * Suffixes A,B,C,D refer to j loop unrolling done with AVX_128, e.g. for the four different
377      * jnr indices corresponding to data put in the four positions in the SIMD register.
378      */
379     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
380     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
381     int              jnrA,jnrB,jnrC,jnrD;
382     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
383     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
384     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
385     real             rcutoff_scalar;
386     real             *shiftvec,*fshift,*x,*f;
387     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
388     real             scratch[4*DIM];
389     __m128           fscal,rcutoff,rcutoff2,jidxall;
390     int              vdwioffset0;
391     __m128           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
392     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
393     __m128           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
394     __m128           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
395     __m128           velec,felec,velecsum,facel,crf,krf,krf2;
396     real             *charge;
397     int              nvdwtype;
398     __m128           rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
399     int              *vdwtype;
400     real             *vdwparam;
401     __m128           one_sixth   = _mm_set1_ps(1.0/6.0);
402     __m128           one_twelfth = _mm_set1_ps(1.0/12.0);
403     __m128           dummy_mask,cutoff_mask;
404     __m128           signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
405     __m128           one     = _mm_set1_ps(1.0);
406     __m128           two     = _mm_set1_ps(2.0);
407     x                = xx[0];
408     f                = ff[0];
409
410     nri              = nlist->nri;
411     iinr             = nlist->iinr;
412     jindex           = nlist->jindex;
413     jjnr             = nlist->jjnr;
414     shiftidx         = nlist->shift;
415     gid              = nlist->gid;
416     shiftvec         = fr->shift_vec[0];
417     fshift           = fr->fshift[0];
418     facel            = _mm_set1_ps(fr->epsfac);
419     charge           = mdatoms->chargeA;
420     krf              = _mm_set1_ps(fr->ic->k_rf);
421     krf2             = _mm_set1_ps(fr->ic->k_rf*2.0);
422     crf              = _mm_set1_ps(fr->ic->c_rf);
423     nvdwtype         = fr->ntype;
424     vdwparam         = fr->nbfp;
425     vdwtype          = mdatoms->typeA;
426
427     /* Avoid stupid compiler warnings */
428     jnrA = jnrB = jnrC = jnrD = 0;
429     j_coord_offsetA = 0;
430     j_coord_offsetB = 0;
431     j_coord_offsetC = 0;
432     j_coord_offsetD = 0;
433
434     outeriter        = 0;
435     inneriter        = 0;
436
437     for(iidx=0;iidx<4*DIM;iidx++)
438     {
439         scratch[iidx] = 0.0;
440     }
441
442     /* Start outer loop over neighborlists */
443     for(iidx=0; iidx<nri; iidx++)
444     {
445         /* Load shift vector for this list */
446         i_shift_offset   = DIM*shiftidx[iidx];
447
448         /* Load limits for loop over neighbors */
449         j_index_start    = jindex[iidx];
450         j_index_end      = jindex[iidx+1];
451
452         /* Get outer coordinate index */
453         inr              = iinr[iidx];
454         i_coord_offset   = DIM*inr;
455
456         /* Load i particle coords and add shift vector */
457         gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
458
459         fix0             = _mm_setzero_ps();
460         fiy0             = _mm_setzero_ps();
461         fiz0             = _mm_setzero_ps();
462
463         /* Load parameters for i particles */
464         iq0              = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
465         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
466
467         /* Start inner kernel loop */
468         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
469         {
470
471             /* Get j neighbor index, and coordinate index */
472             jnrA             = jjnr[jidx];
473             jnrB             = jjnr[jidx+1];
474             jnrC             = jjnr[jidx+2];
475             jnrD             = jjnr[jidx+3];
476             j_coord_offsetA  = DIM*jnrA;
477             j_coord_offsetB  = DIM*jnrB;
478             j_coord_offsetC  = DIM*jnrC;
479             j_coord_offsetD  = DIM*jnrD;
480
481             /* load j atom coordinates */
482             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
483                                               x+j_coord_offsetC,x+j_coord_offsetD,
484                                               &jx0,&jy0,&jz0);
485
486             /* Calculate displacement vector */
487             dx00             = _mm_sub_ps(ix0,jx0);
488             dy00             = _mm_sub_ps(iy0,jy0);
489             dz00             = _mm_sub_ps(iz0,jz0);
490
491             /* Calculate squared distance and things based on it */
492             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
493
494             rinv00           = gmx_mm_invsqrt_ps(rsq00);
495
496             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
497
498             /* Load parameters for j particles */
499             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
500                                                               charge+jnrC+0,charge+jnrD+0);
501             vdwjidx0A        = 2*vdwtype[jnrA+0];
502             vdwjidx0B        = 2*vdwtype[jnrB+0];
503             vdwjidx0C        = 2*vdwtype[jnrC+0];
504             vdwjidx0D        = 2*vdwtype[jnrD+0];
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             /* Compute parameters for interactions between i and j atoms */
511             qq00             = _mm_mul_ps(iq0,jq0);
512             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
513                                          vdwparam+vdwioffset0+vdwjidx0B,
514                                          vdwparam+vdwioffset0+vdwjidx0C,
515                                          vdwparam+vdwioffset0+vdwjidx0D,
516                                          &c6_00,&c12_00);
517
518             /* REACTION-FIELD ELECTROSTATICS */
519             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
520
521             /* LENNARD-JONES DISPERSION/REPULSION */
522
523             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
524             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
525
526             fscal            = _mm_add_ps(felec,fvdw);
527
528              /* Update vectorial force */
529             fix0             = _mm_macc_ps(dx00,fscal,fix0);
530             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
531             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
532
533             fjptrA             = f+j_coord_offsetA;
534             fjptrB             = f+j_coord_offsetB;
535             fjptrC             = f+j_coord_offsetC;
536             fjptrD             = f+j_coord_offsetD;
537             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
538                                                    _mm_mul_ps(dx00,fscal),
539                                                    _mm_mul_ps(dy00,fscal),
540                                                    _mm_mul_ps(dz00,fscal));
541
542             /* Inner loop uses 37 flops */
543         }
544
545         if(jidx<j_index_end)
546         {
547
548             /* Get j neighbor index, and coordinate index */
549             jnrlistA         = jjnr[jidx];
550             jnrlistB         = jjnr[jidx+1];
551             jnrlistC         = jjnr[jidx+2];
552             jnrlistD         = jjnr[jidx+3];
553             /* Sign of each element will be negative for non-real atoms.
554              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
555              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
556              */
557             dummy_mask = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
558             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
559             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
560             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
561             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
562             j_coord_offsetA  = DIM*jnrA;
563             j_coord_offsetB  = DIM*jnrB;
564             j_coord_offsetC  = DIM*jnrC;
565             j_coord_offsetD  = DIM*jnrD;
566
567             /* load j atom coordinates */
568             gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
569                                               x+j_coord_offsetC,x+j_coord_offsetD,
570                                               &jx0,&jy0,&jz0);
571
572             /* Calculate displacement vector */
573             dx00             = _mm_sub_ps(ix0,jx0);
574             dy00             = _mm_sub_ps(iy0,jy0);
575             dz00             = _mm_sub_ps(iz0,jz0);
576
577             /* Calculate squared distance and things based on it */
578             rsq00            = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
579
580             rinv00           = gmx_mm_invsqrt_ps(rsq00);
581
582             rinvsq00         = _mm_mul_ps(rinv00,rinv00);
583
584             /* Load parameters for j particles */
585             jq0              = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
586                                                               charge+jnrC+0,charge+jnrD+0);
587             vdwjidx0A        = 2*vdwtype[jnrA+0];
588             vdwjidx0B        = 2*vdwtype[jnrB+0];
589             vdwjidx0C        = 2*vdwtype[jnrC+0];
590             vdwjidx0D        = 2*vdwtype[jnrD+0];
591
592             /**************************
593              * CALCULATE INTERACTIONS *
594              **************************/
595
596             /* Compute parameters for interactions between i and j atoms */
597             qq00             = _mm_mul_ps(iq0,jq0);
598             gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
599                                          vdwparam+vdwioffset0+vdwjidx0B,
600                                          vdwparam+vdwioffset0+vdwjidx0C,
601                                          vdwparam+vdwioffset0+vdwjidx0D,
602                                          &c6_00,&c12_00);
603
604             /* REACTION-FIELD ELECTROSTATICS */
605             felec            = _mm_mul_ps(qq00,_mm_msub_ps(rinv00,rinvsq00,krf2));
606
607             /* LENNARD-JONES DISPERSION/REPULSION */
608
609             rinvsix          = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
610             fvdw             = _mm_mul_ps(_mm_msub_ps(c12_00,rinvsix,c6_00),_mm_mul_ps(rinvsix,rinvsq00));
611
612             fscal            = _mm_add_ps(felec,fvdw);
613
614             fscal            = _mm_andnot_ps(dummy_mask,fscal);
615
616              /* Update vectorial force */
617             fix0             = _mm_macc_ps(dx00,fscal,fix0);
618             fiy0             = _mm_macc_ps(dy00,fscal,fiy0);
619             fiz0             = _mm_macc_ps(dz00,fscal,fiz0);
620
621             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
622             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
623             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
624             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
625             gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,
626                                                    _mm_mul_ps(dx00,fscal),
627                                                    _mm_mul_ps(dy00,fscal),
628                                                    _mm_mul_ps(dz00,fscal));
629
630             /* Inner loop uses 37 flops */
631         }
632
633         /* End of innermost loop */
634
635         gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
636                                               f+i_coord_offset,fshift+i_shift_offset);
637
638         /* Increment number of inner iterations */
639         inneriter                  += j_index_end - j_index_start;
640
641         /* Outer loop uses 7 flops */
642     }
643
644     /* Increment number of outer iterations */
645     outeriter        += nri;
646
647     /* Update outer/inner flops */
648
649     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37);
650 }